JPS58108737A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58108737A
JPS58108737A JP20095982A JP20095982A JPS58108737A JP S58108737 A JPS58108737 A JP S58108737A JP 20095982 A JP20095982 A JP 20095982A JP 20095982 A JP20095982 A JP 20095982A JP S58108737 A JPS58108737 A JP S58108737A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
film
junction
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20095982A
Other languages
Japanese (ja)
Other versions
JPS6229889B2 (en
Inventor
Kunio Aomura
青村 国男
Fujiki Tokuyoshi
徳吉 藤樹
Masahiko Nakamae
正彦 中前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20095982A priority Critical patent/JPS58108737A/en
Publication of JPS58108737A publication Critical patent/JPS58108737A/en
Publication of JPS6229889B2 publication Critical patent/JPS6229889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region

Abstract

PURPOSE:To enable to form a highly reliable P-N junction which terminates on the side same as a relatively thick oxide by a method wherein, when the P-N junction is formed in an island-shaped semiconductor region, the formation is performed without removing an oxide film. CONSTITUTION:A P type silicon epitaxial layer 8, which is almost flat, is formed on an N type silicon substrate 800, and then a thin oxide film 802 and a silicon nitride film 803 are formed (diagram A). Then, a selective etching is successively performed on the silicon nitride film 803 and the oxide film 802, and another etching (diagram B) is performed on the exposed part of the P type epitaxial layer 807 using the remaining silicon nitride film 803 and the oxide film 802 as a mask. Then, thermal oxidization is performed using the remaining silicon nitride film 803 as a mask, and a thick oxide film 801 is selectively formed. At the point when the above process has been finished, a selective oxide film 801 which is penetrating from the P type silicon epitaxial layer 807 is formed, and has a result, the P-N junction between the epitaxial layer 807 and the substrate 800 is terminated with the thick oxide film 801 (diagram C). Then, the silicon nitride film 803 is removed, and successively, the P type silicon epitaxial layer 807 is covered by a thick silicon oxide film 820 which was obtained by growing the silicon oxide film 802 appearing on the surface (diagram D).

Description

【発明の詳細な説明】 本発明は酸化物により素子または素子の一部を分離する
構造をもつ半導体装置の製造方法に関しとくにこのよう
な酸化物に少くとも二つのPNm合を終端させて設ける
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having a structure in which an element or a part of an element is separated by an oxide, and particularly a method of terminating at least two PNm junctions in such an oxide. Regarding.

半導体素子の小型化のために厚い酸化物によって素子間
または!予肉の頭穢間を分離した構造の半導体装置が最
近使われ始めている。このような半導体装置においては
PN接合を一つだけ厚い酸化物に終端させて設けること
は比較的容易なために実用化されているか、二つ才たは
それ以上のPN接合を互に比較的近接させて厚い酸化物
の同一の側に終端させることは非常に困鎧tであった。
For miniaturization of semiconductor devices, thick oxides are used between devices or! Semiconductor devices with a separated structure have recently begun to be used. In such semiconductor devices, it is relatively easy to provide only one PN junction terminated with a thick oxide, so it is put into practical use, or two or more PN junctions are relatively easy to provide, or two or more PN junctions are relatively easily provided. It was very difficult to close them and terminate them on the same side of the thick oxide.

これは、従来の技術では近接したPN接合のとくに酸化
物に終端する11分において間隔か充分にコントロール
できす、所定の特性が得られなかったりPN接合同士が
短絡して素子が形成できなかったりするためである。
With conventional technology, the spacing between adjacent PN junctions, especially in the 11 minutes terminating in the oxide, cannot be sufficiently controlled. This is to do so.

従って本発明の目的は、半導体主面に選択的に設けられ
た比較的厚い酸化物の同一の側に終端するようなPN接
合を二つ才たはそれ以上高い信頼度で形成することので
きる方法を提供することにある。
Therefore, it is an object of the present invention to form two or more PN junctions with high reliability, terminating on the same side of a relatively thick oxide selectively provided on the main surface of a semiconductor. The purpose is to provide a method.

