JPS58108369A - Method of recovering heat of exhaust gas of absorption type cold and hot water machine - Google Patents

Method of recovering heat of exhaust gas of absorption type cold and hot water machine

Info

Publication number
JPS58108369A
JPS58108369A JP20691481A JP20691481A JPS58108369A JP S58108369 A JPS58108369 A JP S58108369A JP 20691481 A JP20691481 A JP 20691481A JP 20691481 A JP20691481 A JP 20691481A JP S58108369 A JPS58108369 A JP S58108369A
Authority
JP
Japan
Prior art keywords
heat exchanger
exhaust gas
heat
temperature regenerator
absorption type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20691481A
Other languages
Japanese (ja)
Inventor
大内 富久
臼井 三平
大沢 和夫
町沢 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20691481A priority Critical patent/JPS58108369A/en
Publication of JPS58108369A publication Critical patent/JPS58108369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高温再生器に設けたボイラの排ガスから熱を回
収して、冷房、暖房の熱利用効率の向上に好適な吸収式
冷温水機の排ガス熱回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas heat recovery method for an absorption type water chiller/heater suitable for improving heat utilization efficiency for cooling and heating by recovering heat from the exhaust gas of a boiler provided in a high-temperature regenerator.

従来のこの椎冷温水機は第1図に示すように。This conventional Shiba cold water heater is shown in Figure 1.

蒸発器1.吸収器2.凝縮器3.高温再生器4゜低温再
生器5.低温熱交換器6.高温熱交換器7゜循環ポンプ
8.溶液スプレエゼクタポンプ9.冷媒スプレポンプ1
0.高温再生器4を加熱するボイラ11からなる。
Evaporator 1. Absorber 2. Condenser 3. High temperature regenerator 4° low temperature regenerator 5. Low temperature heat exchanger6. High temperature heat exchanger 7° circulation pump 8. Solution spray ejector pump9. Refrigerant spray pump 1
0. It consists of a boiler 11 that heats the high temperature regenerator 4.

冷水製造時(冷房運転時)には冷暖切換弁14を閉じ、
冷媒を蒸発器1の冷水12が逸る伝熱管群上に散布して
蒸発させ、この冷媒ガスを吸収器2へ送る。一方、温水
製造時(暖房運転時)には冷暖切換弁14を開き、冷媒
を吸収器2に送って溶液と混合させる。
When producing cold water (during cooling operation), close the cooling/heating switching valve 14.
The refrigerant is spread over a group of heat transfer tubes through which the cold water 12 of the evaporator 1 escapes and evaporated, and this refrigerant gas is sent to the absorber 2. On the other hand, during hot water production (during heating operation), the cooling/heating switching valve 14 is opened, and the refrigerant is sent to the absorber 2 and mixed with the solution.

上記塔温水機はおいて、第2図に示すように。The above-mentioned tower water heater is installed as shown in Figure 2.

ボイラ11の燃焼排気ガスの排気路に熱交換器30を配
設し、#熱交換器30の下部と低温再生器5の出口水室
16の液相部とを絞り弁31を介して冷媒導管32で連
絡し、前記熱交換器30の上部と低温再生器5の入口水
室17とを導管33す で連絡し、サーモサイフイ苧キイラの原理でもって排気
ガスの熱を低温再生器5内溶液に熱回収する方法を提案
した。
A heat exchanger 30 is disposed in the exhaust path of the combustion exhaust gas of the boiler 11, and a refrigerant conduit is connected between the lower part of the heat exchanger 30 and the liquid phase part of the outlet water chamber 16 of the low temperature regenerator 5 via the throttle valve 31. The upper part of the heat exchanger 30 and the inlet water chamber 17 of the low-temperature regenerator 5 are connected through a conduit 33, and the heat of the exhaust gas is transferred to the solution in the low-temperature regenerator 5 using the thermosiphon principle. A method of heat recovery was proposed.

