JPS61184361A - Air-cooled heat pump turbo chiller - Google Patents

Air-cooled heat pump turbo chiller

Info

Publication number
JPS61184361A
JPS61184361A JP2432285A JP2432285A JPS61184361A JP S61184361 A JPS61184361 A JP S61184361A JP 2432285 A JP2432285 A JP 2432285A JP 2432285 A JP2432285 A JP 2432285A JP S61184361 A JPS61184361 A JP S61184361A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
cooled
heat pump
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2432285A
Other languages
Japanese (ja)
Inventor
淳一 金子
裕一 計見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2432285A priority Critical patent/JPS61184361A/en
Publication of JPS61184361A publication Critical patent/JPS61184361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はヒートポンプ方式の空冷ターボ冷凍機に係り、
特に暖房時の空冷蒸発器の性能に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat pump type air-cooled centrifugal refrigerator,
Especially regarding the performance of air-cooled evaporators during heating.

〔発明の背景〕[Background of the invention]

従来の空冷蒸発器は配置が主として水平でありその場合
には蒸発器管内にたとえ冷媒液がたまっても管内を流れ
るガス流速により冷媒液はガスに随伴され、伝熱面積が
大きく減少するほどたまることはなかった、しかし、冷
凍容量が大きくなに従い必要な伝熱面積が大巾に増加す
るため、蒸発器を水平に配置すると据付面積も大巾に増
加する。
Conventional air-cooled evaporators are mainly arranged horizontally, and in that case, even if refrigerant liquid accumulates in the evaporator tube, the refrigerant liquid is entrained by the gas due to the gas flow rate inside the tube, and the refrigerant liquid accumulates to the extent that the heat transfer area is greatly reduced. However, as the refrigeration capacity increases, the required heat transfer area increases significantly, so if the evaporator is placed horizontally, the installation area also increases significantly.

それを減少させるため、空冷熱交換器を垂直にたてて使
用するようになり、その結果下方の伝熱管内部にどうし
ても冷媒ミストかたまり、有効伝熱面積を減少させ、性
能低下をおこすため、冷媒ポンプ等を取り付け、その冷
媒液を汲み出し凝縮器へ戻すようにしていた。この方法
は据付面積は。
In order to reduce this, air-cooled heat exchangers have been used vertically, and as a result, refrigerant mist inevitably accumulates inside the heat transfer tubes below, reducing the effective heat transfer area and reducing performance. A pump etc. was installed to pump out the refrigerant liquid and return it to the condenser. This method requires less installation space.

空冷熱交換器を水平に配置する方法と比較すれば。If you compare it with the horizontal arrangement of air-cooled heat exchangers.

はぼ半減できるが、冷媒ポンプおよび液面制御の機能を
追加するため電力も余分にかかり、また可動部分がふえ
液面制御により頻繁にポンプの発停があるため、トラブ
ルの要因となりやすい問題があった。
However, the addition of the refrigerant pump and liquid level control functions requires extra electricity, and there are more moving parts and the pump frequently starts and stops due to liquid level control, which can easily cause problems. there were.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ポンプ等の機械部品を追加することな
く簡単な形の熱交換器を付加することにより縦に配置し
た空冷蒸発器下部の伝熱管内に冷媒の液だまりができ、
性能の低下が起こるのを防止することにある。
The purpose of the present invention is to add a simple heat exchanger without adding mechanical parts such as a pump, thereby creating a pool of refrigerant in the heat transfer tube at the bottom of the vertically arranged air-cooled evaporator.
The purpose is to prevent performance deterioration from occurring.

〔発明の概要〕[Summary of the invention]

