JPS58108496A - Method and device for radioactive rare gas - Google Patents

Method and device for radioactive rare gas

Info

Publication number
JPS58108496A
JPS58108496A JP11368581A JP11368581A JPS58108496A JP S58108496 A JPS58108496 A JP S58108496A JP 11368581 A JP11368581 A JP 11368581A JP 11368581 A JP11368581 A JP 11368581A JP S58108496 A JPS58108496 A JP S58108496A
Authority
JP
Japan
Prior art keywords
conduit
gas
adsorption tower
temperature
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11368581A
Other languages
Japanese (ja)
Other versions
JPS642239B2 (en
Inventor
木下 高年
福成寺 誠也
相本 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11368581A priority Critical patent/JPS58108496A/en
Publication of JPS58108496A publication Critical patent/JPS58108496A/en
Publication of JPS642239B2 publication Critical patent/JPS642239B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、放射性希ガスの分離・回収法および装置に係
シ、特に、キセノンの吸着・減衰時に生じる崩壊熱の除
去に好適な放射性希ガスの分離拳回収法および装置に関
する4のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radioactive rare gas separation/recovery method and apparatus, and in particular to a radioactive rare gas separation/recovery method and apparatus suitable for removing decay heat generated during xenon adsorption/decay. This is part 4 regarding equipment.

従来の放射性希ガスの分離・回収法および装置例を第1
図によシ説明する。第1図線、活性炭吸着法と深冷分離
法を直列に組合せた放射性希ガスの分離・回収プロセス
のフローシートである。第1図で、lは複数個直列に設
置された常温活性炭吸着塔(以下、常温吸着塔と略)で
、最後尾の常温吸着塔l塔底には、原子炉本体く図示省
略)からの処理ガス(冷却材カバーガス−アルゴン)供
給用の導管2が連結されている。3は2個並列に設置さ
れた脱水塔で、脱水塔3塔底はそれぞれ最酌の常温吸着
塔l塔底と導管4で連結され、かつ、脱水塔3塔頂儒に
は再生ガス供給用の導管5が、塔底側には再生ガス排出
用の導管6が連結されている。7は予冷器で、予冷器7
頂部は脱水塔3とそれぞれ導管8で連結されている。9
は底部に蒸発器10.頂部に凝縮器■を有する蒸留塔で
、蒸留塔9は予冷ls7底部と導管器で連結され、蒸発
器lOには凝縮液送出用の導管13が連結されている。
Conventional radioactive rare gas separation/recovery methods and equipment examples are presented in Part 1.
This will be explained with the help of a diagram. Figure 1 is a flow sheet of a radioactive rare gas separation/recovery process that combines activated carbon adsorption method and cryogenic separation method in series. In Figure 1, l indicates a plurality of room-temperature activated carbon adsorption towers (hereinafter referred to as room-temperature adsorption towers) installed in series. A conduit 2 for supplying processing gas (coolant cover gas - argon) is connected. Reference numeral 3 designates two dehydration towers installed in parallel; the bottoms of the three dehydration towers are each connected to the bottom of the cold-temperature adsorption tower 1 through a conduit 4, and the top of the three dehydration towers is connected to a pipe 4 for supplying regeneration gas. A conduit 5 is connected to the bottom side of the tower, and a regenerated gas discharge conduit 6 is connected to the bottom side of the column. 7 is a precooler; precooler 7
The top portion is connected to the dehydration tower 3 through conduits 8, respectively. 9
There is an evaporator at the bottom 10. The distillation column 9 has a condenser (1) at the top, and the distillation column 9 is connected to the bottom of the pre-cooled ls7 by a conduit, and the evaporator 10 is connected to a conduit 13 for sending out condensate.

14は液体窒素トリムで、液体窒素ドラム14には液体
窒素供給用の導管15が連結され、また、凝縮器11に
液体窒素を供給する導管16と凝縮器11がも窒素ガス
を供給する導管17が連結され、更に、液体窒素ドラム
14と予冷器7が導管181連結されている。なお、予
冷器7には窒素ガス排出用の導管19が連結されている
。蜀は低温活性炭吸着塔(以下、低温吸着塔と略)で、
低温吸着塔加塔底は蒸留塔9塔頂と導管4で連結されて
いる。nは浄化ガス加熱器で、浄化ガス加熱器4人口側
は低温吸着塔加塔頂と導管nで連結され、また、浄化ガ
ス加熱器ρ出口側には浄化ガス送出用の導管器が連結さ
れている。5は7レオン冷凍機で、冷却水供給用の導管
器、冷却水排出用の導管nが常温吸着塔lにそれぞれ連
結されている。なお、外部からの熱侵入を防止するため
、予冷器7.蒸留塔9.液体窒素ドラム14および低温
吸着塔Iは保冷検器に収納されている。このように構成
された放射性希ガスの分離・回収プロセスにおいて、原
子炉本体からの処理ガス中に含有されたクリプトン、キ
セノンの放射性希ガスの分離・回収は次のように行われ
る。
14 is a liquid nitrogen trim; a conduit 15 for supplying liquid nitrogen is connected to the liquid nitrogen drum 14; a conduit 16 for supplying liquid nitrogen to the condenser 11; and a conduit 17 for supplying nitrogen gas to the condenser 11. Further, the liquid nitrogen drum 14 and the precooler 7 are connected through a conduit 181. Note that a conduit 19 for discharging nitrogen gas is connected to the precooler 7. Shu is a low-temperature activated carbon adsorption tower (hereinafter abbreviated as low-temperature adsorption tower).
The bottom of the low-temperature adsorption column is connected to the top of a distillation column 9 through a conduit 4. n is a purified gas heater, and the intake side of the purified gas heater 4 is connected to the top of the low-temperature adsorption tower by a conduit n, and the outlet side of the purified gas heater ρ is connected to a conduit for sending purified gas. ing. Reference numeral 5 denotes a 7 Leon refrigerator, in which a conduit device for supplying cooling water and a conduit n for discharging cooling water are respectively connected to a room temperature adsorption tower l. In addition, in order to prevent heat from entering from the outside, a precooler 7. Distillation column9. The liquid nitrogen drum 14 and the low-temperature adsorption tower I are housed in a refrigerated analyzer. In the radioactive rare gas separation/recovery process configured as described above, the radioactive rare gases such as krypton and xenon contained in the process gas from the reactor main body are separated and recovered as follows.

