JPH0136064Y2 - - Google Patents

Info

Publication number
JPH0136064Y2
JPH0136064Y2 JP18838983U JP18838983U JPH0136064Y2 JP H0136064 Y2 JPH0136064 Y2 JP H0136064Y2 JP 18838983 U JP18838983 U JP 18838983U JP 18838983 U JP18838983 U JP 18838983U JP H0136064 Y2 JPH0136064 Y2 JP H0136064Y2
Authority
JP
Japan
Prior art keywords
liquid
gas
refrigerant
regulating valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18838983U
Other languages
Japanese (ja)
Other versions
JPS6096557U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18838983U priority Critical patent/JPS6096557U/en
Publication of JPS6096557U publication Critical patent/JPS6096557U/en
Application granted granted Critical
Publication of JPH0136064Y2 publication Critical patent/JPH0136064Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は、特に年間を通して冷房あるいは冷凍
する空調機あるいは冷凍機として用いて好適な空
冷式冷凍装置に関するものである。
[Detailed Description of the Invention] The present invention relates to an air-cooled refrigeration system suitable for use as an air conditioner or refrigerator, particularly for cooling or freezing throughout the year.

第1図は、上記のような冷凍装置の凝縮器まわ
りの構成を示す図で、1は複数のサーキツト1
a,1b,1cに分割された熱交換器、2は送風
機、3は冷媒ガスを分配するガスヘツダー、4は
冷媒液を集合する液ヘツダー、5は圧縮機に連な
るガス配管、6は膨張弁に連なる液配管、7はガ
ス配管5に一端が接続されたガス接続管、8は液
ヘツダー4に一端が接続された液接続管、9はガ
スポート9aにガス接続管7が、液ポート9bに
液接続管8が接続され、出口ポート9cが受液器
10に接続された凝縮圧力調整弁であり、圧縮機
で圧縮された冷媒ガスは、ガス配管5を通つて、
第1図に示す凝縮器へ流入する。凝縮器に流入し
た高圧冷媒ガスは、凝縮圧力調整弁9の動作圧力
より高い圧力で凝縮する通常の場合、ガスヘツダ
ー3を経て、熱交換器1の各サーキツト1a,1
b,1cに分かれ、送風機2により熱交換器1に
導入される空気で冷却されて液化する。この高圧
冷媒液は、液ヘツダー4で集められ、液接続管
8、凝縮圧力調整弁9を経て受液器10に至り、
液配管6から凝縮器外へ流出する。図示していな
いが、凝縮器外には膨張弁、蒸発器、圧縮器が連
なり、冷凍サイクルを構成している。
FIG. 1 is a diagram showing the configuration around the condenser of the above-mentioned refrigeration system, where 1 indicates a plurality of circuits 1.
A heat exchanger divided into a, 1b, and 1c, 2 is a blower, 3 is a gas header that distributes refrigerant gas, 4 is a liquid header that collects refrigerant liquid, 5 is a gas pipe connected to a compressor, and 6 is an expansion valve. A series of liquid pipes, 7 is a gas connection pipe whose one end is connected to the gas pipe 5, 8 is a liquid connection pipe whose one end is connected to the liquid header 4, and 9 is a gas connection pipe 7 connected to the gas port 9a, and a gas connection pipe 7 connected to the liquid port 9b. It is a condensing pressure regulating valve to which the liquid connection pipe 8 is connected and the outlet port 9c is connected to the liquid receiver 10, and the refrigerant gas compressed by the compressor passes through the gas pipe 5.
It flows into the condenser shown in FIG. In the normal case where the high-pressure refrigerant gas that has flowed into the condenser is condensed at a pressure higher than the operating pressure of the condensing pressure regulating valve 9, it passes through the gas header 3 and then flows through each circuit 1a, 1 of the heat exchanger 1.
b and 1c, and are cooled by air introduced into the heat exchanger 1 by the blower 2 and liquefied. This high-pressure refrigerant liquid is collected in a liquid header 4, passes through a liquid connection pipe 8, a condensation pressure regulating valve 9, and reaches a liquid receiver 10.
The liquid flows out of the condenser from the liquid pipe 6. Although not shown, an expansion valve, an evaporator, and a compressor are connected outside the condenser to form a refrigeration cycle.