しかし、上述の熱回収方法では、冷凍機の運転停止時に
熱交換器30の伝熱管内に液冷媒が帯溜し再起動時に、
比較的長い時間排気ガス中の水分が該熱交換器30のフ
ィン等に結露する丸め、ボイラー1に使われている伝熱
管よりも劣化が著しいという不具合がある。この原因は
、燃焼排気ガス中の水分が一度結露すると、その水滴に
排気中のSO2,HCJ等の強酸性で吸湿性のガスが吸
収されるため1通常の結露温度(約500)よシも高温
(約70〜S O,C>となっても乾燥しないためであ
る。
However, in the above-described heat recovery method, liquid refrigerant accumulates in the heat transfer tubes of the heat exchanger 30 when the refrigerator is stopped, and when the refrigerator is restarted,
There are problems in that moisture in the exhaust gas condenses on the fins of the heat exchanger 30 for a relatively long period of time, and the deterioration is more significant than in the heat exchanger tubes used in the boiler 1. The reason for this is that once the moisture in the combustion exhaust gas condenses, the water droplets absorb strongly acidic and hygroscopic gases such as SO2 and HCJ in the exhaust gas. This is because it does not dry even at high temperatures (approximately 70 to SO, C>).

本発明の目的は、冷房並びに暖房運転時にも高温再生器
に配設したボイラの排ガスから熱回収しにボイラの排気
路に配設した熱回収用熱交換器への結露を防止して結霧
水による熱交換器の腐食損傷防止を図った吸収式冷温水
機の排ガス熱回収方法を提供することにある。
The purpose of the present invention is to recover heat from the exhaust gas of the boiler installed in the high-temperature regenerator during cooling and heating operations, and to prevent condensation and fog formation on the heat recovery heat exchanger installed in the exhaust path of the boiler. An object of the present invention is to provide a method for recovering exhaust gas heat from an absorption type water chiller/heater, which prevents corrosion damage to a heat exchanger caused by water.

この発明は゛、灯油またはガスを燃料とするボイ−)1
1の燃焼排ガスの水分が一度結露すると、この水滴に排
気中に含まれる80.、HCA等の強酸性で吸湿性のガ
スが吸収されるため、比較的高温で熱回収させても、上
述の熱回収熱交換器30の腐食劣化が進行するためであ
ることから為されたもので、低温度状態から冷温水機を
起動した場合には、−産熱回収熱交換器30を約100
0以上の高温に空焚きして、結霧水および吸収ガス(例
えば804.HCp等)を追出すことができるようにし
たことを特徴とする。
This invention is a boiler using kerosene or gas as fuel)1
Once the moisture in the combustion exhaust gas in No. 1 condenses, the water droplets contained in the exhaust gas will be 80. This was done because strongly acidic and hygroscopic gases such as HCA are absorbed, so even if heat is recovered at a relatively high temperature, corrosion and deterioration of the heat recovery heat exchanger 30 described above progresses. When the water cooler/heater is started from a low temperature state, - the heat production recovery heat exchanger 30 is heated to about 100
It is characterized in that it can be heated dry to a high temperature of 0 or higher to expel fog water and absorbed gas (for example, 804.HCp, etc.).

以下本発明の実施例を図面により説明する。第3図ない
し第5図に示す符号のうち第1図、第2図に示す符号と
同一の本のは同一部分を示すものとする。
Embodiments of the present invention will be described below with reference to the drawings. Among the reference numerals shown in FIGS. 3 to 5, the same reference numerals as those shown in FIGS. 1 and 2 indicate the same parts.