原子炉本体からの処理ガスは導管2を経て常温吸着塔l
に送給される。常温吸着塔lでは、処理ガス中のキセノ
ンが吸着・減衰時に崩壊熱を生じ、常温吸着塔lの温度
が上昇し活性炭の吸着効果が低下するため、これを防止
するため、フレオン冷凍機5から導管器を経て常温吸着
塔1に冷水を供給し、この崩壊熱を吸熱した冷水を導管
4を経てフレオン冷凍機2に戻すことにより崩壊熱を除
去している。キセノンが分離された処理ガスは導管4を
経て脱水43に供給され、水分を除去された後に、導管
8を経て予冷!7に送給される。なお、脱水塔3は水分
除去後破過点に達する前に他の吸着塔3と切換えられ、
脱水塔3内の吸湿剤は、導管5を経て脱水塔3に供給さ
れ、導管6よシ排出される再生ガスによシ再生される。
Processed gas from the reactor main body passes through conduit 2 to room-temperature adsorption tower l.
will be sent to In the room-temperature adsorption tower 1, the xenon in the treated gas generates decay heat during adsorption and decay, increasing the temperature of the room-temperature adsorption tower 1 and reducing the adsorption effect of activated carbon. Chilled water is supplied to the room-temperature adsorption tower 1 through a conduit, and the cold water that has absorbed the decay heat is returned to the Freon refrigerator 2 through a conduit 4, thereby removing the decay heat. The processing gas from which xenon has been separated is supplied to the dehydrator 43 via conduit 4, and after moisture is removed, it is pre-cooled via conduit 8! 7. Note that the dehydration tower 3 is switched to another adsorption tower 3 before reaching the breakthrough point after water removal,
The moisture absorbent in the dehydration tower 3 is supplied to the dehydration tower 3 via a conduit 5 and is regenerated by regeneration gas discharged through a conduit 6.

予冷器7に供給された脱水塔3で脱水された処理ガスは
、液体窒素ドラム14から導管18を経て予冷器7に別
に供給された窒素ガスによシ窒素の沸点近くまで冷却さ
れ、導管νを経て蒸留塔9に供給される。蒸留塔9では
、蒸発器10からの蒸発ガスと共に処理ガスは上昇し、
凝縮器11で液体窒素ドラム14から導管16を経て別
に供給された液体窒素によシ処理ガスの一部が液化され
た下降液と充填層を通して気液接触することによ〕、処
理ガス中の高沸点成分であるクリプトンは液側に移動し
、クリプトンを多く含有した凝縮液は蒸発器lOに滞□
゛留し、導管13によシ系外へ送出される。一方、クリ
プトンの多くが分離され浄化された処理ガスは、凝縮器
11を通シ、蒸留塔9塔頂から導管4を経て蒸留塔9が
正常に作動しない場合を考慮して設置された低温吸着塔
加を通シ、導管器を経て浄化ガス加熱1!22に供給さ
れ、浄化ガス加熱器四で常温に戻された後に導管器よ〕
系外へ送出される。
The process gas dehydrated in the dehydration tower 3 supplied to the precooler 7 is cooled to near the boiling point of nitrogen by nitrogen gas separately supplied from the liquid nitrogen drum 14 to the precooler 7 via the conduit 18, and then passed through the conduit ν. It is supplied to the distillation column 9 through. In the distillation column 9, the treated gas rises together with the evaporated gas from the evaporator 10,
In the condenser 11, a part of the processing gas is brought into gas-liquid contact with the liquefied descending liquid through the packed bed by liquid nitrogen separately supplied from the liquid nitrogen drum 14 through the conduit 16. Krypton, which is a high boiling point component, moves to the liquid side, and the condensate containing a large amount of krypton remains in the evaporator lO.
It is retained and sent out of the system through conduit 13. On the other hand, the processed gas from which most of the krypton has been separated and purified is passed through the condenser 11, from the top of the distillation column 9, through the conduit 4, and then to the low-temperature adsorption system installed in consideration of the case where the distillation column 9 does not operate normally. The purified gas is passed through the tower and supplied to the purified gas heater 1!22 through the conduit, and after being returned to room temperature in the purified gas heater 4, it is sent to the conduit.
Sent outside the system.