いま、熱交換器1へ導入される空気の温度が低
く、凝縮圧力が凝縮圧力調整弁9の動作圧力より
低くなつた場合、流入した冷媒ガスの一部分は、
ガス配管5に接続しているガス接続管7を通り、
凝縮圧力調整弁9を経て、受液器10に至る。こ
のため、受液器10内圧力が高められ、液接続管
8からの高圧冷媒液の流出が妨げられるので、熱
交換器1の各サーキツト1a,1b,1c内に冷
媒液が貯溜され、熱交換器1の有効凝縮熱交換面
積が減少することにより、凝縮圧力が高められ
る。
Now, when the temperature of the air introduced into the heat exchanger 1 is low and the condensation pressure is lower than the operating pressure of the condensation pressure regulating valve 9, a portion of the refrigerant gas that has flowed into the heat exchanger 1 is
Pass through the gas connection pipe 7 connected to the gas pipe 5,
It passes through the condensation pressure regulating valve 9 and reaches the liquid receiver 10 . For this reason, the pressure inside the liquid receiver 10 is increased and the outflow of the high-pressure refrigerant liquid from the liquid connection pipe 8 is prevented, so the refrigerant liquid is stored in each circuit 1a, 1b, 1c of the heat exchanger 1, and heat is generated. By reducing the effective condensing heat exchange area of the exchanger 1, the condensing pressure is increased.

これにより、膨張弁(図示せず)の入口圧力不
足による冷媒循環流量のチヨークや、凝縮圧力を
高めることで蒸発圧力が高められ、蒸発器により
冷却される空気から生ずる水分の凍結が防止され
る。
This prevents the refrigerant circulation flow rate from being choked due to insufficient pressure at the inlet of the expansion valve (not shown), and increases the evaporation pressure by increasing the condensation pressure, thereby preventing moisture generated from the air cooled by the evaporator from freezing. .

以上のように、凝縮圧力調整弁9は、その動作
圧力より流入する冷媒ガスの圧力が低い場合、ガ
スポート9aを開き、液ポート9bをせばめるよ
うに働く。このため、外気温が低い時に始動する
場合、ガスポート9aは全開、液ポート9bは全
閉となつており、圧縮機が始動して、流入した冷
媒ガスは、この時、ガス接続管7、凝縮圧力調整
弁9、受液器10を経て、全量が液配管6から流
出する。
As described above, when the pressure of the inflowing refrigerant gas is lower than the operating pressure of the condensing pressure regulating valve 9, the condensing pressure regulating valve 9 operates to open the gas port 9a and narrow the liquid port 9b. Therefore, when starting when the outside temperature is low, the gas port 9a is fully open and the liquid port 9b is fully closed. The entire amount flows out from the liquid pipe 6 via the condensation pressure regulating valve 9 and the liquid receiver 10.

このような始動のとき、受液器10以後に十分
な液冷媒が残つていないと、凝縮圧力が凝縮圧力
調整弁9の動作圧力より高くなることができず、
液ポート9bは全閉のまま運転されることにな
り、通常の冷房、冷凍作用が発揮できない欠点が
ある。
At the time of such a start, if sufficient liquid refrigerant does not remain after the liquid receiver 10, the condensing pressure cannot become higher than the operating pressure of the condensing pressure regulating valve 9.
The liquid port 9b is operated in a fully closed state, which has the disadvantage that normal cooling and freezing effects cannot be achieved.

また、圧縮された高温の冷媒ガスが蒸発器(図
示せず)へ、そのまま流れることにより、冷却し
なければならない空気を逆に暖めてしまう欠点が
ある。
In addition, the compressed high-temperature refrigerant gas flows directly to the evaporator (not shown), which has the disadvantage of heating the air that should be cooled.

