JPS62197125A - Apparatus for separating and concentrating co - Google Patents

Apparatus for separating and concentrating co

Info

Publication number
JPS62197125A
JPS62197125A JP61038675A JP3867586A JPS62197125A JP S62197125 A JPS62197125 A JP S62197125A JP 61038675 A JP61038675 A JP 61038675A JP 3867586 A JP3867586 A JP 3867586A JP S62197125 A JPS62197125 A JP S62197125A
Authority
JP
Japan
Prior art keywords
tower
heat exchanger
absorption
heat
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038675A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nagashima
長島 快文
Takumi Kono
巧 河野
Takanori Kuwabara
桑原 隆範
Taiji Kamiguchi
上口 泰司
Yasuyuki Nishimura
泰行 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd, Nippon Steel Corp filed Critical Babcock Hitachi KK
Priority to JP61038675A priority Critical patent/JPS62197125A/en
Publication of JPS62197125A publication Critical patent/JPS62197125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To reduce heating quantity for desorption by suppressing the rising in the temp. of an absorbing liquid, by providing a heat exchanger in a CO absorbing tower and utilizing the heat recovered in said heat exchanger in the heating of drain containing toluene recovered from the outlet gas of a desorbing tower. CONSTITUTION:Stock gas 1 is contacted with an absorbing liquid containing CuCl, tris(dimethylamino)phosphine oxide and toluene in an absorbing tower 3 to absorb CO. The rising in the temp. of the absorbing liquid generated at this time is suppressed by the recovery of heat by a heat exchanger 26. The absorbing liquid having absorbed CO is heated in a desorbing tower 13 to desorb CO and the outlet gas 16 of the desorbing tower 13 is cooled by condensers 17, 19 to obtain a condensate containing toluene and the heating medium sent from the heat exchanger 26 is cooled in a heat exchanger 27 by said condensate while the condensate is sent to the lower part of the desorbing tower 13.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、COを含有する各種ガス源からCOを吸収、
脱離して回収する装置に係り、特に塩化第1銅とトリス
(ジメチルアミノ)ホスフィンオキシドとトルエンとを
含む吸収液を用いてCOを吸収、脱離してCOを回収す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention provides a method for absorbing CO from various gas sources containing CO;
The present invention relates to an apparatus for desorbing and recovering CO, and particularly relates to an apparatus for absorbing and desorbing CO to recover CO using an absorption liquid containing cuprous chloride, tris(dimethylamino)phosphine oxide, and toluene.

〔発明の背景〕[Background of the invention]

従来の吸収、脱離プロセスには二酸化炭素、−酸化炭素
、硫化水素、二酸化イオウ等を対象にしたものがある。
Conventional absorption and desorption processes include those targeting carbon dioxide, carbon oxide, hydrogen sulfide, sulfur dioxide, and the like.

これらのガスの吸収法による吸収、脱離プロセスにおい
て、目的ガスを吸収して脱離させる方法としては、吸収
を高圧下、低温下で操作し、脱離を減圧下、高温下で操
作している。
In the absorption and desorption process of these gases, the method of absorbing and desorbing the target gas is to operate the absorption under high pressure and low temperature, and to operate the desorption under reduced pressure and high temperature. There is.

第6図は、COの回収プロセスとして特願昭57−13
247号に開示された塩化第1銅のトリス(ジメチルア
ミノ)ホスフィンオキシド溶液(以下HMPA液)にト
ルエンを共存させた吸収を用いるCO分離・濃縮装置の
系統構成図である。
Figure 6 shows a patent application filed in 1983 as a CO recovery process.
247 is a system configuration diagram of a CO separation/concentration device using absorption in which toluene coexists with a tris(dimethylamino)phosphine oxide solution of cuprous chloride (hereinafter referred to as HMPA solution).