このように従来の放射性希ガスの分離φ回収法および装
置では、浄化され、かつ、低温となった処理ガスの冷熱
を利用することなく、唯単に浄化ガス加熱器4で常温に
戻され系外へ送出され、一方ζ常温吸着塔1でのキセノ
ンの吸着・減衰時に生じる崩壊熱を除去するのに別にフ
レオン冷凍機3を設置する岬エネルギの無駄が大きいと
いった欠点があった。
In this way, in the conventional radioactive rare gas separation φ recovery method and device, the purified gas is simply returned to room temperature in the purified gas heater 4 and removed from the system without using the cold heat of the purified and low-temperature processing gas. On the other hand, there was a drawback that a separate Freon refrigerator 3 was installed to remove the decay heat generated during adsorption and attenuation of xenon in the ζ room-temperature adsorption tower 1, which resulted in a large waste of energy.

本発明は、上記欠点の排除を目的としたもので、キセノ
ンの吸着・減衰時に生じる崩壊熱を7レオン冷凍機を用
いることなく、浄化され、かつ、低温となった処理ガス
の冷熱を利用して除去する放射性希ガスの分離・回収法
および装置を提供するものである。
The present invention aims to eliminate the above-mentioned drawbacks, and utilizes the cooling heat of the purified and low-temperature processing gas to eliminate the decay heat generated during the adsorption and decay of xenon without using a 7 Leon refrigerator. The present invention provides a method and apparatus for separating and recovering radioactive rare gases.

本発明の一実施例を菖2図によシ説明する。第2図で、
第1図と同−機器等は同一符号で示し説明を省略する。
An embodiment of the present invention will be explained with reference to two diagrams. In Figure 2,
The same equipment as in FIG. 1 is denoted by the same reference numerals and the explanation thereof will be omitted.

四は導管器よシ分岐され、かつ、自動弁(資)が途中に
設置された導管で、それぞれの常温吸着塔1に連結され
ている。社は導管器とそれぞれの常温吸着塔lを連結す
る導管である。諺は導管4の途中に設置され、かつ、自
動弁(資)の弁開度を調節・制御する温度指示調節針で
ある。
4 is a conduit which is branched from the conduit and has an automatic valve installed in the middle, and is connected to each of the normal temperature adsorption towers 1. The pipes are the pipes connecting the pipes and each cold adsorption tower. The proverb is a temperature indicating adjustment needle installed in the middle of the conduit 4 and adjusting and controlling the valve opening degree of the automatic valve (equipment).

この場合は、常温吸着塔lに導管2を経て供給された原
子炉本体からの処理ガス中のキセノンの吸着・減衰時に
生じる崩壊熱は、低温吸着塔加よシ導管n、自動弁加を
介し導管四を経て常温吸着塔lに供給される浄化され、
かつ、低温となった処理ガスの冷熱を利用して除去され
る。この場合、浄化され、かつ、低温となった処理ガス
により原子炉本体からの処理ガス中に含有された水分が
氷結し、常温吸着塔lの吸着機能の低下を防止するため
、温度指示調節計nで原子炉本体からの処理ガス中に含
有された水分が氷結しない程度に、しかも、できるだけ
低温に設定して浄化され、かつ、低温となった処理ガス
の常温吸着塔1への供給量は自動弁刃の弁開度を調節・
制御し、適正量に制御される。その後、キセノンが分離
された処理ガスは、従来例と同様のプロセスでクリプト
ンを分離され、かつ、低温となつた処理ガスの一部はキ
セノンの吸着・減衰時に生じる崩壊熱の除去に利用され
、残シは浄化ガス加熱器四で常温に戻され、導管31か
らの崩壊熱除去に利用された処理ガスと共に導管為より
系外へ送出される。
In this case, the decay heat generated during the adsorption and decay of xenon in the process gas from the reactor main body, which is supplied to the room-temperature adsorption tower l via conduit 2, is transferred to the low-temperature adsorption tower through conduit n and automatic valve addition. Purified water is supplied to the cold adsorption tower l via conduit 4,
In addition, it is removed using the cold heat of the low-temperature processing gas. In this case, in order to prevent water contained in the treated gas from the reactor main body from freezing due to the purified and low-temperature treated gas, and from deteriorating the adsorption function of the room-temperature adsorption tower, The amount of treated gas supplied to the normal temperature adsorption tower 1 that has been purified by setting the temperature as low as possible so that the water contained in the treated gas from the reactor main body does not freeze at n is as follows: Adjust the valve opening of the automatic valve blade.
controlled and controlled to an appropriate amount. Thereafter, krypton is separated from the processing gas from which xenon has been separated in the same process as in the conventional example, and a part of the processing gas that has become low temperature is used to remove the decay heat generated when xenon is adsorbed and attenuated. The residue is returned to room temperature by the purified gas heater 4, and is sent out of the system through the conduit 31 together with the processing gas used to remove decay heat from the conduit 31.

なお、浄化ガス加熱器nを熱交換器として用い、常温吸
着塔1と浄化ガス加熱器nの間に他の冷媒を設け、浄化
され、かつ、低温となった処理ガスこのように、常温吸
着塔でのキセノンの吸着・減衰時に生じる崩壊熱を浄化
され、かつ、低温となった処理ガスの冷熱を利用して除
去した場合は、7レオン冷凍機の設置が不用となるので
エネルギの無駄が大幅に削減できる。
In addition, the purified gas heater n is used as a heat exchanger, and another refrigerant is provided between the room-temperature adsorption tower 1 and the purified gas heater n, so that the treated gas that has been purified and has become low temperature can be adsorbed at room temperature. If the decay heat generated when xenon is adsorbed and attenuated in the tower is removed using the cold heat of the purified and low-temperature treated gas, there is no need to install a 7 Leon refrigerator, so energy is wasted. This can be significantly reduced.

