JPS58108820A - Schmitt circuit - Google Patents

Schmitt circuit

Info

Publication number
JPS58108820A
JPS58108820A JP20880981A JP20880981A JPS58108820A JP S58108820 A JPS58108820 A JP S58108820A JP 20880981 A JP20880981 A JP 20880981A JP 20880981 A JP20880981 A JP 20880981A JP S58108820 A JPS58108820 A JP S58108820A
Authority
JP
Japan
Prior art keywords
fet
current
level
mos
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20880981A
Other languages
Japanese (ja)
Inventor
Akinori Bando
坂東 昭則
Satohiko Niimura
新村 聡彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20880981A priority Critical patent/JPS58108820A/en
Publication of JPS58108820A publication Critical patent/JPS58108820A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3565Bistables with hysteresis, e.g. Schmitt trigger

Abstract

PURPOSE:To obtain a Schmitt circuit which consists of less elements and has excellent characteristics by a C-MOS process. CONSTITUTION:In a figure, Q1, Q2, and Q3 are P channel MOS.FET elements, and Q4 is an N channel MOS.FET element. When an input level is higher than the earth level, the elements Q1 and Q2 are turned on and the Q3 and Q4 are turned off. When the input level rises above a threshold voltage VTH, a voltage i1.RON=VDS (RON: source-drain resistance value in on state) is developed between the drain and source of the Q2. When it further rises, the voltage VDS exceeds the threshold voltage VTH of the Q3 and a current i2 starts flowing. In this case, the current i1 decreases. Then, the potential at a connection point P2 drops and the channel of the Q3 becomes wider to further increase the current i2, so that the current i1 is further decreased. This positive feedback inverts the level at an output terminal OUT abruptly. If the input level drops below a level VCC, the current i1 starts flowing similarly and the current i2 decreases, inverting the level at the output terminal OUT abruptly through this positive feedback.

Description

【発明の詳細な説明】 コノ発明はシュミット回路に関し、特にC−MOSプロ
セスで実現するものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Schmitt circuit, and particularly to one realized in a C-MOS process.

論理回路で取り扱う波形は、立ち上がり、立ち下がりの
急峻なものが要求されることが多い。□正弦波のような
ゆるやかな波形、または伝送中になまってしまった波形
や歪を生じた波形などの形を整えるためにシュミット回
路(又はシュミット・トリが回路)が用いられる。
Waveforms handled by logic circuits are often required to have steep rises and falls. □A Schmitt circuit (or Schmitt-Trial circuit) is used to correct the shape of a slow waveform such as a sine wave, or a waveform that has become dull or distorted during transmission.

つまり、シュミット回路は、アナログ領域とディジタル
領域のインターフェースとして用いられる回路であり、
基本的な目的は非常にトランジション時間の遅いアナロ
グ入力や、雑音の多い電圧が必要なスレンヨルド電圧に
達した時、急峻な1トランジシヨンを持つ論理レベルに
変換することである。そ−して、ノイズや寄生発振をお
さえるためにヒステリシス特性を備える。
In other words, a Schmitt circuit is a circuit used as an interface between the analog domain and the digital domain.
The basic purpose is to convert analog inputs with very slow transition times or noisy voltages to logic levels with a sharp single transition when the required Threnjord voltage is reached. It also has hysteresis characteristics to suppress noise and parasitic oscillation.

従来のシュミット回路をディスクリートで構成したもの
を第1図および第2図に示す。第1図はインバータc1
 、c2を2段に接続し、正帰還をかけた回路である。
A conventional Schmitt circuit constructed of discrete components is shown in FIGS. 1 and 2. Figure 1 shows inverter c1
, c2 are connected in two stages and positive feedback is applied.

しかし、帰還抵抗に2には高い抵抗値のものを使う必要
があり、IC化するには問題が多い。一方、第2図の回
路はインバータG3 、G4、NAND回路G5.G6
で構成され、C−MOSプロセスで実現され、よく用い
られている回路である(なお、インバータG3のスレン
:J ルl’ 電圧V−I)1ヲV十に設定し、インバ
ータG4のVTHをV−に設定して用いるものである)
However, it is necessary to use a feedback resistor 2 with a high resistance value, which poses many problems when integrated into an IC. On the other hand, the circuit in FIG. 2 includes inverters G3, G4, NAND circuit G5. G6
It is a commonly used circuit that is realized by a C-MOS process. (It is used by setting it to V-)
.