本発明は従来技術におけるPN接合間隔の制御不能の原
因か、PN接合を形成しようとする領域の表面の絶縁層
の除去にあるという知見に基ずくものである。厚い酸化
物を選択的に設けた半導体装置にあっては半導体領域表
面の絶縁膜除去の際に厚い酸化物の表面も除去するよう
なバタンか使われる0このため厚い酸化物の界面の表面
か除去されて半導体領域の表面のみならず肩の部分が露
出され、ここからも不純物が・′導入されるため形成さ
れたPN接合は酸化物に軒端する部分で符に深く屈折す
る。二つ以上のPNM合を作るために再び半導体領域表
面を露出すると肩の部分がよりはげしく露出されて、二
つ目のP N m合は酸化物で終端rる部分がさらには
げしく屈折して先のPN接合との間隔をきわめて小また
はゼロにしてし才うのである。
The present invention is based on the knowledge that the reason for the inability to control the PN junction spacing in the prior art is the removal of the insulating layer on the surface of the region where the PN junction is to be formed. In semiconductor devices in which thick oxide is selectively provided, when removing the insulating film on the surface of the semiconductor region, a hammer is used to remove the surface of the thick oxide. The removal exposes not only the surface but also the shoulder portion of the semiconductor region, and since impurities are introduced therefrom as well, the formed PN junction bends sharply and deeply at the end of the oxide. When the surface of the semiconductor region is exposed again in order to create two or more PNM couplings, the shoulder portion is more exposed, and the second PNM coupling is caused by the oxide-terminated portion being even more severely refracted, leading to This is accomplished by making the distance between the PN junction and the PN junction extremely small or zero.

この点に鑑み本発明ではPN接合を淳い酸化物に終端す
るように形成しようとする半導体領域の表面を一度も露
出せずにPN接合を形成することを可能にする半導体装
置の製造方法を提供しようとするものである。このよう
にすれば厚い酸化物への終端部分におりるPN接合の屈
曲の傾向が緩和されて、PN接合間を所定の間隔にft
+lI御することができ、2つのPN接合の終端の間隔
は他の部分の間隔とはゾ同じに保たれ、完全な信頼性が
得られる。
In view of this, the present invention provides a method for manufacturing a semiconductor device that makes it possible to form a PN junction without ever exposing the surface of the semiconductor region to be formed so as to eliminate the PN junction and terminate it with an oxide. This is what we are trying to provide. This reduces the tendency of the PN junction to bend at the termination to the thick oxide, and allows the PN junction to be spaced ft.
+lI can be controlled, and the spacing between the ends of the two PN junctions is kept the same as the spacing elsewhere, providing complete reliability.

本発明の特徴は、半導体基体の一主面に選択的に埋設さ
れた比較的厚い酸化物で囲まれた半導体領域内の少なく
とも2つのPN接合か、前記厚い酸化物の同一@面で終
端するs?J!iを有する半導体装置の製造方法におい
て、前記PN接合の1つは半導体基板と該半導体基板上
に形成されたエビタキソヤル成長膜との間で形成し、そ
の他の1つは半導体領域の表面を露出することなく、外
部からの不純物の導入によって形成する半導体装置の製
造方法にある。
A feature of the present invention is that at least two PN junctions are terminated in a semiconductor region surrounded by a relatively thick oxide selectively buried in one main surface of a semiconductor substrate or on the same @plane of the thick oxide. S? J! In the method for manufacturing a semiconductor device having i, one of the PN junctions is formed between a semiconductor substrate and an epitaxyal growth film formed on the semiconductor substrate, and the other one exposes a surface of a semiconductor region. The method of manufacturing a semiconductor device involves the introduction of impurities from the outside.

又、上記半導体装置の製造方法において、前記厚い酸化
物で囲まれた半導体領域の厚い酸化物の同一側面で終端
する2つのPN接合のうち、外部からの不純物導入によ
って形成される1つのPN接合が、半導体領域の表面を
覆う絶縁層の薄い領域を不純物を含むガス中での熱処理
により完全にカフス層に変換し、該カフス層より、半導
体領域内に不純物を拡散して形成されることができる。
Further, in the method for manufacturing a semiconductor device, one PN junction formed by introducing impurities from the outside among two PN junctions that terminate on the same side surface of the thick oxide of the semiconductor region surrounded by the thick oxide. However, the thin region of the insulating layer covering the surface of the semiconductor region is completely converted into a cuff layer by heat treatment in a gas containing impurities, and the impurity is diffused into the semiconductor region from the cuff layer. can.