本発明は、以上説明したように、原子炉本体からの処理
ガス中に含有されたクリプトン、キセノンの放射性希ガ
スの分離・回収するに、特に、キセノンの吸着・減衰時
に生じる崩壊熱を、浄化され、かつ、低温となった処理
ガスの冷熱を別層して除去するようにしたので、フレオ
ン冷凍機が不用となシエネルギの無駄を大幅に削減でき
る効果がある。
As explained above, the present invention is designed to purify the decay heat generated during the adsorption and decay of xenon in order to separate and recover radioactive rare gases such as krypton and xenon contained in the processing gas from the reactor main body. Since the cold heat of the processing gas that has been heated and has become low temperature is removed in a separate layer, there is an effect that the waste of cyene energy that is not required by the Freon refrigerator can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の放射性希ガスの分離・回収法および装
置例を説明する放射性希ガスの分離・回収プロセスの7
0−シート、第2図は、本発明の一実施例を説明する放
射性希ガスの分離・回収プロセスのフローシートである
。 1・・・・・・常温吸着塔、2. 4.23.24.2
9.31・・・導管、加・・・・・・低温吸着塔、(資
)・・・・・・自動弁、!・・・・・・温度指示調節計 手続補正書(0引 発明の名称 放射性希ガスの分離・回収法及び装置 補正をする者 シ、  p、、   LSI 01株式会トド 日、立
 製 イ乍 所代 表 名  三−1) 勝  茂 代   理   人 補正の対象 明細書の特許請求の範囲の欄および発明の詳細な説明の
欄補正の内容 別紙のとおり 明細書 発明の名称  放射性希ガスの分離・回収法及び装置 特許請求の範囲 己の分離・回収法において、前記キセノンの吸着・減衰
時に生じる崩壊熱を、浄化され、かつ、低温となった前
記処理ガスの冷熱を利用して除去することを特徴とする
放射性希ガスの分離・回収法。 2、活性炭吸着法と深冷分離法とを組合せ、常温」41
脱水塔、低温吸着塔、浄化ガス加熱器等より構成された
処理ガス中に含有された放射性希ガスの分離・回収装置
において、前記低温−懸と前記浄化ガス加熱器を連結す
る導管から分岐され、かつ、自動弁が途中に設置された
導管を前記常温吸着塔に連結させ、かつ、常温insと
前記脱水塔を連結する導管の途中に自動弁開度の調節・
制御用温度指示調節計を設置したことを特徴とする放射
性希ガスの分離・回収袋W0 発明の詳細な説明 本発明は、放射性希ガスの分離会回収法および装置に係
り、特に、キセノンの吸着・減衰時に発生する崩壊熱の
除去に好適な放射性希ガスの分離・回収法および装置に
関するものである。 従来の放射性希ガスの分離・回収法および装置例な第1
図により説明する。第1図は、活性炭吸着法と深冷分離
法を直列に組合せた放射性希ガスの分離・回収プロセス
のフローシートである。第1図で、1は複数個直列、に
設置された常温吸着塔で、最後尾の常温吸着塔1塔底に
は、放射性希ガスを含有する処理ガス供給用の導管2が
連結されている。3は2個並列に設置された脱水塔で、
脱水塔3塔底はそれぞれ最前の常温吸着塔1塔底と導管
4で連結され、かつ、脱水塔3塔頂側には再生ガス供給
用の導管5が、塔底側には再生ガス排出用の導管6が連
結されている。7は予冷器で、予冷器7頂部は脱水塔3
とそれぞれ導管8で連結されている。9は底部に蒸発器
10.頂部に凝縮器11を有する蒸留塔で、蒸留塔9は
予冷器7底部と導管12で連結され、蒸発器lOには凝
縮液送出用の導管13が連結されている。14は液体窒
素ドラムで、液体窒素ドラム14には液体窒素供給用の
導管15が連結され、また、凝縮器11に液体窒素を供
給する導管16と凝縮器11から窒素ガスを供給する導
管17が連結され、更に、液体窒素ドラム14と予冷器
7が導管1Bで連結されている。なお、予冷器7には窒
素ガス排出用の導管19が連結されている。Iは低温吸
着塔で、低温吸着塔(9)塔底は蒸留塔9塔頂と導管2
1で連結されている。nは浄化ガス加熱器で、浄化ガス
加熱器n入口側は低温吸着塔加塔頂と導管nで連結され
、また、浄化ガス加熱器n出口側には浄化ガス送出用の
導管冴が連結されている。5は冷凍機で、冷却水供給用
の導管が、冷却水排出用の導管nが常温吸着塔lにそれ
ぞれ連結されている。なお、外部からの熱侵入を防止す
るため、予冷器7.蒸留塔9.液体窒素ドラム14およ
び低温吸着塔加は保冷検器に収納されている。 このように構成された放射性希ガスの分離・回収プロセ
スにおいて、処理ガス中に含有された放射性希ガスの分
離・回収は次のように行われる。 放射性希ガスを含有する処理ガスは導管2を経て常温吸
着塔1に送給される。常温吸着塔1では、処理ガス中の
キセノンが吸着・減衰時に崩壊熱を生じ、常温吸着塔l
の温度が上昇し活性炭の吸着効果が低下するため、これ
を防止するため、冷凍機3から導管器を経て常温吸着塔
1に冷水を供給し、この崩壊熱を吸熱した冷水を導管n
を経て冷凍機すに戻すことにより崩壊熱を除去している
。 キセノンが分離された処理ガスは導管4な経て脱水塔3
に供給され、水分を除去された後に、導管8を舒て予冷
器7に送給される。なお、脱水塔3は水分除去後破過点
に達する前に他の吸着塔3と切換えられ、脱水塔3内の
吸湿剤は、導管5を経て脱水塔3に供給され、導管6よ
り排出される再、− 生ガスにより再生される。予冷器7に供給された脱水塔
3で脱水された処理ガスは、液体窒素ドラム14から導
管1Bを経て予冷器7に別に供給された窒素ガスにより
窒素の沸点近くまで冷却され、導管12を経て蒸留塔9
に供給される。蒸留塔9では、蒸発器lOからの蒸発ガ
スと共に処理ガスは上昇し、凝縮器11で液体窒素ドラ
ム14から導管16を経て別に供給された液体窒素によ
り処理ガスの一部が液化された下降液と充填層を通して
気液接触することにより、処理ガス中の高沸点成分であ
るクリプトンは源側に移動し、クリプトンを多く含有し
た凝縮液は蒸発器10に滞留し、導管13により系外へ
送出される。一方、クリプトンの多くが分離され浄化さ
れた処理ガスは、凝縮器11を通り、蒸留塔9塔頂から
導管21を経て低温吸着塔加を通り、導管nを経て浄化
ガス加熱器四に供給され、浄化ガス加熱器nで常温に戻
された後に導管Uより糸外へ送出される。 このように従来の放射性希ガスの分離−回収法および装
置では、浄化され、かつ、低温となった処理ガスの冷熱
を利用することなく、唯単に浄化ガス加熱器nで常温に
戻され系外へ送出され、一方、常温吸着塔1でのキセノ
ンの吸着・減衰時に生じる崩壊熱を除去するのに別に冷
凍機δ等の冷却装置を設置する必要があった。 本発明は、上記冷凍機等の冷却装置としない省エネルギ
を目的としたもので、キセノンの吸着φ減衰時に生じる
崩壊熱を冷凍機を用いることなく、浄化され、かつ、低
温となった処理ガスの冷熱を利用して除去する放射性希
ガスの分離・回収法および装置を提供するものである。 本発明の一実施例を第2図により説明する。第2図で、
IJi図と同−機器等は同一符号で示し説明を省略する
。器は導管器より分岐され、かつ、自動弁Iが途中に設
置された導管で、それぞれの常温吸着塔1に連結されて
いる。31は導管器とそれぞれの常温吸着塔1な連結す
る導管である。諺は導管4の途中に設置され、かつ、自
動弁菊の弁開度を調節・制御する温度指示調節計である
。 この場合は、常温吸着塔1に導管2を経て供給された処
理ガス中のキセノンの吸着・減衰時に生じる崩壊熱は、
低温吸着塔加より導管り、自動弁(資)を介し導管器を
経て常温吸着塔1に供給されて浄化され、かつ、低温と
なった処理ガスの冷熱を利用して除去される。この場合
、浄化され、かつ。 低温となった処理ガスによ!処理ガス中に含有された水
分が氷結し、常温吸着塔lの吸着機能の低下を防止する
ため、温度指示調節計羽で処理ガス中に含有された水分
が氷結しない程度に、しかも、できるだけ低温に設定し
て浄化され、かつ、低温となった処理ガスの常温吸着塔
lへの供給量は自動弁(資)の弁開度を調節・制御し、
適正量に制御される。その後、キセノンが分離された処
理ガスは、従来例と同様のプロセスでクリプトンを分離
され、かつ、低温となった処理ガスの一部はキセノンの
吸着・減衰時に生じる崩壊熱の除去に利用され、残りは
浄化ガス加熱器2で常温に戻され、導管31からの崩壊
熱除去に利用された処理ガスとともに導管器より系外へ
送出される。 なお、浄化ガス加熱器nを熱交換器として用い、常温吸
着塔町と浄化ガス加熱器nの間に他の冷媒を設け、浄化
され、かつ、低温となった処理ガスにより冷媒を冷却し
、これによりキセノンの吸着9減衰時に生じる崩壊熱な
除去しても良い。 このように、常温吸着塔でのキセノンの吸着拳減衰時に
生じる崩壊熱を浄化され、かつ、低温となつた処理ガス
の冷熱を利用して除去した場合は、冷凍機の設置が不用
となる。 本発明は、以上説明したように、処理ガス中に含有され
た放射性希ガスの分離・回収をするのに、特に、キセノ
ンの吸着・減衰時に生じる崩壊熱を、、1゜ 浄化され、かつ、低温となった処理ガスの冷熱す)利用
して除去するようにしたので、冷凍機が不用となる効果
がある。 図面の簡単な説明 第1図は、従来の放射性希ガスの分離・回収法および装
置例な説明する放射性希ガスの分離・回収プロセスのフ
ローシート、第2図は、本発明の一実施例な説明する放
射性希ガスの分離・回収プロセスのフローシートである
。 1・・・・・・常温吸着塔、2. 4.23.24.2
9.31・・・導管、加・・・・・・低温吸着塔、(資
)・・・・・・自動弁、諺・・・・・・温度指示調節針 代理人−弁理士  薄 1)利 鳥誘怪°1[件の表示 昭和56 年特許願第 113685  号発明の名称 放射性希ガスの分離・回収法及び装置 捕市をする者 ′51つ)(°(式会iす  []  立  製  作
  所イ・ 表 古  玉   11    勝   
茂代   理   人 補正の内容 別紙のとおり              /ご=)1
 昭和57年10月21日付提出の手続補正書の補正の
内容の欄を[別紙のとおり(補正の対象の欄に記載した
事項以外は内容に史実なし)]と補正する。
Figure 1 shows the 7th stage of the radioactive rare gas separation/recovery process, which explains the conventional radioactive rare gas separation/recovery method and equipment example.
0-Sheet, FIG. 2 is a flow sheet of a radioactive rare gas separation/recovery process illustrating one embodiment of the present invention. 1...Normal temperature adsorption tower, 2. 4.23.24.2
9.31...Conduit, Addition...Low temperature adsorption tower, (Equipment)...Automatic valve,!・・・・・・Temperature indicating controller procedural amendment (0 quotation Name of invention Person who amends radioactive rare gas separation/recovery method and equipment, p., LSI 01 Todo Co., Ltd. Representative Name 3-1) Shigeyo Katsu (Representative) Claims column and Detailed Description of Invention column of the specification subject to personal amendment Contents of the amendment As shown in the appendix Name of the invention in the description Method for separating and recovering radioactive rare gases and Apparatus Claims In the separation and recovery method, the decay heat generated during adsorption and attenuation of the xenon is removed by using the cold heat of the purified and low-temperature processing gas. A method for separating and recovering radioactive rare gases. 2. Combining activated carbon adsorption method and cryogenic separation method, room temperature"41