しかし、MOSの基本素子の数が12個も必要であり、
問題が多い。素子数が少な(かつ特性のよいものが望ま
れる。
However, 12 basic MOS elements are required,
There are many problems. A device with a small number of elements (and good characteristics) is desired.

この発明は上記問題点に鑑みてなされたもので、C−M
OSプロセスにより素子数が少なくかつ特性の良いシュ
ミット回路を新規に提供することを目的とする。
This invention was made in view of the above problems, and C-M
The purpose of this invention is to provide a new Schmitt circuit with a small number of elements and good characteristics using an OS process.

この発明の構成は、電源に第1の導電型の第1のMOS
、FETのソースを接続し、該第1のMOS−FETの
ドーレインに第1の導電型の第2のMOS、FETおよ
び第3のMOS、FETのソースをそれぞれ接続し、前
記第2のMOS、FETのドレインに前記第3のMOS
、FETのゲートを接続するとともに第2の導電型の第
4のMOS、FETのドレインを接続し、該第4のMO
S・FETのソースと前記第3のMOS 、FETのド
レインとを共通に接地し、前記第1のMOS・FETと
前記第2のMOS、FETと第3のMOS、FETのそ
れぞれのゲートを共通に接続しこれに入力信号を入力す
る一方、前記第2のMOS・FETのドレインから出力
を導出するようにしてなることを特徴としている。
The configuration of the present invention includes a first MOS of the first conductivity type for the power supply.
, the source of the first MOS-FET is connected to the drain of the first MOS-FET, and the sources of the second MOS-FET and the third MOS-FET of the first conductivity type are respectively connected, and the second MOS-FET is connected to the source of the second MOS-FET, The third MOS is connected to the drain of the FET.
, the gate of the FET is connected, and the fourth MOS of the second conductivity type is connected to the drain of the FET, and the fourth MO
The source of the S-FET and the drains of the third MOS and FET are commonly grounded, and the gates of the first MOS-FET and the second MOS, FET and the third MOS and FET are commonly grounded. It is characterized in that the input signal is inputted to the second MOS-FET while the output is derived from the drain of the second MOS-FET.

以下、この発明を図示の実施例によって説明する。The present invention will be explained below with reference to illustrated embodiments.

第3図はC−MOSプロセスで作成した素子数4のシュ
ミット回゛路である。Ql、G2.G3はPチャネルの
MOS、FET素子であり、G4はNチャネルのMOS
、FET素子である(以下、MOS 、FET素子を単
に「素子」という)。
FIG. 3 shows a Schmitt circuit with four elements manufactured using a C-MOS process. Ql, G2. G3 is a P-channel MOS, FET element, and G4 is an N-channel MOS
, is an FET element (hereinafter, MOS and FET elements are simply referred to as "elements").

素子の接続において、電源Weeに素子Q1のソースを
接続し、素子Q1のドレインに素子Q2゜G3のソース
を接続する。素子Q2のドレインに素子q3のゲートを
接続するとともに、導電型の。
In connection of the elements, the source of the element Q1 is connected to the power source Wee, and the source of the element Q2°G3 is connected to the drain of the element Q1. The gate of element q3 is connected to the drain of element Q2, and the conductivity type of element q3 is connected to the drain of element Q2.

異なる素子q4のドレインを接続する。素子Q4のソー
スと素子Q3のドレインを接地する。素子Q1.素子q
2および素子Q4のゲートを共通に接続し、これから入
力端子INを導出する。出力端子OUTは、前記素子q
2のドレイン(または、素子Q3のゲート、もしくは素
子q4のドレイン)から導出する。
Connect the drains of different elements q4. The source of element Q4 and the drain of element Q3 are grounded. Element Q1. element q
2 and the gates of element Q4 are connected in common, and an input terminal IN is derived from this. The output terminal OUT is connected to the element q
2 (or the gate of element Q3 or the drain of element q4).