第6図において、COを含む原料ガス1は充填材層2を
有する吸収塔3の下部に供給され、一方、吸収塔3の頂
部のライン4から吸収液が散布され、充填材層2で原料
ガス1と向流接触し、吸収中にcoが吸収される。一方
、塔頂のライン5からの排ガスはコンデンサ6に導入さ
れ、ここで吸収液蒸気が冷媒7により凝縮液化され、凝
縮液はさらにライン8を通って吸収塔3へ還流され、最
終的に排ガスが放出される。coを吸収した液はライン
9から循環ポンプ10により熱交換器1)を通って熱交
換器1)を通って加熱され、さらにライン12を経て脱
離塔13に導入され、その頂部から充填材層14上へ散
布される。脱離塔13の降下液は塔底で加熱器15によ
り間接的にスチーム等の熱媒体により加熱され吸収液の
一部を蒸発させて充填材層14を上昇する過程でライン
12から散布降下される液と接触し、COを脱離温度ま
で加熱する。充填材層14でCOの脱離温度を保持する
ことにより吸収液中のcoが脱離される。
In FIG. 6, a raw material gas 1 containing CO is supplied to the lower part of an absorption tower 3 having a packing material layer 2, while an absorption liquid is sprayed from a line 4 at the top of the absorption tower 3, and the raw material gas 1 is supplied to the filling material layer 2. It is in countercurrent contact with gas 1 and co is absorbed during absorption. On the other hand, the exhaust gas from the line 5 at the top of the tower is introduced into the condenser 6, where the absorption liquid vapor is condensed and liquefied by the refrigerant 7. The condensed liquid is further refluxed through the line 8 to the absorption tower 3, and finally the exhaust gas is released. The liquid that has absorbed CO is heated from the line 9 through the heat exchanger 1) by the circulation pump 10, and further introduced into the desorption column 13 via the line 12. Spread onto layer 14. The liquid falling from the desorption tower 13 is indirectly heated by a heating medium such as steam by a heater 15 at the bottom of the tower, evaporating a part of the absorption liquid, and then being scattered down from the line 12 in the process of rising through the packing layer 14. The CO is heated to its desorption temperature. By maintaining the CO desorption temperature in the filler layer 14, co in the absorption liquid is desorbed.

この回収COはライン16を通って1次コンデンサ17
に導入され、ここで吸収液蒸気が冷却水18により凝縮
液化され、さらに2次コンデンサ19に導入され、冷媒
20により凝縮液化される。
This recovered CO passes through line 16 to primary capacitor 17
The absorbed liquid vapor is condensed and liquefied by the cooling water 18, and further introduced to the secondary condenser 19, where it is condensed and liquefied by the refrigerant 20.

各コンデンサ17.19の凝縮物はライン21を通って
脱離塔13へ還流され、最終的にCOガス22が回収さ
れる。COを放散した吸収液はライン23から循環ポン
プ24によりライン25を経て熱交換器1)に達し、こ
こでcoを吸収した吸収液を加熱後、ライン4を経て吸
収塔3に戻される。
The condensate of each condenser 17, 19 is refluxed through line 21 to desorption column 13, where CO gas 22 is finally recovered. The absorption liquid from which CO has been diffused reaches the heat exchanger 1) via the line 25 by the circulation pump 24 from the line 23, where the absorption liquid that has absorbed the CO is heated and then returned to the absorption tower 3 via the line 4.

上記プロセスにおける吸収液のCO吸収能は、第7図に
示すように低温において高くなる特性をもっている。一
方、吸収液がCOを吸収した場合、C01nrN当たり
354kcaj!の熱を発するため、吸収液の温度が高
くなる。このため吸収液のCO吸収能を高度に維持でき
ない問題があった。
The CO absorption capacity of the absorption liquid in the above process has a characteristic that it increases at low temperatures, as shown in FIG. On the other hand, when the absorption liquid absorbs CO, 354 kcaj per CO1nrN! , the temperature of the absorbing liquid increases. For this reason, there was a problem in that the CO absorption ability of the absorption liquid could not be maintained at a high level.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の問題点を解消し、
吸収塔における吸収液のCO吸収反応熱による温度上昇
を抑制し、効率的にCOを吸収できるCO分離・濃縮装
置を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a CO separation/concentration device capable of efficiently absorbing CO by suppressing a temperature rise due to the heat of CO absorption reaction of an absorption liquid in an absorption tower.