In a separation/recovery device for radioactive rare gas contained in a process gas, which is composed of a dehydration tower, a low-temperature adsorption tower, a purified gas heater, etc., , and a conduit with an automatic valve installed in the middle is connected to the room-temperature adsorption tower, and an automatic valve opening degree adjustment /
Radioactive rare gas separation/recovery bag W0 characterized by installing a temperature indicating controller for control -Relates to a radioactive rare gas separation/recovery method and device suitable for removing decay heat generated during decay. Conventional radioactive rare gas separation/recovery method and device example No. 1
This will be explained using figures. FIG. 1 is a flow sheet of a radioactive rare gas separation/recovery process that combines an activated carbon adsorption method and a cryogenic separation method in series. In Fig. 1, reference numeral 1 indicates a plurality of cold adsorption towers installed in series, and the bottom of the last cold adsorption tower 1 is connected to a conduit 2 for supplying processing gas containing radioactive rare gas. . 3 is two dehydration towers installed in parallel.
The bottoms of the dehydration towers 3 are each connected to the bottom of the room-temperature adsorption tower 1 at the front by a conduit 4, and the top side of the dehydration tower 3 has a conduit 5 for supplying regenerated gas, and the bottom side has a conduit 5 for regenerating gas discharge. A conduit 6 is connected thereto. 7 is a precooler, and the top of the precooler 7 is a dehydration tower 3
and are connected by conduits 8, respectively. 9 is an evaporator at the bottom 10. The distillation column has a condenser 11 at the top, and the distillation column 9 is connected to the bottom of the precooler 7 by a conduit 12, and the evaporator IO is connected to a conduit 13 for sending out condensate. Reference numeral 14 denotes a liquid nitrogen drum. A conduit 15 for supplying liquid nitrogen is connected to the liquid nitrogen drum 14, and a conduit 16 for supplying liquid nitrogen to the condenser 11 and a conduit 17 for supplying nitrogen gas from the condenser 11 are connected. Further, the liquid nitrogen drum 14 and the precooler 7 are connected by a conduit 1B. Note that a conduit 19 for discharging nitrogen gas is connected to the precooler 7. I is a low-temperature adsorption tower, the bottom of the low-temperature adsorption tower (9) is connected to the top of distillation tower 9 and conduit 2.
They are connected by 1. n is a purified gas heater, the inlet side of the purified gas heater n is connected to the top of the low-temperature adsorption tower by a conduit n, and the outlet side of the purified gas heater n is connected to a conduit for sending purified gas. ing. Reference numeral 5 denotes a refrigerator, and a conduit for supplying cooling water and a conduit n for discharging cooling water are respectively connected to the normal temperature adsorption tower l. In addition, in order to prevent heat from entering from the outside, a precooler 7. Distillation column9. The liquid nitrogen drum 14 and the low-temperature adsorption tower are housed in a refrigerated chamber. In the radioactive rare gas separation/recovery process configured as described above, the radioactive rare gas contained in the process gas is separated and recovered as follows. The process gas containing the radioactive rare gas is fed to the cold adsorption tower 1 via the conduit 2. In the room temperature adsorption tower 1, the xenon in the treated gas generates decay heat during adsorption and decay, and the room temperature adsorption tower 1
To prevent this, cold water is supplied from the refrigerator 3 to the room-temperature adsorption tower 1 through a conduit, and the cold water that has absorbed this decay heat is passed through the conduit n.
The decay heat is removed by returning it to the refrigerator. The treated gas from which xenon has been separated is passed through conduit 4 to dehydration tower 3.
After moisture is removed, the water is fed through a conduit 8 to a precooler 7. Note that the dehydration tower 3 is switched to another adsorption tower 3 after water removal and before reaching the breakthrough point, and the hygroscopic agent in the dehydration tower 3 is supplied to the dehydration tower 3 via the conduit 5 and discharged from the conduit 6. - Regenerated by raw gas. The processing gas dehydrated in the dehydration tower 3 supplied to the precooler 7 is cooled to near the boiling point of nitrogen by nitrogen gas separately supplied to the precooler 7 from the liquid nitrogen drum 14 via the conduit 1B, and then is cooled to near the boiling point of nitrogen through the conduit 12. Distillation column 9