このように構成した回路において、入力レベルが接地レ
ベルより上昇する場合の動作を説明する。
In the circuit configured as described above, the operation when the input level rises above the ground level will be described.

はじめ、素子q1および素子Q2はON状軸(導通状態
)にあり、素子Q3および素子q4はOFF状轢(非導
通状態)である。入力レベルが上昇し、素子q4のスレ
ショルド電圧■THを超えると、電流i□が流れ始める
。すると、素子q2のドレイン、ソース間にil・RO
N=■DSであられされる電圧VDsが発生する(なお
、RONは導通時のドレイン、ソース間の抵抗値)。さ
らに入力レベルが上昇すると、前記電圧VDSが素子Q
3のスレショルド電圧VTHを超え、素子q3がONL
、、電流12が流れ始める。しかし、このとき、素子Q
lに流れる電流は変わらないので、そのかわりに電流i
□が減少する。すると、接続点P2の電位は低下し、素
子Q3のチャネルはより広くなり電流i2がさらに増加
する。一方、電流i□はさらに減少する。このような正
帰還により。
Initially, element q1 and element Q2 are in the ON state (conducting state), and element Q3 and element q4 are in the OFF state (non-conducting state). When the input level rises and exceeds the threshold voltage ■TH of element q4, current i□ begins to flow. Then, il・RO is connected between the drain and source of element q2.
A voltage VDs is generated at N=■DS (note that RON is the resistance value between the drain and source when conductive). When the input level further increases, the voltage VDS increases to the element Q
3 threshold voltage VTH is exceeded, and element q3 becomes ONL.
,, current 12 begins to flow. However, at this time, element Q
Since the current flowing through l does not change, the current i
□ decreases. Then, the potential at the connection point P2 decreases, the channel of the element Q3 becomes wider, and the current i2 further increases. On the other hand, the current i□ further decreases. Due to such positive feedback.

第4図の入出力特性図で示すように(入力値V十に相当
)、出力端OUTは急激に反転する。
As shown in the input/output characteristic diagram of FIG. 4 (corresponding to the input value V0), the output terminal OUT is rapidly reversed.

次に、入力レベルがVQCレベルより下降する場合であ
る。はじめは、素子Q1.Q2.Q3はOFF状■であ
り、素子Q4はON状類である。入力レベルが下降し始
めると、まず素子Q1がONとなる。この時、素子Q2
は同時にONしない。
Next is the case where the input level falls below the VQC level. Initially, element Q1. Q2. Q3 is in the OFF state (3), and element Q4 is in the ON state. When the input level begins to fall, element Q1 is first turned on. At this time, element Q2
are not turned on at the same time.

これは、素子Q2のソースがレベルVccより浮いてい
るため、バックバイアスがかかりスレショルド電圧■T
Hが上昇するためである。素子QlがONすると、素子
Q3がONする。さらに入力が下降し、入力電圧が接続
点P1の電位よりも素子Q2のスレッショルド電圧71
口分だけ下がった時、素子q2がONする。電流11が
流れ始め、電流i2が減少する。電流10が流れ始める
につれて、接続点P2の電位は上昇し、素子Q3のゲー
ト、ソ〒ス間電圧が減少し、電流12は減少する。この
ような正帰還により、第゛4図の入出力特性図で示すよ
うに(入力値V−に相当)、出力端OUTは急激に反転
する。
This is because the source of element Q2 is floating above the level Vcc, so it is back biased and the threshold voltage ■T
This is because H increases. When element Ql turns on, element Q3 turns on. The input further decreases, and the input voltage becomes lower than the potential of the connection point P1 to the threshold voltage 71 of the element Q2.
When the temperature drops by the amount of the mouth, element q2 turns ON. Current 11 begins to flow and current i2 decreases. As current 10 begins to flow, the potential at connection point P2 increases, the voltage between the gate and source of element Q3 decreases, and current 12 decreases. Due to such positive feedback, as shown in the input/output characteristic diagram of FIG. 4 (corresponding to the input value V-), the output terminal OUT is rapidly reversed.