」ユ下本発明の原理、目的、特徴がより明確になるよう
IC本発明につき図面を用いて詳細に説明する0 まず第1図を疹バ((シて従来の方法ならびにその欠点
を説明する。第1図Aに示すように、まず半専体基板或
いはエピタキシャル層1の表面を酸化して、500〜1
00OA程度の薄い酸化物2を形成し、SL、IN4膜
3を1000〜2000A程度の膜厚で 5− 設ける。この8isNa膜3 をさらにその上に設けた
酸化ンリコン膜4をマスクにして熱リン酸にて選択的に
除去する。次にこの5isNa膜3をマスクにして比較
的低温での長時間酸化により1〜2μ程此の比較的〕与
゛い分離酸化物5を形成し、島状の半導体領域1′を残
す。この場合、酸化後の表面を平坦にrるために予め酸
化すべき部分の半導体材料1を所定の深さまで除去して
おく事が行なわれる。次に第1図Bに示すように酸化シ
リコン膜4 (!: S is Na BQ3 ヲVk
 去L タ41k、3000〜4000X程度の酸化シ
リコン膜6を活性領域1′の表向に形成する。そして第
1のPN接合を形成するためのフォトレジストアが設け
られ、酸化膜6が選択的に除去される。この時、位置合
せ余裕度を大きくとるために、かつセルフ7ラインのオ
リ点ヲ生かすためにフォトレジスト7のエツジは分離醒
化物領域5の部分にまで拡がって位置する。
In order to make the principle, purpose, and characteristics of the present invention clearer, the present invention will be explained in detail with reference to the drawings. As shown in FIG. 1A, the surface of the semi-dedicated substrate or epitaxial layer 1 is first oxidized to a
A thin oxide 2 of about 000A is formed, and an SL and IN4 film 3 is provided with a thickness of about 1000 to 2000A. This 8isNa film 3 is further selectively removed using hot phosphoric acid using the silicon oxide film 4 provided thereon as a mask. Next, using this 5isNa film 3 as a mask, a relatively thin isolation oxide 5 of about 1 to 2 microns is formed by oxidation at a relatively low temperature for a long time, leaving an island-shaped semiconductor region 1'. In this case, in order to flatten the surface after oxidation, the portion of the semiconductor material 1 to be oxidized is removed to a predetermined depth in advance. Next, as shown in FIG. 1B, a silicon oxide film 4 (!: S is Na BQ3
A silicon oxide film 6 having a thickness of about 3000 to 4000X is formed on the surface of the active region 1'. A photoresist for forming the first PN junction is then provided, and the oxide film 6 is selectively removed. At this time, the edge of the photoresist 7 is positioned so as to extend to the part of the separated atomized compound region 5 in order to have a large alignment margin and to take advantage of the orientation point of the self 7 line.

このため活性領域1′の表面の酸化膜6が除去された時
に、第1図Cに8で示した様に厚い酸化物5の一部か同
時に除去されるため活性領域1′の 6 − 「屑」の部分Sが露出する。この状態で第1図りに示r
ように活性頭載1′の露出表面から不純物を拡散し第1
の」長合9を形成する。この結果活性領域内に形成され
た第1のPN接合9のうち厚い酸化物5に終端する部分
9′は余分に拡散が進むため下方に屈曲する。このよう
な変形は第1図Cで酸化シリコンj摸6を選択的に除去
する際、島状活性領域1′と埋設酸化膜5との間での自
己整合を利用する為に起こるものである。即ち島状領域
1′の表面の酸化シリコン績6をフォトレジスト7をマ
スクにし−C除去する際、島状領域1′の肩Sに沿って
埋設酸化膜5が余分に除去される結果によるものである
。これは島状領域1′の表面の酸化シリコン績6を完全
に取り去る為に必ず発生する現象である。次に島状活性
領域1′の表面に再び3000〜4000A程波の酸化
膜lOを形成する0この時分離酸化物5は既に充分、膜
厚かあるため僅かしか膜浮かJ1加しない。続いて第1
図Eに示すように第2のPN接合を設けるためのフオト
レジス’−11?i1−酸化物5.IO上iceけ、活
性領域l′表面の酸化膜IOを選択的に除去する。この
時フォトレジスト11のエツジの少tくとも一辺は再び
位置合せの余裕度を大きくとるために分離酸化物5の上
に位置する。従って再び酸化膜1oを除去すると12に
示す様に分離酸化物5も除去され島状領域の肩8が再び
露出する。しかも今回はその程度か前に比べて大きくな
る。これは分離酸化物5に近接する部分は前工椙で肩S
が露出した部分が表面と同じ酸化膜厚で、かつすぐその
下部も殆んど酸化膜厚が同じなので深く酸化物が除去さ
れるからである。
For this reason, when the oxide film 6 on the surface of the active region 1' is removed, part of the thick oxide 5 is also removed at the same time as shown at 8 in FIG. 1C. Part S of "waste" is exposed. In this state, the first diagram shows
Diffusion of impurities from the exposed surface of the active head 1'
form a long union 9. As a result, the portion 9' of the first PN junction 9 formed in the active region, which terminates in the thick oxide 5, is bent downward due to excessive diffusion. Such deformation occurs because the self-alignment between the island-like active region 1' and the buried oxide film 5 is utilized when the silicon oxide layer 6 is selectively removed in FIG. 1C. . That is, when the silicon oxide film 6 on the surface of the island region 1' is removed using the photoresist 7 as a mask, the buried oxide film 5 is excessively removed along the shoulder S of the island region 1'. It is. This phenomenon always occurs in order to completely remove the silicon oxide layer 6 on the surface of the island-like region 1'. Next, an oxide film 10 of about 3000 to 4000 Å is again formed on the surface of the island-shaped active region 1'. At this time, since the isolation oxide 5 is already sufficiently thick, only a small amount of film floating J1 is added. Then the first
Photoresist '-11? for providing the second PN junction as shown in Figure E. i1-oxide5. Ice is poured over the IO, and the oxide film IO on the surface of the active region l' is selectively removed. At this time, at least one side of the edge of the photoresist 11 is again located on the isolation oxide 5 in order to have a large alignment margin. Therefore, when the oxide film 1o is removed again, the isolation oxide 5 is also removed and the shoulder 8 of the island region is exposed again, as shown at 12. Moreover, this time it will be bigger than before. This is because the part close to the isolation oxide 5 is the shoulder S in the previous step.
This is because the exposed part has the same oxide film thickness as the surface, and the oxide film immediately below has almost the same oxide film thickness, so the oxide is removed deeply.