supplied to In the distillation column 9, the treated gas rises together with the evaporated gas from the evaporator IO, and in the condenser 11, a part of the treated gas is liquefied by liquid nitrogen separately supplied from the liquid nitrogen drum 14 through the conduit 16, and a descending liquid is produced. By contacting gas and liquid through the packed bed, krypton, which is a high boiling point component in the processing gas, moves to the source side, and the condensate containing a large amount of krypton stays in the evaporator 10 and is sent out of the system through the conduit 13. be done. On the other hand, the treated gas from which most of the krypton has been separated and purified passes through the condenser 11, from the top of the distillation column 9, through the conduit 21, through the low temperature adsorption column, and is supplied to the purified gas heater 4 via the conduit n. , after being returned to room temperature in a purified gas heater n, it is sent out of the yarn through a conduit U. In this way, conventional radioactive rare gas separation and recovery methods and devices do not utilize the cold energy of the purified and low-temperature processing gas, but instead simply return it to room temperature using a purified gas heater and remove it from the system. On the other hand, in order to remove the decay heat generated when xenon is adsorbed and attenuated in the room-temperature adsorption tower 1, it was necessary to separately install a cooling device such as a refrigerator δ. The purpose of the present invention is to save energy without using a cooling device such as the above-mentioned refrigerator, and the decay heat generated when the xenon adsorption φ is attenuated can be converted into purified and low-temperature processed gas without using a refrigerator. The purpose of this invention is to provide a method and device for separating and recovering radioactive rare gas, which removes it using the cold energy of the gas. An embodiment of the present invention will be described with reference to FIG. In Figure 2,
The same equipment as in the IJi diagram is indicated by the same reference numerals, and the explanation thereof will be omitted. The vessels are connected to the respective normal temperature adsorption towers 1 through conduits which are branched from the conduit and have an automatic valve I installed in the middle. Reference numeral 31 denotes a conduit connecting the conduit device to each cold adsorption tower 1. The proverb is a temperature indicating controller that is installed in the middle of the conduit 4 and adjusts and controls the valve opening degree of the automatic valve chrysanthemum. In this case, the decay heat generated during the adsorption and decay of xenon in the process gas supplied to the room-temperature adsorption tower 1 via the conduit 2 is
The gas is piped from the low-temperature adsorption tower, and is supplied to the room-temperature adsorption tower 1 through an automatic valve (equipment) and a conduit, where it is purified and removed using the cold heat of the low-temperature treated gas. In this case, purified and. Due to the low temperature processing gas! In order to prevent the moisture contained in the treated gas from freezing and the adsorption function of the room-temperature adsorption tower l being reduced, the temperature indicator is set to a temperature as low as possible to prevent the moisture contained in the treated gas from freezing. The supply amount of the treated gas, which has been purified by setting the temperature to
Controlled to an appropriate amount. After that, from the processing gas from which xenon has been separated, krypton is separated in the same process as in the conventional example, and a part of the processing gas that has become low temperature is used to remove the decay heat generated when xenon is adsorbed and attenuated. The remaining gas is returned to room temperature by the purified gas heater 2, and is sent out of the system from the conduit device together with the processing gas used to remove decay heat from the conduit 31. In addition, the purified gas heater n is used as a heat exchanger, another refrigerant is provided between the room temperature adsorption tower town and the purified gas heater n, and the refrigerant is cooled by the purified and low-temperature treated gas, This may remove the decay heat generated when xenon adsorption 9 decays. In this way, if the decay heat generated when the xenon adsorption decays in the room-temperature adsorption tower is removed using the cold heat of the purified and low-temperature process gas, the installation of a refrigerator becomes unnecessary. As explained above, the present invention is particularly useful for separating and recovering radioactive rare gases contained in a process gas, and in particular, the decay heat generated during adsorption and decay of xenon is purified by 1°, and Since the processing gas, which has now reached a low temperature, is removed by cooling and heating, a refrigerator is not required. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a flow sheet of a conventional radioactive rare gas separation/recovery method and device, and Fig. 2 shows an example of the radioactive rare gas separation/recovery process. This is a flow sheet of the radioactive rare gas separation/recovery process to be explained. 1...Normal temperature adsorption tower, 2. 4.23.24.2
9.31...conduit, addition...low-temperature adsorption tower, (equity)...automatic valve, proverb...temperature indicating and regulating needle agent - patent attorney Usui 1) Tori Tori Kai °1 [Indication of 1981 Patent Application No. 113685 Title of invention Radioactive rare gas separation/recovery method and device Manufacturer I/Omote old ball 11 wins
Osamu Shigeyo Contents of amendments as per the attached sheet /go=)1
The content column of the amendment in the procedural amendment submitted dated October 21, 1980 is amended to read as [as attached (there is no historical fact in the content other than the matters stated in the subject of amendment column)].