さらに、高温冷媒ガスの循環により圧縮機(図
示せず)の過熱などの事故を誘発する危険があ
る。
Furthermore, the circulation of high-temperature refrigerant gas may cause accidents such as overheating of the compressor (not shown).

そこで、上記欠点を改善するものとして、第2
図あるいは第3図に示すものに提案されている。
Therefore, as a way to improve the above drawbacks, the second
The proposed method is shown in FIG.

第2図に示す提案は、液接続管8を分岐させ、
そこに電磁弁21を設け、これを凝縮圧力調整弁
9と受液器10の間に接続したもので、熱交換器
1を、受液器10、凝縮圧力調整弁9より高い位
置に設置しておき、停止中、電磁弁21を開いて
おくことにより重力により、熱交換器1から冷媒
液が受液器10へ流入して満杯となつているた
め、ここで始動すれば、速やかに凝縮圧力が上昇
し前記の欠点がカバーされる。しかし、この提案
では、電磁弁21を使うことにより高価なものと
なると同時、電磁弁21を動作させる電気回路が
余分に必要となるため、信頼性を損う誘因となり
危険があり、また、熱交換器1を高い位置にしな
ければならないと言う、レイアウトの制限をうけ
る欠点がある。
The proposal shown in FIG. 2 branches the liquid connection pipe 8,
A solenoid valve 21 is provided there, and this is connected between the condensing pressure regulating valve 9 and the liquid receiver 10, and the heat exchanger 1 is installed at a higher position than the liquid receiver 10 and the condensing pressure regulating valve 9. By keeping the solenoid valve 21 open during the stoppage, the refrigerant liquid flows from the heat exchanger 1 into the liquid receiver 10 due to gravity, and the liquid is full. The pressure increases and the aforementioned drawbacks are covered. However, in this proposal, the use of the solenoid valve 21 becomes expensive, and at the same time, an extra electric circuit is required to operate the solenoid valve 21, which may lead to a risk of lower reliability and cause heat generation. There is a drawback that the exchanger 1 must be placed in a high position, which is a layout restriction.

また、第3図に示す提案は、第2図に示すもの
の電磁弁21の代りに、キヤピラリ22を設ける
ことによりその欠点を改善したものであるが熱交
換器1を高い位置に置くことは必要であつて、い
ぜんとしてレイアウトの制限をうける欠点があ
る。
In addition, the proposal shown in Fig. 3 improves the drawback by providing a capillary 22 instead of the solenoid valve 21 of the one shown in Fig. 2, but it is necessary to place the heat exchanger 1 in a high position. However, it still has the disadvantage of being subject to layout restrictions.

本考案は、上記した点に鑑み提案されたもの
で、その目的とするところは、年間にわたつて冷
房ないし冷凍を行なう空冷式冷凍装置に於いて、
安価で、信頼性高く、レイアウトの制限をうけず
に、始動できる空冷式冷凍装置を提供することに
ある。
The present invention was proposed in view of the above points, and its purpose is to provide air-cooled refrigeration equipment that performs cooling or freezing throughout the year.
To provide an air-cooled refrigeration system that is inexpensive, highly reliable, and can be started without being restricted by layout.