この様にしてvbけられた酸化膜5,10の開口部12
から第2の接合を形成するために拡散を行なうと、第1
図Fに示すように第2のPN接合13は分離酸化物5に
終端する部分13′でさらに大きく屈曲し第1のPN接
合9と交叉してしまい所望の特性が得られない。
Openings 12 of the oxide films 5 and 10 where vb has been cut in this way
When diffusion is performed to form a second junction from
As shown in FIG. F, the second PN junction 13 bends further at a portion 13' terminating in the isolation oxide 5 and crosses the first PN junction 9, making it impossible to obtain desired characteristics.

上記の様に、従来法の欠点は写X蝕刻工程に於いて分離
用埋設酸化膜か部分に除去されるところにある。それ故
、本発明は埋設酸化膜が余分に除去されないようにする
ところに%徴がある。即ち埋設酸化膜の余分な除去は島
状牛等体飴域の表面の酸化膜の除去を行なえは必】゛発
生−ダる現象であるので、島状牛4体領域にPN接合を
形成する際に表面の酸化膜を除去しないことを特徴とす
る。
As mentioned above, the drawback of the conventional method is that the buried oxide film for isolation is partially removed during the X-etching process. Therefore, the feature of the present invention is to prevent the buried oxide film from being removed excessively. In other words, in order to remove the excess buried oxide film, it is necessary to remove the oxide film on the surface of the island-shaped cow body area.] Since this is a phenomenon that occurs, a PN junction is formed in the island-shaped cow body area. It is characterized by not removing the oxide film on the surface.

このようにすれは、常に島状活性領域表面が酸化膜で覆
われた状態のま菫であるためこの領域の「屑」の露出が
すく、従ってセルファラインの利点をその該ま生かせる
マスク寸法の設■が可能でかつPN接合の短絡不良が起
らず、分tpt蹟化物でPN接合が終端する牛導体装置
を高収率でしかも所望の特性をもつよう−こ得られる。
In this way, since the surface of the island-like active region is always covered with an oxide film, there is little exposure of "debris" in this region, and therefore the mask size can be adjusted to take full advantage of the advantages of Selfa Line. A conductor device in which the PN junction is terminated with a TPT compound can be obtained with high yield and desired characteristics without causing short-circuit defects in the PN junction.

次に第2図〜第4図を用いて本発明の詳細な説明する0
埋設酸化物に終端する複数のPN接合の一部がエピタキ
シャル層とその基板との間に形成されたPN接合であり
、残りのPN接合が外部からの不純物導入によって形成
されたPN接合である場合の実施例を説明する。なお以
下の実施例では外部からの不純物導入をメルトΦスルー
法1こよって行なう例であるが、その代りに島状シリコ
 9 − ン領域表面を露出せずにイオン注入することによって不
純物導入を行なってもよいことは云うまでもない。
Next, the present invention will be explained in detail using FIGS. 2 to 4.
When some of the multiple PN junctions terminated in the buried oxide are PN junctions formed between the epitaxial layer and its substrate, and the remaining PN junctions are PN junctions formed by introducing impurities from the outside. An example will be explained. In the following example, impurities are introduced from the outside using the melt Φ-through method 1, but instead, impurities are introduced by ion implantation without exposing the surface of the island-shaped silicon region. Needless to say, it is okay.