〔発明の概要〕[Summary of the invention]

本発明は、CuCj!−HMPA/)ルエン系の吸収液
を用いてCOを吸収する吸収塔内に熱交換器を設けて吸
収液を冷却することにより、CO吸収に伴う反応熱によ
る吸収液の温度上昇を抑制して吸収塔内におけるCO吸
収効率を高め、更に熱交換器により回収した熱を脱離塔
出口ガスから回収されたトルエン等を含むドレンの加熱
に利用するようにしたものである。
The present invention provides CuCj! -HMPA/) By installing a heat exchanger in the absorption tower that absorbs CO using a toluene-based absorption liquid and cooling the absorption liquid, the temperature rise of the absorption liquid due to the reaction heat accompanying CO absorption can be suppressed. The CO absorption efficiency in the absorption tower is increased, and the heat recovered by the heat exchanger is used to heat drain containing toluene and the like recovered from the desorption tower outlet gas.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面によりさらに詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

第1図は本発明にかかるco分離・濃縮装置の一実施例
を示す系統構成図である。第1図において、吸収塔3内
に設置された充填材層2と充填材層2との空間部に熱交
換器26が設置されている。
FIG. 1 is a system configuration diagram showing an embodiment of the CO separation/concentration apparatus according to the present invention. In FIG. 1, a heat exchanger 26 is installed in a space between the packing material layers 2 installed in the absorption tower 3.

またコンデンサ17.19の凝縮液を脱離塔13に還流
させるライン21の途中に熱交換器27が配置されてい
る。この熱交換器27と前記した熱交換器26との間に
熱媒体(例えば、水)を循環させるための図示していな
いラインにより接続されている。第1図において、他の
構成部分は第6図に示す従来のCO分離・濃縮装置と実
質的に同一であるので同一符号で示し、詳細な説明は省
略する。
Further, a heat exchanger 27 is disposed in the middle of a line 21 for refluxing the condensate from the condensers 17 and 19 to the desorption column 13. This heat exchanger 27 and the heat exchanger 26 described above are connected by a line (not shown) for circulating a heat medium (for example, water). In FIG. 1, other components are substantially the same as those of the conventional CO separation/concentration device shown in FIG. 6, so they are designated by the same reference numerals and detailed explanations will be omitted.

このCO分離・濃縮装置において、吸収液としてCuC
jl!・I(MPA錯体溶液とトルエンとを含むCO吸
収液が用いられる。原料ガス1は、吸収塔3で吸収液と
接触して、ガス中からCOが選択的に吸収され、この場
合、C01rrrN当たり354kcaIlの熱を発生
し、温度条件によって多少変動するが吸収液の温度は5
〜30℃上昇する。
In this CO separation/concentration device, CuC is used as the absorption liquid.
jl!・I (A CO absorption liquid containing an MPA complex solution and toluene is used. The raw material gas 1 comes into contact with the absorption liquid in the absorption tower 3, and CO is selectively absorbed from the gas. In this case, CO is absorbed per CO1rrrN. It generates 354 kcal of heat, and although it varies somewhat depending on the temperature conditions, the temperature of the absorption liquid is 5.
~30℃ rise.

この吸収液の温度上昇は、熱交換器26による熱回収に
より抑制される。熱交換器27ではコンデンサ17.1
9で5〜10℃程度に冷却され、脱離塔出口ガス16か
ら回収されたHMPA、トルエン及び水を含む凝縮液に
より熱媒体(例えば水)が冷却され、この冷却された熱
媒体が熱交換器26に循環される。ここで脱離塔13に
おける吸収液の温度は、脱離塔13において吸収液中の
水分を除去するため100℃以上が望ましい。このため
脱離塔出口ガス16から回収されたHMPA、トルエン
及び水を含む凝縮液は、熱交換器27において吸収塔3
での反応熱を回収し、加熱された後、脱離塔13の下部
に導入される。
This temperature rise of the absorption liquid is suppressed by heat recovery by the heat exchanger 26. In the heat exchanger 27 the condenser 17.1
9, the heat medium (e.g., water) is cooled by the condensate containing HMPA, toluene, and water recovered from the desorption tower outlet gas 16, and this cooled heat medium is used for heat exchange. It is circulated to the vessel 26. Here, the temperature of the absorption liquid in the desorption tower 13 is desirably 100° C. or higher in order to remove moisture from the absorption liquid in the desorption tower 13. Therefore, the condensate containing HMPA, toluene and water recovered from the desorption tower outlet gas 16 is transferred to the absorption tower 3 in the heat exchanger 27.
The reaction heat is recovered and heated, and then introduced into the lower part of the desorption column 13.