本考案は、圧縮機からの冷媒ガスをガスヘツダ
ーを介して複数のサーキツトに分けて凝縮させる
空冷凝縮器を有すると共に凝縮圧力低下時、前記
冷媒ガスの一部をバイパスさせて高圧冷媒液の圧
力を高め、凝縮冷媒液を前記空冷凝縮器内に溜め
て同凝縮器の有効熱交換面積を調節することによ
り凝縮圧力をコントロールする凝縮圧力調整弁を
有する空冷式冷凍装置において、前記凝縮圧力調
整弁のガスポートを前記ガスヘツダーの下部と接
続したことを特徴とする空冷式冷凍装置を要旨と
するもので、上記の如く、凝縮圧力調整弁のガス
ポートをガスヘツダーの下部に接続しておくこと
により、低外気温の始動時において凝縮圧力調整
弁のガスポートが全開となつていても、通常、下
方のサーキツト及びガスヘツダーの下部は冷媒液
で液封されているため、圧縮機からの冷媒ガス
が、そのまま蒸発器へ流れることがなく、上部の
サーキツトから順次流入する冷媒ガスの圧力損失
が、残存液ヘツドを超えるまで、各サーキツトの
貯溜冷媒液がガスヘツダーへ流れ出ることにより
凝縮圧力が速やかに上昇し、凝縮圧力調整弁の動
作圧力へ到達するので同弁の液ポートが開かれ、
通常の冷房、あるいは冷凍作用を発揮する。従つ
て、前記した従来のものの欠点を解消した安価
で、信頼性が高く、レイアウトの制限を受けない
空冷式冷凍装置とすることができる。
The present invention has an air-cooled condenser that divides the refrigerant gas from the compressor into a plurality of circuits via a gas header and condenses it, and when the condensing pressure decreases, a part of the refrigerant gas is bypassed to reduce the pressure of the high-pressure refrigerant liquid. In an air-cooled refrigeration system having a condensing pressure regulating valve, the condensing pressure regulating valve controls the condensing pressure by increasing the condensing pressure and accumulating the condensed refrigerant liquid in the air-cooled condenser to adjust the effective heat exchange area of the condenser. The gist of this is an air-cooled refrigeration system characterized in that a gas port is connected to the lower part of the gas header.As mentioned above, by connecting the gas port of the condensing pressure regulating valve to the lower part of the gas header, low Even if the gas port of the condensing pressure regulating valve is fully open when starting at outside temperature, the lower circuit and the lower part of the gas header are normally sealed with refrigerant liquid, so the refrigerant gas from the compressor will continue to flow. The refrigerant liquid stored in each circuit flows out to the gas header until the pressure loss of the refrigerant gas, which does not flow to the evaporator but flows sequentially from the upper circuit, exceeds the residual liquid head, causing the condensation pressure to rise rapidly and condensation. Since the operating pressure of the pressure regulating valve is reached, the liquid port of the valve is opened,
Provides normal cooling or freezing effects. Therefore, it is possible to provide an air-cooled refrigeration system that is inexpensive, highly reliable, and is not subject to layout restrictions, eliminating the drawbacks of the conventional systems described above.

以下、本考案を実施例に基いて説明する。 The present invention will be explained below based on examples.

第4図において1乃至10は従来のものと同様
のものであり、凝縮圧力調整弁9のガスポート9
aに接続されるガス接続管7をガスヘツダー3の
下部に接続した構成としたもので、凝縮圧力が凝
縮圧力調整弁9の動作圧力より低い時、ガスヘツ
ダー3の最下端からガス接続管7、凝縮圧力調整
弁9を経て、受液器10へ冷媒ガスが至る点以外
は前記した従来のものと同じである。
In FIG. 4, 1 to 10 are the same as the conventional ones, and the gas port 9 of the condensing pressure regulating valve 9
The gas connecting pipe 7 connected to a is connected to the lower part of the gas header 3, and when the condensing pressure is lower than the operating pressure of the condensing pressure regulating valve 9, the gas connecting pipe 7, condensing It is the same as the conventional one described above except that the refrigerant gas reaches the liquid receiver 10 via the pressure regulating valve 9.

外気温が低い時、始動する場合、凝縮圧力調整
弁9のガスポート9aは全開、液ポート9bは全
閉となつている。
When starting the engine when the outside temperature is low, the gas port 9a of the condensing pressure regulating valve 9 is fully open, and the liquid port 9b is fully closed.

この時、熱交換器1に貯溜している冷媒液は、
熱交換器1の各サーキツト1a,1b,1cがガ
スヘツダー3と液ヘツダー4で連通していること
により、熱交換器1の下方サーキツト例えば1
b,1cは冷媒液で満杯のため、これに見合う高
さで、ガスヘツダー3も液封されている。
At this time, the refrigerant liquid stored in the heat exchanger 1 is
Since each circuit 1a, 1b, 1c of the heat exchanger 1 is in communication with the gas header 3 and the liquid header 4, the lower circuit of the heat exchanger 1, for example 1
Since b and 1c are full of refrigerant liquid, the gas header 3 is also liquid-sealed at a corresponding height.