第2図に示す実施例は、まずN壓シリコン基板800上
にP型シリコンエピタキシャル層807をはゾ平坦に形
成し、続いて薄い酸化膜802とシリコン窒化膜803
とを順次エピタキシャル層807の表面1こ形成する(
第2図A)。ここで薄い酸化膜802は熱酸化により1
00OAの厚さに、シリコン窒化膜803はモノシラン
とアンモニアの熱反応により15UOXの厚さに、それ
ぞれ被着させるのが適当である。次に、シリコン窒化膜
803及び酸化膜802を順次選択的にエツチングし、
さらに残余シリコン窒化膜803及び酸化膜802をマ
スクにしてP型エピタキシャル層807の露出部をエピ
タキシャル層の厚さの半分以上にわたってエツチングす
る(第2図B)。
In the embodiment shown in FIG. 2, a P-type silicon epitaxial layer 807 is first formed flat on an N silicon substrate 800, and then a thin oxide film 802 and a silicon nitride film 803 are formed.
and are sequentially formed on one surface of the epitaxial layer 807 (
Figure 2A). Here, the thin oxide film 802 is formed by thermal oxidation.
It is appropriate to deposit the silicon nitride film 803 to a thickness of 15 UOX by a thermal reaction of monosilane and ammonia. Next, the silicon nitride film 803 and the oxide film 802 are selectively etched in sequence.
Furthermore, using the remaining silicon nitride film 803 and oxide film 802 as a mask, the exposed portion of the P-type epitaxial layer 807 is etched to cover more than half the thickness of the epitaxial layer (FIG. 2B).

次に、残余シリコン會化M803をマスクにして熱酸化
を行ない、選択的に厚い酸化膜801を形成する。この
時選択的酸化膜801の表面かはゾエーl〇− ビタキシャル@807の表面と>Jじ冒さになるように
する。又一般fこシリコンが熱酸化により、シリコン酸
化膜に変換する際、シリコン酸化膜厚の約半分のシリコ
ン膜厚を心太とするから、この工程終了時点においてP
型シリコンエピタキシャル層807を突き抜けて、選択
的酸化膜801か形成さオフ、その結果エピタキシャル
$807と基板800との間のPN接合はこの厚い酸化
膜801で終端することになる(第2図C)。
Next, thermal oxidation is performed using the remaining silicon layer M803 as a mask to selectively form a thick oxide film 801. At this time, the surface of the selective oxide film 801 is made to be the same as the surface of the ZOE l〇-bitaxial@807. In addition, when silicon is converted into a silicon oxide film by thermal oxidation, the thickness of the silicon film is approximately half the thickness of the silicon oxide film, so at the end of this process, P
A selective oxide film 801 is formed through the silicon epitaxial layer 807, so that the PN junction between the epitaxial layer 807 and the substrate 800 is terminated at this thick oxide film 801 (FIG. 2C). ).

次に表面に被着している残余シリコン窒化ji 803
を除去し続いて表面に現われたシリコン酸化膜802を
成長させて約3000人の膜厚にし、この厚イシ+)コ
ン酸化膜820でP型シリコンエピタキシャル層807
を債う(第2図D)。
Next, residual silicon nitride 803 adhering to the surface
Then, the silicon oxide film 802 that appeared on the surface is grown to a thickness of approximately 3000 nm, and this thick silicon oxide film 820 is used to form a P-type silicon epitaxial layer 807.
(Figure 2 D).

次に、ホトレジスト膜808を選択的にwL着させ、こ
のホトレジストM808をマスクにしてP型シリコンエ
ピタキシャル膚807上のシリコン[化膜820を不純
物導入予定以外において選択的にエツチングし、これの
膜厚を約50OAの薄さのもの821とする(第2図E
)。
Next, a photoresist film 808 is selectively deposited, and using this photoresist M808 as a mask, the silicone film 820 on the P-type silicon epitaxial layer 807 is selectively etched in areas other than those where impurities are planned to be introduced. is 821 with a thickness of about 50 OA (Fig. 2 E
).

次に表面のホトレジスト膜808を除去。。Next, the photoresist film 808 on the surface is removed. .

熱拡散を行なうと、表面のシリコン酸化膜821゜82
0はリンカラス層830に変換する。この時、500X
の薄いシリコン酸化膜821は全てリンガラス層830
に変換するがその他の部分820はシリコン酸化膜が厚
い為、シリコン酸化膜の全てがリンガラス層に変換せず
表面だけに形成される。ざらに、続けて熱処理を行なう
と、リンカラス層830がP型シリコンエピタキシャル
層807と接している部分では、P型シリコンエピタキ
シャル1807中へ、リン原子が拡散され、N型領域8
10が形成される(第2図F)。
When thermal diffusion is performed, the silicon oxide film on the surface 821°82
0 converts to the linker layer 830. At this time, 500X
All of the thin silicon oxide film 821 is a phosphorus glass layer 830.
However, since the silicon oxide film is thick in the other portion 820, the silicon oxide film is not entirely converted into a phosphor glass layer and is formed only on the surface. Roughly, when the heat treatment is continued, phosphorus atoms are diffused into the P-type silicon epitaxial layer 1807 in the portion where the phosphor glass layer 830 is in contact with the P-type silicon epitaxial layer 807, and the N-type region 8
10 is formed (FIG. 2F).