第3図において、高温再生器4に配設されたボイラ11
の排気路に熱交換器30が配設されている。該熱交換器
30の下部と低温再生器5の出口側水室16の下部とを
電磁弁40を介して冷媒導管32で連絡されている。−
万、該熱交換器30の上部と低温再生器5の伝熱管5a
の1部とが冷媒導管32で連絡されている。また、熱交
換器30は、前記低温再生器4よシ下方に配置されてい
る。
In FIG. 3, a boiler 11 installed in the high temperature regenerator 4
A heat exchanger 30 is disposed in the exhaust path. The lower part of the heat exchanger 30 and the lower part of the outlet side water chamber 16 of the low temperature regenerator 5 are connected via a solenoid valve 40 and a refrigerant conduit 32. −
10,000, the upper part of the heat exchanger 30 and the heat transfer tube 5a of the low temperature regenerator 5
A part of the refrigerant conduit 32 is connected to the refrigerant conduit 32. Further, the heat exchanger 30 is arranged below the low temperature regenerator 4.

次に上記のような構成からなる本実施例の作用および効
果について説明する。
Next, the operation and effects of this embodiment having the above-described configuration will be explained.

高温再生器4で発生した冷媒蒸気は導管17゜入口氷室
18を通って低温再生器5の伝熱管5Jll内に導かれ
、約70〜80Cで凝縮液化し、その際の凝縮潜熱で低
温再生器5内の溶液を加熱する。
The refrigerant vapor generated in the high-temperature regenerator 4 is guided through the conduit 17° inlet ice chamber 18 into the heat transfer tube 5Jll of the low-temperature regenerator 5, where it is condensed and liquefied at about 70 to 80C, and the latent heat of condensation at that time is used to cool the refrigerant in the low-temperature regenerator. Heat the solution in 5.

伝熱管5a内で凝縮液化した冷媒(水)は出口水室16
に流出し、圧力差によシ導管19を経て凝縮器3に流出
する。一方、水室16の液冷媒の一部は導管32をヘッ
ド差で流下し、熱交換器30において、排ガスと熱交換
し、沸騰蒸発し、密度の小さい冷媒蒸気となって導管3
3を経て低温再生器5の伝熱管5aの一部に導かれ、溶
液と熱交換して凝縮液化し、再び氷室16に戻る。この
ようにしてボイラ11の排ガスの熱は低温再生器5の溶
液に回収される。
The refrigerant (water) condensed and liquefied in the heat transfer tube 5a is transferred to the outlet water chamber 16.
It flows out into the condenser 3 via the conduit 19 due to the pressure difference. On the other hand, a part of the liquid refrigerant in the water chamber 16 flows down the conduit 32 with a head difference, exchanges heat with the exhaust gas in the heat exchanger 30, boils and evaporates, and becomes low-density refrigerant vapor.
3, it is guided to a part of the heat transfer tube 5a of the low temperature regenerator 5, exchanges heat with the solution, condenses and liquefies, and returns to the ice chamber 16 again. In this way, the heat of the exhaust gas from the boiler 11 is recovered to the solution in the low temperature regenerator 5.

通常、上記低温再生器5および高温再生器4の溶液温度
はそれぞれ70〜90C1および140〜160Cであ
るので、ボイラ11の排ガス温度は高温再生器4の溶液
温度より本高くまた、熱交換器30で熱交換した後の排
ガス温度も低温再生器4の溶液温度よシも高い。例えば
ボイラ11の排ガス温度を200C,熱交換器30の排
気温度を80Cとすれば、燃料および燃焼条件にもよる
が約6%程度の熱回収が行なわれ、したがって冷房時の
冷凍能力を約3%増大でき、あるいは暖房時の暖房能力
を約6%増大できる。すなわち、冷房で約3%、暖房で
約6%の燃料の節約ができるという効果がおる。
Normally, the solution temperatures in the low-temperature regenerator 5 and the high-temperature regenerator 4 are 70-90C1 and 140-160C, respectively, so the exhaust gas temperature in the boiler 11 is higher than the solution temperature in the high-temperature regenerator 4, and the heat exchanger 30 The temperature of the exhaust gas after heat exchange is also higher than the temperature of the solution in the low-temperature regenerator 4. For example, if the exhaust gas temperature of the boiler 11 is 200C and the exhaust gas temperature of the heat exchanger 30 is 80C, about 6% of heat will be recovered, depending on the fuel and combustion conditions, and therefore the refrigeration capacity during cooling will be reduced by about 3%. %, or the heating capacity during heating can be increased by about 6%. In other words, the effect is that fuel can be saved by approximately 3% for cooling and approximately 6% for heating.