したがって、本実施例によれば、吸収塔3に設置した熱
交換器26により吸収液の温度を下げ、さらに脱離塔出
口ガスから回収したドレンを加熱するために吸収塔3で
の反応熱を回収利用することができる。因に本実施例で
は、第6図に示す従来のCO分離・濃縮装置と比較して
、吸収液の温度上昇を最大30℃、少なくとも10℃低
くすることができ、吸収塔3におけるCOの吸収率を大
幅に向上できる。
Therefore, according to this embodiment, the heat exchanger 26 installed in the absorption tower 3 lowers the temperature of the absorption liquid, and furthermore, the reaction heat in the absorption tower 3 is used to heat the condensate recovered from the desorption tower outlet gas. It can be collected and reused. Incidentally, in this embodiment, compared to the conventional CO separation/concentration device shown in FIG. rate can be significantly improved.

第2図及び第3図は、第1図に示すCO分離・濃縮装置
における要部の例を示す詳細図である。
FIGS. 2 and 3 are detailed views showing examples of important parts of the CO separation/concentration apparatus shown in FIG. 1.

第2図において、上段側の充填材層2と下段側の充填材
層2にそれぞれ熱交換器28A、28Bが設置され、上
段側の充填材層2と下段側の充填材層2との空間部に液
再分配器29が設置されている。第2図に示す例では、
熱交換器28A、28Bにより充填材層2を冷却するこ
とによって吸収液を間接的に冷却することができる。
In FIG. 2, heat exchangers 28A and 28B are installed in the upper filler layer 2 and the lower filler layer 2, respectively, and the space between the upper filler layer 2 and the lower filler layer 2. A liquid redistributor 29 is installed in the section. In the example shown in Figure 2,
The absorption liquid can be indirectly cooled by cooling the filler layer 2 with the heat exchangers 28A and 28B.

第3図において、上段側の充填材層2と下段側の充填材
層2との空間部に熱交換器26が設置され、この熱交換
器26の下方側の空間部に液再分配器29が設置されて
いる。第3図に示す例では、熱交換器26の冷却器管群
が液中に位置するので偏流がなく、液再分配器29上に
滞留した液(吸収液)を効率的に冷却できるため、第2
図に示す例に比べて大幅な熱交換の向上が期待できる。
In FIG. 3, a heat exchanger 26 is installed in the space between the upper filler layer 2 and the lower filler layer 2, and a liquid redistributor 29 is installed in the space below the heat exchanger 26. is installed. In the example shown in FIG. 3, since the cooler tube group of the heat exchanger 26 is located in the liquid, there is no drift, and the liquid (absorbing liquid) staying on the liquid redistributor 29 can be efficiently cooled. Second
A significant improvement in heat exchange can be expected compared to the example shown in the figure.

第4図に示す実施例では、吸収塔3下部の吸収液の滞留
部に熱交換器30が設置され、この熱交換器30とライ
ン21の途中に設置された熱交換器27との間を熱媒体
(例えば水)が循環するための図示していないラインが
設けられている。
In the embodiment shown in FIG. 4, a heat exchanger 30 is installed in the absorption liquid retention area at the bottom of the absorption tower 3, and a heat exchanger 27 installed in the middle of the line 21 is connected between the heat exchanger 30 and the heat exchanger 30. Lines (not shown) are provided for the circulation of a heat medium (for example water).

第4図に示す実施例において、熱交換器30により吸収
塔3下部に滞留する吸収液を冷却し、吸収塔3でCOと
の反応熱により上昇した吸収液の温度を低下させる。熱
交換器30で回収した熱はコンデンサ17.19で冷却
、回収されたトルエン等を含むドレンを加熱するのに利
用される。
In the embodiment shown in FIG. 4, the heat exchanger 30 cools the absorption liquid staying at the lower part of the absorption tower 3, and lowers the temperature of the absorption liquid that has risen in the absorption tower 3 due to the heat of reaction with CO. The heat recovered by the heat exchanger 30 is used to heat the condensate containing the cooled and recovered toluene etc. in the condenser 17.19.