このように、出力が急激に反転するまでの条件が異なる
ため、第4図で示すようなヒステリシス特性をもつシュ
ミット回路が構成できる。ちなみに、Pチャネ/I/M
O5,FETとしての素子Ql。
In this way, since the conditions required for the output to rapidly invert are different, a Schmitt circuit having hysteresis characteristics as shown in FIG. 4 can be constructed. By the way, P channel/I/M
O5, element Ql as FET.

Q2.Q3に#いてスレショルド電圧i ■Tl(P 
=−0,6,コンダクションファクター;βp=8.2
゜BKP=0.33のように設計し、一方NチャネルM
O3、FETである素子q4においてはスレショル)”
電圧i VTHN=0.6 、コンダクションファクタ
ー;βN = 15.9 、 BKN =2.6のよう
に設計j、: し、また、すべての素子においてチャネル幅Wとチャネ
ル長りとの比W/Lを1に設計すると、 V+=2.4
0(V)、 V  =1.55 (V)となった。
Q2. Threshold voltage i at Q3 ■Tl(P
=-0,6, conduction factor; βp=8.2
゜BKP=0.33, while N channel M
O3, threshold for element q4 which is FET)
Designed as follows: voltage i VTHN = 0.6, conduction factor; βN = 15.9, BKN = 2.6, and in all devices, the ratio of channel width W to channel length W/ If L is designed to be 1, V+=2.4
0 (V), V = 1.55 (V).

このようなシュミット回路は、■出力電圧の振幅が接地
レベルと電源VCCレベルとの間で最大限に振れる、■
消費電力が少ない、■反転電圧がβ(コンダクション・
ファクタ)で決まるため比較的安定L7ている、および
■へ場合によるとすべて最小寸法のMOSトランジスタ
素子で構成できる等の利点がある。
Such a Schmitt circuit has the following characteristics: ■ The amplitude of the output voltage swings to the maximum between the ground level and the power supply VCC level;
Low power consumption, ■Inversion voltage is β (conduction
(2) It has the advantage that it is determined by the factor (2), so it is relatively stable, and (2) it can be constructed entirely of MOS transistor elements of the minimum size, depending on the case.

なお、上記実施例では3つのPチャネル素子と1つのN
チャネル素子を用いる例を示したが、これに限定するも
のでなく、3つのNチャネル素子と1つのPチャネル素
子によって構成してもよい。
In the above embodiment, there are three P channel elements and one N channel element.
Although an example using channel elements has been shown, the present invention is not limited to this, and may be configured with three N-channel elements and one P-channel element.

以上のように、この発明によれば、C−MOSプロセス
により素子数が4個と極めて少なくかつ特性の良いシュ
ミット回路を得ることができる。
As described above, according to the present invention, it is possible to obtain a Schmitt circuit with a very small number of elements (4) and good characteristics using a C-MOS process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディスクリート構成で示した従来のシュミット
回路の例示図、第2図は他のシュミット回路の例示図、
第3図は本発明の一実施例の回路図、第4図は第3図の
回路q入出力特性図である8Ql 、Q2 、Q3・・
・・・・PチャネルMO5,FET素子、 Q4・・・
・・・NチャネルMO8、FET素特 許 出 願 人
 株式会社リコー
FIG. 1 is an illustrative diagram of a conventional Schmitt circuit shown in a discrete configuration, FIG. 2 is an illustrative diagram of another Schmitt circuit,
FIG. 3 is a circuit diagram of an embodiment of the present invention, and FIG. 4 is an input/output characteristic diagram of the circuit q in FIG. 3.
...P channel MO5, FET element, Q4...
...N-channel MO8, FET element patent applicant Ricoh Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)電源に、第1の導電型の第1のMO5,FET(
7)7−スヲ接続L、該第i(y)MOS 、 F E
Tのドレインに第1の導電型の第2のMO5−FETお
よび第3のMO5、pETのソースをそれぞれ接続し、
前記第2のMO5,FETのドレインに前記第3のMO
8,FETのゲートを接続するとともに、第2の導電型
の第4のMO5,FETのドレインを接続し、該第4の
MO8,FETのソースと前記第3のMO5,FETの
ドレインとを共通に接地し、前記第1のMO5,FET
と前記第2のMO8,FETと前記第4のMO5,FE
Tのそれぞれのゲートを共通に接続するとともに、第4
のMO5,FETのゲートに入力信号を入力する一方、
前記第2のMO5,FETのドレインから出力を導出す
るように構成したことを特徴とするシュミット回路。
(1) A first MO5, FET of the first conductivity type is connected to the power supply (
7) 7-swo connection L, the i-th (y) MOS, F E
A second MO5-FET of the first conductivity type and a source of a third MO5, pET are respectively connected to the drain of the T,
The second MO5 and the third MO5 are connected to the drain of the FET.
8. Connect the gate of the FET and connect the drain of the fourth MO5, FET of the second conductivity type, and connect the source of the fourth MO8, FET and the drain of the third MO5, FET in common. grounded to the first MO5, FET
and the second MO8, FET, and the fourth MO5, FE.
The respective gates of T are connected in common, and the fourth
While inputting the input signal to the gate of MO5 and FET,
A Schmitt circuit characterized in that the output is derived from the drain of the second MO5 and FET.
JP20880981A 1981-12-22 1981-12-22 Schmitt circuit Pending JPS58108820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20880981A JPS58108820A (en) 1981-12-22 1981-12-22 Schmitt circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20880981A JPS58108820A (en) 1981-12-22 1981-12-22 Schmitt circuit