次に、表面に形成されたリンカラス層830を除去し、
再び熱酸化により、表面をシリコン酸化膜831で覆う
(第2図G)。
Next, the link glass layer 830 formed on the surface is removed,
The surface is covered with a silicon oxide film 831 by thermal oxidation again (FIG. 2G).

表面を覆っているシリコン酸化[831に選択的にシリ
コン層に達する開孔部を設け(第2図H)。
Openings selectively reaching the silicon layer are provided in the silicon oxide [831] covering the surface (FIG. 2H).

これら開孔部を覆って金属薄膜840.841を各々選
択的に形成し、PfIM領域即領域−ス領域807及び
N型領域即ちエミッタ領域810の電極とする(第2ν
II)。コレクタ領域800へのコンタクトは他の適当
なところで設ける0次に第3図の実施例は、第2図Cの
工程のあとでホトレジスト膜908を選択的に被着させ
、このホトレジスト膜908をマスクにして、残余シリ
コン錯化[803を部分的Jこエツチングし、その下の
膜厚500Aの薄い酸化膜802を露出させる(第3図
A)。ここで、シリコン窒化膜のエツチングはフレオン
雰囲気中のプラズマエツチングで行なうと、シリコン窒
化膜と、シリコン酸化膜とのエツチング速度の違いによ
り、シリコン酸化膜を制御良く残すことができる0次に
、表面のホトレジスト膜908を除去し、続いて、リン
の熱拡散を行なうと、シリコン酸化膜801.802が
リンガラス層903に変換し、露出している500人の
薄いシリコン酸化膜802は全てリンカラス層903に
変換Vるが、その他の部分は表面のみに形成される。さ
らに続けて熱処理を行なうと、リンカラス層903がP
型エピタキシャル層807と接している部分では、P型
エピタキシャル層13− 807中へ、リン原子が拡散され、Nfi領域810が
形成される(第3図B)。次に表面に形成されたリンカ
ラス層903を除去し、熱酸化により、シリコン酸化膜
にてNff1領域810を覆った後、書ひフレオンのプ
ラズマエツチングにより残存シリコン輩化膜8038除
去して第2図Gと同じ構造を得、以下第2図H,Iと同
様の工程を行なえばよい。
Metal thin films 840 and 841 are selectively formed covering these openings to serve as electrodes for the PfIM region, i.e., the source region 807 and the N-type region, i.e., the emitter region 810 (second ν
II). Contact to the collector region 800 is provided at another suitable location. Next, in the embodiment of FIG. 3, a photoresist film 908 is selectively deposited after the step of FIG. Then, the remaining silicon complex [803] is partially etched to expose the thin oxide film 802 with a thickness of 500 Å thereunder (FIG. 3A). Here, if the silicon nitride film is etched by plasma etching in a Freon atmosphere, the difference in etching speed between the silicon nitride film and the silicon oxide film makes it possible to leave the silicon oxide film in a well-controlled manner. When the photoresist film 908 is removed and phosphorus is thermally diffused, the silicon oxide films 801 and 802 are converted into a phosphorus glass layer 903, and all of the exposed thin silicon oxide films 802 become phosphorus glass layers. 903, but other parts are formed only on the surface. When heat treatment is further continued, the linker glass layer 903 becomes P
In the portion in contact with the type epitaxial layer 807, phosphorus atoms are diffused into the P type epitaxial layer 13-807, forming an Nfi region 810 (FIG. 3B). Next, the link glass layer 903 formed on the surface is removed, and the Nff1 region 810 is covered with a silicon oxide film by thermal oxidation, and the remaining silicon enhancement film 8038 is removed by writing Freon plasma etching. The same structure as G is obtained, and the steps similar to those in FIG. 2 H and I are performed.