第1図〜第4図に示す熱交換器26.27.30はいず
れも熱媒体が流動する配管群からなるが、第5図に示す
実施例においては、液再分配器29上にヒートパイプ式
熱交換器31が設置されている。このヒートバイブ式熱
交換器31はその軸方向が所定の角度で傾斜しており、
その下部側は吸収塔3内に位置し、その上部側はコンデ
ンサ17.19からのドレンライン21内に位置してい
る。
The heat exchangers 26, 27, and 30 shown in FIGS. 1 to 4 each consist of a group of pipes through which a heat medium flows, but in the embodiment shown in FIG. A type heat exchanger 31 is installed. This heat vibrator heat exchanger 31 has its axial direction inclined at a predetermined angle.
Its lower side is located in the absorption column 3 and its upper side is located in the drain line 21 from the condenser 17.19.

またドレンライン17はライン32を介して脱離塔13
の下部に接続している。
In addition, the drain line 17 is connected to the desorption tower 13 via the line 32.
is connected to the bottom of the

第5図に示す実施例において、ヒートパイプ31の上部
側ではコンデンサ17.19で5〜10℃に冷却された
トルエン等を含むドレンにより冷却された熱媒体は、ヒ
ートバイブ31内を下降し、ヒートパイプ31の下部に
至る。ヒートパイプ31の下部側(すなわち、吸収塔3
)では、ヒートパイプ31内の熱媒体により吸収塔3内
の吸収液が冷却される。トルエン等のドレンはヒートパ
イプ31の熱媒体より熱回収して加熱された後、ライン
32を経て脱離塔13の下部側に導入される。
In the embodiment shown in FIG. 5, on the upper side of the heat pipe 31, the heat medium cooled by a condenser 17.19 containing toluene, etc., cooled to 5 to 10°C descends inside the heat vibrator 31, and It reaches the lower part of the heat pipe 31. The lower side of the heat pipe 31 (i.e., the absorption tower 3
), the absorption liquid in the absorption tower 3 is cooled by the heat medium in the heat pipe 31. After the drain such as toluene is heated by recovering heat from the heat medium of the heat pipe 31, it is introduced into the lower part of the desorption tower 13 through the line 32.

第5図に示す実施例によれば、吸収部及び脱離部におけ
る熱経済性が向上し、しかも温度コントロールが容易と
なる。
According to the embodiment shown in FIG. 5, the thermoeconomic efficiency in the absorption section and the desorption section is improved, and temperature control becomes easy.