ところで、起動時は、熱交換器30は低温であp1従っ
て、排気ガス中の水分が熱交換器30に凝縮する。この
とき、電磁弁40を閉じておくと熱交換器30は液冷媒
を蒸発させ空焚き状態となLボイラ11の排ガス温度2
00Cに近づく。
By the way, at startup, the heat exchanger 30 is at a low temperature p1, so moisture in the exhaust gas condenses on the heat exchanger 30. At this time, when the solenoid valve 40 is closed, the heat exchanger 30 evaporates the liquid refrigerant and the exhaust gas temperature of the L boiler 11 is 2, which is in an empty firing state.
Approaching 00C.

このように熱交換器が約1001:’以上に加熱される
と、前述した結露水並びに腐食性のガスが蒸発して、乾
いた状態となる。この状態を熱交換器30に配設した温
度セン?−41が検知し、電磁弁40を開く。すると、
氷室16の液冷媒がヘッド差によシ熱交換器30に導か
れ、前述の如く熱回収が行なわれる。特に暖房時は低温
再生器5の伝熱管内凝縮温度が、排ガス中の水分が結露
する温度(約50C)よシわずかに高い60C程度で運
転される場合も想定されるが、熱交換器300表面に吸
湿性ガスを吸着した水滴がないので、結露は起らない。
When the heat exchanger is heated to a temperature of about 1001:' or more in this way, the aforementioned condensed water and corrosive gas evaporate, resulting in a dry state. Is this state the temperature sensor installed in the heat exchanger 30? -41 is detected and the solenoid valve 40 is opened. Then,
The liquid refrigerant in the ice chamber 16 is guided to the heat exchanger 30 by the head difference, and heat is recovered as described above. In particular, during heating, it is assumed that the condensation temperature in the heat transfer tube of the low temperature regenerator 5 may be operated at around 60C, which is slightly higher than the temperature at which moisture in the exhaust gas condenses (approximately 50C). Since there are no water droplets adsorbing hygroscopic gas on the surface, no condensation occurs.

なお1本実施例では蒸気導管33を低温再生器5の伝熱
管5mの一部に連結したために、未蒸発液滴が高温再生
器からの過熱蒸気により加熱されて、爆発的に蒸発する
現象が起らないので、騒音を防止できる効果がある。
Note that in this embodiment, since the steam conduit 33 is connected to a part of the heat transfer tube 5 m of the low temperature regenerator 5, there is a phenomenon in which unevaporated droplets are heated by superheated steam from the high temperature regenerator and evaporate explosively. Since it does not occur, it has the effect of preventing noise.

また、前記電磁弁40をボイラ11の燃料制御弁115
16るいは冷媒スプレポンプ10または溶液循環ポンプ
8などと、遅延リレー42(図示せず)を介して連動さ
せることによシ、上述と同様な効果を得ることができる
。この場合は、ボイラ11の熱容量、熱交換器30の熱
容量を考え、300冷凍トンクラスでは約20〜30分
根度である。
Further, the solenoid valve 40 is replaced with the fuel control valve 115 of the boiler 11.
16, the refrigerant spray pump 10, the solution circulation pump 8, etc., via a delay relay 42 (not shown), the same effect as described above can be obtained. In this case, considering the heat capacity of the boiler 11 and the heat capacity of the heat exchanger 30, it is approximately 20 to 30 minutes in the 300 refrigeration ton class.