Claims (1)

【特許請求の範囲】 1 活性炭吸着法と深冷分離法とを組合せ、原子炉本体
からの処理ガス中に含有されたクリグトン、キセノンの
放射性希ガスの分離・回収法にする放射性希ガスの分離
・回収法。 性炭吸着塔、脱水塔、低温活性炭吸着塔、浄化ガス加熱
器等よシ構成された原子炉本体からの処理ガス中に含有
されたクリプトン、キセノンの放射性希ガスの分離・回
収装置において、前記低温活性炭吸着塔と前記浄化ガス
加熱器を連結する導管から分岐され、かつ、自動弁が途
中に設置された導管を前記常温活性炭吸着塔に連結させ
、かつ、常温活性炭吸着塔と前記脱水塔を連結する導管
の途中に自動弁開度の調節・制御用温度指示調節針を設
置したことを特徴とする放射性希ガスの分離・回収装置
[Claims] 1. Separation of radioactive rare gases by combining activated carbon adsorption method and cryogenic separation method to separate and recover radioactive rare gases such as krigton and xenon contained in treated gas from the reactor main body.・Recovery method. In an apparatus for separating and recovering radioactive noble gases such as krypton and xenon contained in the treated gas from the reactor main body, which is composed of a carbon adsorption tower, a dehydration tower, a low-temperature activated carbon adsorption tower, a purified gas heater, etc. A conduit branched from a conduit connecting the low temperature activated carbon adsorption tower and the purified gas heater and having an automatic valve installed in the middle is connected to the room temperature activated carbon adsorption tower, and the room temperature activated carbon adsorption tower and the dehydration tower are connected to each other. A radioactive rare gas separation/recovery device characterized in that a temperature indicating adjustment needle for automatic valve opening adjustment and control is installed in the middle of the connecting conduit.
JP11368581A 1981-07-22 1981-07-22 Method and device for radioactive rare gas Granted JPS58108496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11368581A JPS58108496A (en) 1981-07-22 1981-07-22 Method and device for radioactive rare gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11368581A JPS58108496A (en) 1981-07-22 1981-07-22 Method and device for radioactive rare gas