上記した実施例において、コンデンサ17.19の凝縮
液を脱離塔13に還流させるライン21の途中に熱交換
器27が設置されているが、ライン21の途中にドレン
セパレータを設けて、ここでドレン中から水を分離し、
水を分離した後のドレンを脱離塔13に還流させるライ
ンの途中に熱交換器27を設け、この熱交換器27によ
りトルエンを主体とするドレンを加熱するようにしても
よい。
In the embodiment described above, the heat exchanger 27 is installed in the middle of the line 21 for refluxing the condensate of the condenser 17, 19 to the desorption column 13, but a drain separator is provided in the middle of the line 21, Separates water from drain,
A heat exchanger 27 may be provided in the middle of the line for refluxing the condensate from which water has been separated to the desorption column 13, and the condensate mainly containing toluene may be heated by the heat exchanger 27.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、吸収塔内の吸収液の温度
上昇を抑制することによって脱りo率を高度に維持でき
、さらに脱離塔における吸収液加熱のための蒸気消費量
の大幅な低減を計ることができるのでCO分離・濃縮装
置のランニングコストを低減させることができる。
As described above, according to the present invention, the desorption rate can be maintained at a high level by suppressing the temperature rise of the absorption liquid in the absorption tower, and the amount of steam consumed for heating the absorption liquid in the desorption tower can be significantly reduced. Since it is possible to measure a significant reduction, the running cost of the CO separation/concentration device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にがかるCO分離・濃縮装置の一実施
例を示す系統構成図、第2図は第1図に示すCO分離・
濃縮装置の吸収塔内の要部の一例を示す詳細構成図、第
3図は第1図に示すCO分離・濃縮装置゛の吸収塔内の
要部の他の例を示す詳細構成図、第4図は本発明にがか
るCO分離・濃縮装置の他の実施例を示す系統構成図、
第5図は本発明にがかるCO分離・濃縮装置のさらに他
の実施例を示す系統構成図、第6図は従来のCO分離・
濃縮装置を示す系統構成図、第7図は塩化第1銅・HM
PA/)ルエン系吸収液のCO吸収量を示すグラフであ
る。 2・・・・・・充填材層、 3・・・・・・吸収塔、6
・・・・・・コンデンサ、1)・・・・・・熱交換器、
13・・・・・・脱離塔、  14・・・・・・充填材
層、15・・・・・・加熱器、 17.19・・・・・・コンデンサ、 22・・・・・・COガス、 26.27.28A、28B・・・・・・熱交換器、2
9・・・・・・液再分配器、 31・・・・・・ヒートバイブ。
FIG. 1 is a system configuration diagram showing an embodiment of the CO separation/concentration device according to the present invention, and FIG. 2 is a system configuration diagram showing the CO separation/concentration device shown in FIG.
FIG. 3 is a detailed configuration diagram showing an example of the main parts inside the absorption tower of the concentrator. Figure 4 is a system configuration diagram showing another embodiment of the CO separation/concentration device according to the present invention;
Fig. 5 is a system configuration diagram showing still another embodiment of the CO separation/concentration device according to the present invention, and Fig. 6 is a system configuration diagram showing a conventional CO separation/concentration device.
System configuration diagram showing the concentrator, Figure 7 is cuprous chloride/HM
It is a graph which shows the CO absorption amount of PA/) luene-based absorption liquid. 2... Filler layer, 3... Absorption tower, 6
... Capacitor, 1) ... Heat exchanger,
13...Desorption tower, 14...Filling material layer, 15...Heater, 17.19...Condenser, 22... CO gas, 26.27.28A, 28B...Heat exchanger, 2
9...Liquid redistributor, 31...Heat vibe.

Claims (1)

【特許請求の範囲】[Claims] (1)塩化第1銅とトリス(ジメチルアミノ)ホスフィ
ンオキシドとトルエンとを含む吸収液をCO含有ガスと
接触させ、吸収液中にCOを吸収させる吸収塔と、この
吸収塔でCOを吸収した吸収液からCOを放散させる脱
離塔と、この脱離塔からの製品ガスラインの途中に介設
されたコンデンサと、このコンデンサで回収される凝縮
液の一部又は全部を前記脱離塔に戻すドレンラインと、
を備えたCO分離・濃縮装置において、前記吸収塔内に
第1の熱交換器を設けるとともに前記ドレンラインの途
中に第2の熱交換器を設け、第1の熱交換器と第2の熱
交換器との間に熱媒体を循環させるようにしたことを特
徴とするCO分離・濃縮装置。
(1) An absorption tower that brings an absorption solution containing cuprous chloride, tris(dimethylamino)phosphine oxide, and toluene into contact with a CO-containing gas and absorbs CO into the absorption solution, and an absorption tower that absorbs CO. A desorption tower that diffuses CO from the absorption liquid, a condenser interposed in the middle of the product gas line from this desorption tower, and a part or all of the condensate recovered by this condenser to the desorption tower. A drain line to return to,
In the CO separation/concentration apparatus, a first heat exchanger is provided in the absorption tower and a second heat exchanger is provided in the middle of the drain line, and A CO separation/concentration device characterized in that a heat medium is circulated between an exchanger and an exchanger.
JP61038675A 1986-02-24 1986-02-24 Apparatus for separating and concentrating co Pending JPS62197125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038675A JPS62197125A (en) 1986-02-24 1986-02-24 Apparatus for separating and concentrating co

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038675A JPS62197125A (en) 1986-02-24 1986-02-24 Apparatus for separating and concentrating co

Publications (1)

Publication Number Publication Date
JPS62197125A true JPS62197125A (en) 1987-08-31