空冷ヒートポンプターボ冷凍機においては、空気熱交換
器は冷房時には凝縮器、暖房時には蒸発器として使われ
る。暖房時には膨張弁によりスーパーヒート制御される
ので冷媒液はほとんど残らないはずであるが、空気熱交
が縦に配置されているとその位置ヘッドのため、どうし
ても冷媒液が下部の伝熱管内にたまり空気熱交の性能を
悪化させることを発見した。そこで、凝縮した比較的温
度の高い冷媒を用いて蒸発器内にたまった冷媒液を蒸発
させるようにし、上記問題点を解決したものである。
In air-cooled heat pump centrifugal chillers, the air heat exchanger is used as a condenser for cooling and as an evaporator for heating. During heating, superheat is controlled by the expansion valve, so almost no refrigerant liquid should remain.However, if the air heat exchanger is arranged vertically, the position of the head means that refrigerant liquid will inevitably accumulate in the heat transfer tubes at the bottom. It was discovered that the performance of air heat exchangers deteriorated. Therefore, the above-mentioned problem is solved by using condensed refrigerant having a relatively high temperature to evaporate the refrigerant liquid accumulated in the evaporator.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図に示すように圧縮機1、空気熱交換器2、水熱交
換器3、中間冷却器4、アキュムレータ5および各機器
間を結ぶ配管、電動弁からなるターボ冷凍機において電
動弁の切替により夏は冷房、冬は暖房となるヒートポン
プシステムが組まれている。夏は、空気熱交換器2が凝
縮器、水熱交換器3が蒸発器(冷水発生器)、冬は空気
熱交換器2が蒸発器、水熱交換器3が凝縮器(温水発生
器)として機能する。
As shown in Fig. 1, electric valve switching is performed in a turbo chiller consisting of a compressor 1, air heat exchanger 2, water heat exchanger 3, intercooler 4, accumulator 5, piping connecting each device, and electric valves. A heat pump system is installed to provide cooling in the summer and heating in the winter. In summer, air heat exchanger 2 is a condenser and water heat exchanger 3 is an evaporator (cold water generator); in winter, air heat exchanger 2 is an evaporator and water heat exchanger 3 is a condenser (hot water generator). functions as

暖房時には、空気熱交換器2から蒸発した冷媒ガスはア
キュムレータ5に入すミストを取り除き冷媒ガスのみを
圧縮機1に吸い込む。圧縮機1にて昇圧された冷媒ガス
は水熱交換器3に入り凝縮し、暖房用の温水を発生する
。凝縮した冷媒液は中間冷却器4に入り、一部の冷媒は
蒸発して圧縮機1の2段目に吸い込まれる。残った液は
、膨張弁6を介して空気熱交換器2の各チューブに吹き
出される。膨張弁6は、1つの空気熱交2あたり10ケ
付いており、負荷に応じて、作動させる膨張弁の数を変
えて暖房の容量制御を行う。空気熱交2のチューブの中
に吹きこまれた冷媒は空気熱交で加熱され蒸発するが、
わずかの冷媒は液の状態のまま残る。その内、一部は冷
媒ガスと供にアキュムレータ5へ流れ込むが、一部はそ
のまま空気熱交の下部にたまる。
During heating, the mist of the refrigerant gas evaporated from the air heat exchanger 2 is introduced into the accumulator 5, and only the refrigerant gas is sucked into the compressor 1. The refrigerant gas pressurized by the compressor 1 enters the water heat exchanger 3 and is condensed to generate hot water for heating. The condensed refrigerant liquid enters the intercooler 4, where some of the refrigerant evaporates and is sucked into the second stage of the compressor 1. The remaining liquid is blown out to each tube of the air heat exchanger 2 via the expansion valve 6. Ten expansion valves 6 are attached to each air heat exchanger 2, and the number of activated expansion valves is changed depending on the load to control the heating capacity. The refrigerant blown into the tube of the air heat exchanger 2 is heated by the air heat exchanger and evaporates.
A small amount of the refrigerant remains in liquid form. A part of it flows into the accumulator 5 together with the refrigerant gas, but a part remains in the lower part of the air heat exchanger.

そこで、空気熱交2の左右の出口ヘッダ−7゜8の底を
つなぎ、その中に凝縮した冷媒液の配管を通し、それに
より蒸発しきらないで残留した冷媒液を加熱し蒸発させ
る。冷媒液は約5℃前後であり、その温度差により蒸発
する。たまってくる冷媒の液量に比例して必要な伝熱面
積は決まり、それに応じて、上記の配管の長さを決めれ
ば良い。
Therefore, the bottoms of the left and right outlet headers 7.8 of the air heat exchanger 2 are connected, and a condensed refrigerant liquid pipe is passed therethrough, thereby heating and evaporating the remaining refrigerant liquid that has not completely evaporated. The refrigerant liquid has a temperature of about 5°C, and evaporates due to the temperature difference. The required heat transfer area is determined in proportion to the amount of refrigerant that accumulates, and the length of the piping described above may be determined accordingly.

本実施例の場合は、3インチパイプ長さ2mの伝熱面積
をもつ。
In this example, the 3-inch pipe has a heat transfer area of 2 m in length.