この状態で始動すると、流入した冷媒ガスは、
ガスヘツダー3中の冷媒液を受液器10へ押し出
し同ガスヘツダー3中の液面が無くなる。
When starting in this condition, the inflowing refrigerant gas will
The refrigerant liquid in the gas header 3 is pushed out to the liquid receiver 10, and the liquid level in the gas header 3 disappears.

始動直後に於いては、熱交換器1の上部サーキ
ツト例えばサーキツト1aでは液封されていない
ので、このサーキツトで徐々に凝縮が開始され
る。
Immediately after startup, since the upper circuit of the heat exchanger 1, for example, the circuit 1a, is not sealed with liquid, condensation gradually starts in this circuit.

下部に位置するサーキツト例えばサーキツト1
b,1cは、冷媒液で満杯であつて、より下部に
位置するサーキツト、例えばサーキツト1bに対
しサーキツト1cでは、サーキツト1bの液ヘツ
ドだけ圧力が高いので、前記の通りガスヘツダー
3中の液面が無くなつたことにより、同ガスヘツ
ダー3へ冷媒液が流れ出る。この分、サーキツト
1bの中の冷媒液が減少し、サーキツト1bで凝
縮が徐々に始まる。
The circuit located at the bottom, for example, circuit 1
b and 1c are full of refrigerant liquid, and the pressure in circuit 1c is higher than that in the lower circuit, for example, circuit 1b, only in the liquid head of circuit 1b, so as mentioned above, the liquid level in gas header 3 increases. As the refrigerant liquid runs out, the refrigerant liquid flows out to the gas header 3. The refrigerant liquid in the circuit 1b decreases by this amount, and condensation begins gradually in the circuit 1b.

このようにして、段々と下部サーキツトへ波及
し、各サーキツトへ流入する冷媒ガスの圧力損失
が、残存液ヘツドを超える迄で、貯溜冷媒液が、
ガスヘツダー3へ流れ出ることにより、凝縮圧力
が速やかに上昇し、凝縮圧力調整弁9の動作圧力
へ到達し、液ポート9bが開かれ通常の冷房、冷
凍作用を発揮できるようになる。
In this way, the stored refrigerant liquid gradually spreads to the lower circuit until the pressure loss of the refrigerant gas flowing into each circuit exceeds the residual liquid head.
By flowing out to the gas header 3, the condensing pressure quickly rises and reaches the operating pressure of the condensing pressure regulating valve 9, and the liquid port 9b is opened so that normal cooling and freezing effects can be performed.

また、この時、蒸発器(図示せず)へ流入する
冷媒ガス中に、冷媒液が混じることで圧縮機(図
示せず)で圧縮された高温の冷媒ガスは冷却され
るから、冷却しなければならない空気を逆に暖め
てしまうことがなくなる。
Also, at this time, the high-temperature refrigerant gas compressed by the compressor (not shown) is cooled by mixing the refrigerant liquid into the refrigerant gas flowing into the evaporator (not shown), so it must be cooled. This prevents the air from heating up when it should not be heated.