なお運転停止時に、熱交換器30への液冷媒の供給を停
止すると、該熱交換器30内に残った液冷媒は余熱によ
シ蒸発する。従って、厳寒時の冷媒凍結による熱交換器
30の破損を防止できるという利点がある。
Note that when the supply of liquid refrigerant to the heat exchanger 30 is stopped when the operation is stopped, the liquid refrigerant remaining in the heat exchanger 30 is evaporated by residual heat. Therefore, there is an advantage that damage to the heat exchanger 30 due to freezing of the refrigerant in extremely cold weather can be prevented.

第4図は1本発明の他の実施例の説明図である。FIG. 4 is an explanatory diagram of another embodiment of the present invention.

本実施例では、熱交換器30と入口氷室18を結ぶ冷媒
蒸気導管33の途中に気水分離器34を配設し1分離さ
れた液冷媒を熱交換器300Å口に戻す戻し管35を配
設したところが前の実施例と異なる。このように構成し
たので、導管17から流入する過熱蒸気により、導管3
3から流入する蒸気中に含まれる冷媒建ストの突沸が防
止でき。
In this embodiment, a steam/water separator 34 is provided in the middle of a refrigerant vapor conduit 33 connecting the heat exchanger 30 and the inlet ice chamber 18, and a return pipe 35 is provided to return the separated liquid refrigerant to the 300 Å port of the heat exchanger. This embodiment differs from the previous embodiment in that it has been set. With this configuration, the superheated steam flowing from the conduit 17 causes the conduit 3 to
Bumping of the refrigerant contained in the steam flowing in from 3 can be prevented.

いわゆるスチームハンマリング現象が起ることが防止で
きるという効果がある。また、熱交換器30の冷媒循環
量を増大できるので、熱交換効率を良くできるという効
果がある。
This has the effect of preventing the so-called steam hammering phenomenon from occurring. Furthermore, since the amount of refrigerant circulated through the heat exchanger 30 can be increased, there is an effect that the heat exchange efficiency can be improved.

第5図は本発明の他の実施例の説明図である。FIG. 5 is an explanatory diagram of another embodiment of the present invention.

本実施例は、熱交換器30を低温再生器5と同じレベル
かそれ以上高い位置に置き、液冷媒供給用のポンプ42
を水室16の下方で導管32の途中に配設したもので%
骸ポンプ42が前述の電磁弁40と同じ作用をするよう
にした点が第3図の実施例と異なる。また、冷媒蒸気導
管33を低温再生器5の出日水塞16に接続した点が第
3図の実施例と異なる。冷媒蒸気導管33からの冷媒蒸
気は伝熱管5mに流入し、凝縮液化して再d水室16に
戻る。このようにしたので、熱交換器30の配管経路を
短縮できるという利点がある。
In this embodiment, the heat exchanger 30 is placed at the same level as the low-temperature regenerator 5 or higher, and a pump 42 for supplying liquid refrigerant is installed.
is placed in the middle of the conduit 32 below the water chamber 16.
This embodiment differs from the embodiment shown in FIG. 3 in that the skeleton pump 42 has the same function as the electromagnetic valve 40 described above. Further, this embodiment differs from the embodiment shown in FIG. 3 in that the refrigerant vapor conduit 33 is connected to the sunrise sluice 16 of the low-temperature regenerator 5. The refrigerant vapor from the refrigerant vapor conduit 33 flows into the heat transfer tube 5m, condenses and liquefies, and returns to the water chamber 16 again. This has the advantage that the piping route of the heat exchanger 30 can be shortened.

また、ポンプ42を使うので、コストアップが懸念され
る。しかし例えば、300冷凍トンの2重効用吸収式冷
温水機で、成績係数C,O,PW1.2゜排ガス効率8
0%のもので、約6%熱回収する場合その冷媒循環量は
約15Kg/m!Iでアシ、小容量のポンプで済む。
Furthermore, since the pump 42 is used, there is a concern that the cost will increase. However, for example, in a 300 refrigeration ton dual-effect absorption chiller/heater, the coefficient of performance C, O, PW is 1.2° and the exhaust gas efficiency is 8.
0%, and if approximately 6% heat is recovered, the refrigerant circulation amount is approximately 15Kg/m! If you use I, you can use a small-capacity pump.