Publications (1)

Publication Number Publication Date
JPS58108820A true JPS58108820A (en) 1983-06-29

Family

ID=16562474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20880981A Pending JPS58108820A (en) 1981-12-22 1981-12-22 Schmitt circuit

Country Status (1)

Country Link
JP (1) JPS58108820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154337A2 (en) * 1984-03-06 1985-09-11 Kabushiki Kaisha Toshiba Transistor circuit for semiconductor device with hysteresis operation and manufacturing method therefor
EP0180193A2 (en) * 1984-10-31 1986-05-07 Kabushiki Kaisha Toshiba Sense amplifier circuit
EP0292713A2 (en) * 1987-05-26 1988-11-30 International Business Machines Corporation Low voltage swing CMOS receiver circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154337A2 (en) * 1984-03-06 1985-09-11 Kabushiki Kaisha Toshiba Transistor circuit for semiconductor device with hysteresis operation and manufacturing method therefor
EP0180193A2 (en) * 1984-10-31 1986-05-07 Kabushiki Kaisha Toshiba Sense amplifier circuit
EP0292713A2 (en) * 1987-05-26 1988-11-30 International Business Machines Corporation Low voltage swing CMOS receiver circuit

Similar Documents

Publication Publication Date Title
US4988888A (en) CMOS output circuit with intermediate potential setting means
US4617529A (en) Ring oscillator with delay element and potential pulling circuit
JP2909990B2 (en) CMOS circuit
EP0454135A2 (en) MOS type input circuit
JP2570471B2 (en) Clock driver circuit
JPS58151124A (en) Level converting circuit
US4642488A (en) CMOS input buffer accepting TTL level inputs
EP0292713B1 (en) Low voltage swing CMOS receiver circuit
US4071784A (en) MOS input buffer with hysteresis
JPH0220017B2 (en)
US5986463A (en) Differential signal generating circuit having current spike suppressing circuit
US5311075A (en) Level shifting CMOS integrated circuits
JPS58108820A (en) Schmitt circuit
JP2872058B2 (en) Output buffer circuit
EP0782269A2 (en) Semiconductor integrated circuit
CN112332833B (en) Level conversion circuit and CPU chip with same
JPS6143896B2 (en)
JPS6358493B2 (en)
JPS6290021A (en) Schmitt trigger circuit
JPH04154207A (en) Schmitt trigger circuit
JPH04301921A (en) Inverter circuit
CN114744995A (en) Level conversion circuit and chip comprising same
JP2541289B2 (en) Output circuit
KR100410813B1 (en) Inverter for forming high-speed power driving circuit of semiconductor device
JPS5847323A (en) Hysteresis circuit