次に第4図に挙けた実施例では、第2図Cの工程のあと
で不純物導入予定以外の領域上に開孔を有するホトレジ
スト膜918を被着させ、このホトレジスト膜91Bを
マスクにして残余シリコン告化膜803を部分的にフレ
オンのプラズマ中にてエツチングし、その下の膜厚50
0人の薄い酸化膜802を表面に出す(第4図A)C1
次に表面のホトレジスト膜918を除去し、続いて熱酸
化を行ない、シリコン窒化膜の除去された部分の酸化膜
920を300OAに成長させる(第4図B)。次に、
残余シリコン窒化膜803を除去し、その下の膜厚50
0人の薄い14− 酸化膜802を表面に出す(第4図C)。
Next, in the embodiment shown in FIG. 4, after the step shown in FIG. The silicone film 803 is partially etched in Freon plasma to reduce the film thickness below it to 50%.
0's thin oxide film 802 is exposed to the surface (Fig. 4A) C1
Next, the photoresist film 918 on the surface is removed, and then thermal oxidation is performed to grow an oxide film 920 of 300 OA in the area where the silicon nitride film was removed (FIG. 4B). next,
The remaining silicon nitride film 803 is removed and the film thickness below it is reduced to 50
A thin 14-oxide film 802 is exposed to the surface (FIG. 4C).

次にリンの熱拡散を行なうと、シリコン酸化膜がリンガ
ラス層913に変換し、前の工程表面に現われた500
Aの薄いシリコン酸化膜802は全てリンガラス層91
3に変換するが、その他の部分920,801は表面の
みに形成される。ざら番こ続けて熱処理を行なうとリン
カラス層913がP型エピタキシャル層807と接して
いる部分ではP型エピタキシャル層807中へリン原子
が拡散され、N型領域810が形成される(第4図D)
Next, when thermal diffusion of phosphorus is performed, the silicon oxide film is converted into a phosphorus glass layer 913, and the 500% that appeared on the surface of the previous process is
The thin silicon oxide film 802 of A is entirely a phosphorus glass layer 91
3, but the other portions 920 and 801 are formed only on the surface. When the heat treatment is performed in succession, phosphorus atoms are diffused into the P-type epitaxial layer 807 in the portion where the phosphor glass layer 913 is in contact with the P-type epitaxial layer 807, and an N-type region 810 is formed (FIG. 4D). )
.

次に表面に形成されたリンカラス層913を除去し、熱
酸化により、シリコン酸化膜にてへ型領域8】0を覆い
第2図Gと同じ構造を得る。以下銀2図H,Iと同じ工
程にすすめはよい。
Next, the link glass layer 913 formed on the surface is removed, and the hemiform region 8]0 is covered with a silicon oxide film by thermal oxidation to obtain the same structure as shown in FIG. 2G. It is recommended that you follow the same steps as in Figure 2 H and I below.

第2図〜第4図の実施例ではNPN屋 トランジスタを
製造する方法について説明したか、不純物又は導電型を
変えると同様のμ法でPNP型トランジスタも製造でき
ることは勿論である。又、為速トランジスタに使われて
いるウォッシュド・エミッタ(Washed emit
ter )  構造のトランジスタの製造にも適用でき
るし、トランジスタのみならずダイオード、及びこれら
を含む集積回路装置の製造にも適用できる。
In the embodiments shown in FIGS. 2 to 4, a method for manufacturing an NPN transistor has been described, but it goes without saying that a PNP transistor can also be manufactured using the same .mu. method by changing the impurity or conductivity type. Also, washed emitters are used in speed transistors.
ter ) structure, and can also be applied to manufacturing not only transistors but also diodes and integrated circuit devices including these.

以上説明したように、本発明によれば埋設シリコン酸化
膜が余分に除去されない為、製造が容易であり、かつ素
子の性能を洛さすに歩留の向上が望めるなど半導体装置
の分野における効果は大きいO
As explained above, according to the present invention, since the buried silicon oxide film is not removed excessively, manufacturing is easy, and the yield can be expected to be improved without sacrificing the performance of the device. big O

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Fは従来法の欠点を説明するための従来の製
造法の主な製造工程の断面図、第2図A〜工、第3図A
−B、第4図A−Dはそれぞれ不発明の実施例の半導体
装置の製造方法の主な製造工程の断面図である。 800・・・・・・・・・N型シリコン基板、807・
・・・・・・・・Pmシリコンエピタキシャル層、80
1、802.820.831.920・・・・・・・・
・シリコン酸化膜、803・・・・・・・・・シリコン
窒化膜、808、908.918・・・・・・・・・ホ
トレジスト、膜、8]0・・・・・・・・・N型領域、 840.841 ・・・・・・・・・金Nm1t極、8
30.903.913・・・・・・・・・リンカラス層
〇17一
Figures 1A-F are cross-sectional views of the main manufacturing steps of the conventional manufacturing method to explain the drawbacks of the conventional method, Figures 2A-F, and Figure 3A
-B and FIGS. 4A to 4D are cross-sectional views of the main manufacturing steps of the method of manufacturing a semiconductor device according to an embodiment of the present invention. 800...N-type silicon substrate, 807.
・・・・・・Pm silicon epitaxial layer, 80
1, 802.820.831.920・・・・・・・・・
・Silicon oxide film, 803...Silicon nitride film, 808, 908.918...Photoresist, film, 8]0......N Mold area, 840.841 ...... Gold Nm1t pole, 8
30.903.913・・・・・・・・・Link glass layer〇171