以上説明したように、ボイラの燃焼排気ガスから熱回収
する熱交換器への冷媒供給を一時停止させて該熱交換器
に結露した水分並びに酸性吸湿性ガスを蒸発させて、熱
交換器表面を乾燥した状態で熱回収できるので。
As explained above, the refrigerant supply to the heat exchanger that recovers heat from the combustion exhaust gas of the boiler is temporarily stopped, and the moisture and acidic hygroscopic gas condensed on the heat exchanger are evaporated, and the surface of the heat exchanger is Because heat can be recovered in a dry state.

(11燃焼排気ガスの水分が凝縮する温度よりわずかに
高い温度まで熱回収しても、結露が起らず従って熱交換
器の腐食による劣化をボイラ本体並みに維持できる。
(11) Even if heat is recovered to a temperature slightly higher than the temperature at which moisture in the combustion exhaust gas condenses, no condensation occurs, and therefore deterioration due to corrosion of the heat exchanger can be maintained at the same level as the boiler body.

(2)高温再生器のボイラの排ガス温度約200Cから
約80Cまで低温再生器に熱回収できるので、冷房時で
約3%、暖房時で約6%の省エネルギー運転ができる。
(2) Since heat can be recovered to the low-temperature regenerator from the temperature of the exhaust gas from the boiler of the high-temperature regenerator of approximately 200C to approximately 80C, energy-saving operation of approximately 3% during cooling and approximately 6% during heating can be achieved.

という効果がある。There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2重効用吸収式冷温水機のサイクル説明図、第
2図は従来技術の構成図、第3図は本発明の一実施例の
構成図、第4図は本発明の他の実施例の構成図、第5図
は本発明の他の実施例の構成図である。 l・・・蒸発器、2・・・吸収器、3・・・凝縮器、4
・・・高温再生器%5・・・低温再生器、11・・・ボ
イラ、16・・・低温再生器出口氷室、18・・・低温
再生器入口水室。 19・・・液冷媒導管、G・・・排ガス、30・・・熱
交換器、31・・・絞シ弁、32・・・液冷媒導管、3
3・・・冷媒蒸気導管、40・・・電磁弁、41・・・
温度センサ、42・・・遅延リレー、43−・・冷媒供
給ポンプ。 ”−一 IfJ2  図 第3 図
Fig. 1 is an explanatory diagram of the cycle of a dual-effect absorption type water chiller/heater, Fig. 2 is a block diagram of the prior art, Fig. 3 is a block diagram of one embodiment of the present invention, and Fig. 4 is a diagram of another embodiment of the present invention. FIG. 5 is a block diagram of another embodiment of the present invention. l... Evaporator, 2... Absorber, 3... Condenser, 4
...High temperature regenerator %5...Low temperature regenerator, 11...Boiler, 16...Low temperature regenerator outlet ice chamber, 18...Low temperature regenerator inlet water chamber. 19... Liquid refrigerant conduit, G... Exhaust gas, 30... Heat exchanger, 31... Throttle valve, 32... Liquid refrigerant conduit, 3
3... Refrigerant vapor conduit, 40... Solenoid valve, 41...
Temperature sensor, 42--Delay relay, 43--Refrigerant supply pump. ”-1IfJ2 Figure 3

Claims (1)