Publications (2)

Publication Number Publication Date
JPS58108496A true JPS58108496A (en) 1983-06-28
JPS642239B2 JPS642239B2 (en) 1989-01-17

Family

ID=14618576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11368581A Granted JPS58108496A (en) 1981-07-22 1981-07-22 Method and device for radioactive rare gas

Country Status (1)

Country Link
JP (1) JPS58108496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854211A (en) * 1986-09-09 1989-08-08 Tanaka International Co., Ltd. Action mechanism of an upright piano
US4860626A (en) * 1986-09-09 1989-08-29 Hajime Tanaka Wippen heel mechanism for an upright piano
US5022302A (en) * 1989-02-22 1991-06-11 Vincent Guyon Damper mechanism for upright piano

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854211A (en) * 1986-09-09 1989-08-08 Tanaka International Co., Ltd. Action mechanism of an upright piano
US4860626A (en) * 1986-09-09 1989-08-29 Hajime Tanaka Wippen heel mechanism for an upright piano
US5022302A (en) * 1989-02-22 1991-06-11 Vincent Guyon Damper mechanism for upright piano

Also Published As

Publication number Publication date
JPS642239B2 (en) 1989-01-17

Similar Documents

Publication Publication Date Title
US4270938A (en) Processes for decontaminating nuclear process off-gas streams
US3996028A (en) Process for purification of argon from oxygen
US3216178A (en) Process for regenerating an adsorbent bed
US2896419A (en) Fresh water recovery process and apparatus for use in same
US5689974A (en) Method and apparatus for pre-purification for air cryogenic separation plant
JPH07280432A (en) Plant for distilling air and method thereof
JPS58108496A (en) Method and device for radioactive rare gas
US3023841A (en) Desorption of oxygen-contaminated molecular sieves
US2615312A (en) Process and apparatus for eliminating impurities during the separation of gas mixtures
EP0018183A1 (en) Process for the purification of natural gas
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
US3257812A (en) Dissociated ammonia separation plant having an adsorber in a liquid refrigerant bath
JPS62197125A (en) Apparatus for separating and concentrating co
US2012080A (en) Method of and apparatus for separating and purifying helium from a gaseous mixture
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH05172459A (en) Pretreation of raw material air in air separating process
US3104953A (en) Method of reactivating an adsorber
JPH0579715A (en) Helium refining device
JP2001033155A (en) Air separator
JP3223253B2 (en) CFC regeneration method and apparatus
JPH0579754A (en) Manufacturing method of high purity nitrogen
EP3773989B1 (en) Temperature swing adsorption process with purification
JPH0938445A (en) Method for regenerating adsorption tower
JPS6329724Y2 (en)
JPS60139311A (en) Regeneration of adsorbing tower