Claims (1)

【特許請求の範囲】 1、半導体基体の一生面に選択的に埋設された比較的厚
い酸化物で囲まれた半導体領域内の少なくとも2つのP
N接合が、前記厚い酸化物の同一側面で終端する構造、
を有する半導体装置の製造方法において、前記PN接合
の1つは半導体基板と該半導体基板上に形成されたエピ
タキシャル成長膜との間で形成し、その他の1つは半導
体領域の表面を露出することなく、外部からの不純物の
導入によって形成することを特徴とする半導体装置の製
造方法。 λ 前記厚い改化物で囲まれた半導体領域の厚い酸化物
の同一側面で終端する2つのPN接合のうち、外部から
の不純物導入によって形成される1つのPN接合が、半
導体領域の表面を覆う絶縁膚の薄い領域を不純物を含む
カス中での熱処理により完全にカラス層に変換し、該カ
ラス層より、半導体領域内に不純物を拡散して形成され
ることを特徴とする特許請求の範囲第1項に記載の半導
体装置の製造方法。
[Claims] 1. At least two P atoms in a semiconductor region surrounded by a relatively thick oxide selectively buried in the entire surface of a semiconductor substrate.
a structure in which N junctions terminate on the same side of the thick oxide;
In the method for manufacturing a semiconductor device, one of the PN junctions is formed between a semiconductor substrate and an epitaxially grown film formed on the semiconductor substrate, and the other PN junction is formed without exposing the surface of the semiconductor region. A method of manufacturing a semiconductor device, characterized in that the semiconductor device is formed by introducing impurities from the outside. λ Of the two PN junctions that terminate on the same side of the thick oxide of the semiconductor region surrounded by the thick modified material, one PN junction formed by introducing impurities from the outside is an insulator that covers the surface of the semiconductor region. Claim 1 characterized in that the thin skin region is completely converted into a crow layer by heat treatment in a scum containing impurities, and the impurity is diffused from the crow layer into the semiconductor region. A method for manufacturing a semiconductor device according to paragraph 1.
JP20095982A 1982-11-15 1982-11-15 Manufacture of semiconductor device Granted JPS58108737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20095982A JPS58108737A (en) 1982-11-15 1982-11-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20095982A JPS58108737A (en) 1982-11-15 1982-11-15 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51114052A Division JPS6035818B2 (en) 1976-09-22 1976-09-22 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58108737A true JPS58108737A (en) 1983-06-28
JPS6229889B2 JPS6229889B2 (en) 1987-06-29

Family

ID=16433150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20095982A Granted JPS58108737A (en) 1982-11-15 1982-11-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58108737A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154077A (en) * 1974-05-22 1975-12-11
JPS5140773A (en) * 1974-07-25 1976-04-05 Siemens Ag Handotaidebaisuno seizohoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154077A (en) * 1974-05-22 1975-12-11
JPS5140773A (en) * 1974-07-25 1976-04-05 Siemens Ag Handotaidebaisuno seizohoho

Also Published As

Publication number Publication date
JPS6229889B2 (en) 1987-06-29

Similar Documents

Publication Publication Date Title
US4191595A (en) Method of manufacturing PN junctions in a semiconductor region to reach an isolation layer without exposing the semiconductor region surface
JPH03129818A (en) Manufacture of semiconductor device
JPS58108737A (en) Manufacture of semiconductor device
JP2662879B2 (en) Method of manufacturing insulated gate field effect transistor
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JPS61135136A (en) Manufacture of semiconductor device
JPS59107572A (en) Manufacture of semiconductor device
JPS59177941A (en) Manufacture of element isolation region
JPS5986238A (en) Manufacture of semiconductor device
JPH0335528A (en) Manufacture of semiconductor device
JPS6229890B2 (en)
JPS628939B2 (en)
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JP2546651B2 (en) Method of manufacturing bipolar transistor
JPS62298170A (en) Manufacture of semiconductor device
JPS61112375A (en) Manufacture of semiconductor device
JPS6115589B2 (en)
JPS60111464A (en) Manufacture of semiconductor device
JPH01145858A (en) Manufacture of semiconductor device
JPH0191445A (en) Manufacture of semiconductor integrated circuit device
JPS639150A (en) Manufacture of semiconductor device
JPH0278227A (en) Collector isolated diffusion transistor and its manufacture
JPH04217342A (en) Fabrication of semiconductor device
JPS60258965A (en) Manufacture of semiconductor device
JPS6151841A (en) Manufacture of semiconductor device