【特許請求の範囲】 1、高温再生器に設けたボイラの焼燃ガスの排気路に熱
交換器を設け、該熱交換器と低温再生器加熱部とを液冷
媒導管並びに蒸気導管とで連絡するとともに、該熱交換
器に温度センサーを配設し、該温度センサーで結露を検
出し、前記液冷媒導管に配設した制御弁を閉じて、熱交
換器を空焚きして結露水並びに吸湿性ガスを蒸発させ、
それを温度センサーで検知し、再び制御弁を開くように
したことを4I徴とする吸収式冷温水機の排ガス熱回収
方法。 2 前記冷媒導管に冷媒ポンプを配設したことを特徴と
する特許請求の範囲第1項記載の吸収式冷温水機の排ガ
ス熱回収方法。 龜 冷温水機の起動時に遅延リレーを介して前記制御弁
を開くようにしたことを特徴とする特許請求の範囲第1
項記載の吸収式冷温水機の排ガス熱回収方法。
[Claims] 1. A heat exchanger is provided in the combustion gas exhaust path of the boiler provided in the high-temperature regenerator, and the heat exchanger and the low-temperature regenerator heating section are connected through a liquid refrigerant conduit and a steam conduit. At the same time, a temperature sensor is installed in the heat exchanger, and the temperature sensor detects condensation, and the control valve installed in the liquid refrigerant pipe is closed, and the heat exchanger is heated dry to remove condensed water and moisture absorption. evaporate sexual gases,
A method for recovering exhaust gas heat from an absorption type water chiller/heater that detects this with a temperature sensor and opens the control valve again as a 4I symptom. 2. The exhaust gas heat recovery method for an absorption type water chiller/heater according to claim 1, characterized in that a refrigerant pump is disposed in the refrigerant conduit. Claim 1, characterized in that the control valve is opened via a delay relay when the water cooler/heater is started.
Exhaust gas heat recovery method for an absorption type water chiller/heater as described in .
JP20691481A 1981-12-23 1981-12-23 Method of recovering heat of exhaust gas of absorption type cold and hot water machine Pending JPS58108369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20691481A JPS58108369A (en) 1981-12-23 1981-12-23 Method of recovering heat of exhaust gas of absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20691481A JPS58108369A (en) 1981-12-23 1981-12-23 Method of recovering heat of exhaust gas of absorption type cold and hot water machine

Publications (1)

Publication Number Publication Date
JPS58108369A true JPS58108369A (en) 1983-06-28

Family

ID=16531164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20691481A Pending JPS58108369A (en) 1981-12-23 1981-12-23 Method of recovering heat of exhaust gas of absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58108369A (en)

Similar Documents

Publication Publication Date Title
JPH0126737B2 (en)
JP3318791B2 (en) Waste heat recovery system for direct-fired absorption chiller / heater
JPS58108369A (en) Method of recovering heat of exhaust gas of absorption type cold and hot water machine
JP3883894B2 (en) Absorption refrigerator
JPS6148064B2 (en)
JPS5825234Y2 (en) Single effect absorption refrigerator
JPS58198659A (en) Multiple-effect absorption type cold and hot water machine
JPS60162166A (en) Multiple effect absorption type refrigerator
JPS5867A (en) Multiple-effect absorption type cold and hot water machine
JPS6136137Y2 (en)
JP2865305B2 (en) Absorption refrigerator
JPH0355741B2 (en)
JPH0350373Y2 (en)
CN116265836A (en) Solution heat accumulating type cold and hot water system and refrigerating and heating method thereof
JPH03105171A (en) Absorption type water cooling and heating machine
JPS5885070A (en) Absorption type refrigerator
JPS6024903B2 (en) Multiple effect absorption refrigerator
JPS6311583B2 (en)
CN107477906A (en) Fume hot-water single-double effect compound type lithium bromide absorption type refrigeration unit
JPS59107158A (en) Absorption type heat pump
JPS59189262A (en) Absorption type heat pump device
JPS60111854A (en) Double effect absorption type refrigerator
JPS6132588B2 (en)
JPS61184361A (en) Air-cooling heat pump turbo refrigerator
JPH0256580B2 (en)