さらに、停止中、熱交換器1に貯溜した冷媒液
を、始動時冷媒ガスの流動と共に受液器10へ回
収することで熱交換器1を受液器10の上部に必
ず置かなければならないと言うレイアウトの制限
をうけることもなくなる。
Furthermore, the refrigerant liquid stored in the heat exchanger 1 during stoppage is collected into the liquid receiver 10 along with the flow of refrigerant gas during startup, so that the heat exchanger 1 must be placed at the top of the liquid receiver 10. You will no longer be subject to layout restrictions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、及び第3図は、それぞれ異な
る従来例を示す構成図、第4図は本考案の一実施
例を示す構成図である。 1……熱交換器、1a,1b,1c……サーキ
ツト、2……送風装置、3……ガスヘツダー、4
……液ヘツダー、5……ガス配管、6……液配
管、7……ガス接続管、8……液接続管、9……
凝縮圧力調整弁、9a……ガスポート、9b……
液ポート、9c……出口ポート、10……受液
器。
FIGS. 1, 2, and 3 are block diagrams showing different conventional examples, and FIG. 4 is a block diagram showing an embodiment of the present invention. 1...Heat exchanger, 1a, 1b, 1c...Circuit, 2...Blower device, 3...Gas header, 4
...Liquid header, 5...Gas piping, 6...Liquid piping, 7...Gas connection pipe, 8...Liquid connection pipe, 9...
Condensing pressure regulating valve, 9a...Gas port, 9b...
Liquid port, 9c...Outlet port, 10...Liquid receiver.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機からの冷媒ガスをガスヘツダーを介して
複数のサーキツトに分けて凝縮させる空冷凝縮器
を有すると共に凝縮圧力低下時、前記冷媒ガスの
一部をバイパスさせて高圧冷媒液の圧力を高め、
凝縮冷媒液を前記空冷凝縮器内に溜めて同凝縮器
の有効熱交換面積を調節することにより凝縮圧力
をコントロールする凝縮圧力調整弁を有する空冷
式冷凍装置において、前記凝縮圧力調整弁のガス
ポートを前記ガスヘツダーの下部と接続したこと
を特徴とする空冷式冷凍装置。
It has an air-cooled condenser that divides the refrigerant gas from the compressor into a plurality of circuits via a gas header and condenses it, and when the condensing pressure decreases, a part of the refrigerant gas is bypassed to increase the pressure of the high-pressure refrigerant liquid,
In an air-cooled refrigeration system having a condensing pressure regulating valve that controls condensing pressure by storing condensed refrigerant liquid in the air-cooled condenser and adjusting an effective heat exchange area of the condenser, a gas port of the condensing pressure regulating valve. is connected to the lower part of the gas header.
JP18838983U 1983-12-06 1983-12-06 Air-cooled refrigeration equipment Granted JPS6096557U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18838983U JPS6096557U (en) 1983-12-06 1983-12-06 Air-cooled refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18838983U JPS6096557U (en) 1983-12-06 1983-12-06 Air-cooled refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS6096557U JPS6096557U (en) 1985-07-01
JPH0136064Y2 true JPH0136064Y2 (en) 1989-11-02

Family

ID=30406423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18838983U Granted JPS6096557U (en) 1983-12-06 1983-12-06 Air-cooled refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS6096557U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221531A (en) * 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner

Also Published As

Publication number Publication date
JPS6096557U (en) 1985-07-01

Similar Documents

Publication Publication Date Title
US3421339A (en) Unidirectional heat pump system
JPH05502934A (en) Simple hot gas defrosting refrigeration system
US3365902A (en) Reverse cycle refrigeration system
US3371500A (en) Refrigeration system starting
US5797277A (en) Condensate cooler for increasing refrigerant density
US5207072A (en) Unloading structure for compressor of refrigeration system
JPH0136064Y2 (en)
US5062571A (en) Temperature sensing control for refrigeration system
JP2003194427A (en) Cooling device
JP2508924Y2 (en) Refrigeration equipment
JP4597404B2 (en) Air conditioner for vehicles
JP3492912B2 (en) Refrigeration equipment
JPH0914778A (en) Air conditioner
JPH0225096Y2 (en)
JPH0113968Y2 (en)
JPS6142026Y2 (en)
JPS5842842Y2 (en) Two-stage compression refrigeration equipment
JPS5912519Y2 (en) air conditioner
JPS6115978B2 (en)
JPH10306954A (en) Engine driven refrigerant compression circulation type heat transfer device
JP2596483Y2 (en) Cooling cycle
JPS6143196Y2 (en)
JPS6039717Y2 (en) Capacity control chiller
JPS5918345A (en) Heat pump type refrigerator
SU1265442A1 (en) Refrigerating machine