Family

ID=12531848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038675A Pending JPS62197125A (en) 1986-02-24 1986-02-24 Apparatus for separating and concentrating co

Country Status (1)

Country Link
JP (1) JPS62197125A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663780A (en) * 1992-05-25 1997-09-02 Murai Co., Ltd. Spectacles with decorative lens attaching device
JP2011506081A (en) * 2007-12-13 2011-03-03 アルストム テクノロジー リミテッド Absorbent solution regeneration system and method
WO2011122525A1 (en) * 2010-03-31 2011-10-06 新日鉄エンジニアリング株式会社 Carbon dioxide gas recovery device
WO2012169634A1 (en) * 2011-06-09 2012-12-13 旭化成株式会社 Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber
JP2016536137A (en) * 2013-09-19 2016-11-24 ダウ グローバル テクノロジーズ エルエルシー Optimization of stripper supply configuration for rich / lean solvent regeneration

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663780A (en) * 1992-05-25 1997-09-02 Murai Co., Ltd. Spectacles with decorative lens attaching device
JP2011506081A (en) * 2007-12-13 2011-03-03 アルストム テクノロジー リミテッド Absorbent solution regeneration system and method
WO2011122525A1 (en) * 2010-03-31 2011-10-06 新日鉄エンジニアリング株式会社 Carbon dioxide gas recovery device
JP2011212510A (en) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd Carbon dioxide gas recovery apparatus
CN102869426A (en) * 2010-03-31 2013-01-09 新日铁工程技术株式会社 Carbon dioxide gas recovery device
US9492783B2 (en) 2010-03-31 2016-11-15 Nippon Steel & Sumikin Engineering Co., Ltd. Carbon dioxide gas recovery device
WO2012169634A1 (en) * 2011-06-09 2012-12-13 旭化成株式会社 Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber
AU2012267842B2 (en) * 2011-06-09 2016-01-07 Asahi Kasei Kabushiki Kaisha Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber
US9399192B2 (en) 2011-06-09 2016-07-26 Asahi Kasei Kabushiki Kaisha Carbon dioxide absorber and carbon dioxide separation/recovery method using the absorber
JP2016536137A (en) * 2013-09-19 2016-11-24 ダウ グローバル テクノロジーズ エルエルシー Optimization of stripper supply configuration for rich / lean solvent regeneration

Similar Documents

Publication Publication Date Title
US4270938A (en) Processes for decontaminating nuclear process off-gas streams
US4332643A (en) Method of removing water from glycol solutions
EP2823876B1 (en) System for chemically absorbing carbon dioxide in combustion exhaust gas
CN105233689B (en) Organic amine wet flue gas desulphurization and desorption system with high-efficiency and low-energy consumption
JP6274866B2 (en) Carbon dioxide gas recovery device
CN112105441B (en) Carbon dioxide separation and recovery system and method
CN114392632A (en) Nitrogen-protected organic waste gas condensation and recovery treatment method for degreasing process
JPS62197125A (en) Apparatus for separating and concentrating co
KR20140042536A (en) Apparatus for treating carbon dioxide
JP2001081479A (en) Method and apparatus for purifying coke oven gas
KR20130137473A (en) Apparatus for removing carbon dioxide for capturing carbon dioxide
US3362891A (en) Process and apparatus for separating acidic gas such as hydrogen sulfide and carbon dioxide from gaseous mixtures
JP6307279B2 (en) Carbon dioxide gas recovery device and recovery method
JPH0659382B2 (en) Wet dehumidifier
RU2659991C2 (en) Method of absorption distribution of carbon dioxide from gas mixtures by absorbents containing water solutions of amines
JPH07198222A (en) Heat pump including reverse rectifying part
US2607657A (en) Extraction of high acidic concentrations from gases
JPS6354411B2 (en)
JP4056264B2 (en) Substance separation method and substance separation apparatus
JPS61174902A (en) Solvent recovering apparatus
JPS58108496A (en) Method and device for radioactive rare gas
CN117919897A (en) Flue gas carbon dioxide trapping system
KR20160016144A (en) System for collecting acid gas and method for collecting the same
JPH0427531Y2 (en)
JPS62197126A (en) Apparatus for separating and concentrating co