本実施例によれば、暖房運転時空気熱交換器のチューブ
を縦に配置し据付面積を小さくしたまま、空気熱交換器
の下部のチューブに冷媒液がたまり、空気熱交の性能を
悪化させることなく運転することができる。
According to this embodiment, during heating operation, the tubes of the air heat exchanger are arranged vertically to reduce the installation area, but the refrigerant liquid accumulates in the tubes at the bottom of the air heat exchanger, which deteriorates the performance of the air heat exchanger. You can drive without any problems.

尚、第1図において、白抜きの矢印は、冷房時。In addition, in Fig. 1, the white arrow indicates the time of cooling.

黒塗りの矢印は暖房時の流れを示している。The black arrows indicate the flow during heating.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、縦に空気熱交換器を配置
した空冷ヒートポンプターボ冷凍機において暖房時、空
気熱交換器の下部にたまる冷媒液を凝縮した冷媒液によ
り加熱し蒸発させることができるので、空気熱交換器の
性能低下を起こすことなく空冷ヒートポンプターボ冷凍
機の暖房運転を行うことができる。
As described above, according to the present invention, during heating in an air-cooled heat pump centrifugal chiller in which air heat exchangers are arranged vertically, the refrigerant liquid that accumulates at the bottom of the air heat exchanger can be heated and evaporated by the condensed refrigerant liquid. Therefore, heating operation of the air-cooled heat pump centrifugal chiller can be performed without deteriorating the performance of the air heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の空冷ヒートポンプターボ
冷凍機のフローシート、第2図は、その空気熱交換器の
ベツダ一部にとりつけた熱交換器の平面図、第3図はそ
の正面図である。 1・・・圧縮機、2・・・空気熱交換器、3・・・水熱
交換器、4・・・中間冷却器、5・・・アキュムレータ
、6・・・膨張弁、7,8・・・出ロベツダー。 第 1 凹 →111扁峙 顎 Z 口 百 3 図
Fig. 1 is a flow sheet of an air-cooled heat pump centrifugal chiller according to an embodiment of the present invention, Fig. 2 is a plan view of a heat exchanger attached to a part of the bed of the air heat exchanger, and Fig. 3 is its flow sheet. It is a front view. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Air heat exchanger, 3... Water heat exchanger, 4... Intercooler, 5... Accumulator, 6... Expansion valve, 7,8... ... Derobetsuda. 1st concave → 111 prolate jaw Z mouth 3 fig.

Claims (1)

【特許請求の範囲】[Claims] 空冷熱交換器を夏の冷房時には空冷凝縮器、冬の暖房時
には空冷蒸発器として使用するヒートポンプ冷凍サイク
ルにおいて、冬の暖房時における蒸発器内に高温の冷媒
液と蒸発器にたまる冷媒液との間の補助熱交換器を取付
けたことを特徴とする空冷ヒートポンプターボ冷凍機。
In a heat pump refrigeration cycle, in which an air-cooled heat exchanger is used as an air-cooled condenser for summer cooling and as an air-cooled evaporator for winter heating, the difference between high-temperature refrigerant liquid in the evaporator and refrigerant liquid accumulated in the evaporator during winter heating is An air-cooled heat pump centrifugal chiller characterized by having an auxiliary heat exchanger installed between the two.
JP2432285A 1985-02-13 1985-02-13 Air-cooled heat pump turbo chiller Pending JPS61184361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2432285A JPS61184361A (en) 1985-02-13 1985-02-13 Air-cooled heat pump turbo chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2432285A JPS61184361A (en) 1985-02-13 1985-02-13 Air-cooled heat pump turbo chiller

Publications (1)

Publication Number Publication Date
JPS61184361A true JPS61184361A (en) 1986-08-18

Family

ID=12134943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2432285A Pending JPS61184361A (en) 1985-02-13 1985-02-13 Air-cooled heat pump turbo chiller

Country Status (1)

Country Link
JP (1) JPS61184361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant

Similar Documents

Publication Publication Date Title
US6532763B1 (en) Evaporator with mist eliminator
CN207113323U (en) A kind of heat pump type air conditioning system based on compressor air-discharging bypass defrosting
CN107036349A (en) A kind of heat pump type air conditioning system based on compressor air-discharging bypass defrosting
CN1156662C (en) Heat pump system
JPH0425463B2 (en)
CN208832629U (en) A kind of low-temperature cold water unit
JPH0953864A (en) Engine type cooling device
WO2005083335A1 (en) Modular Refrigerating Installation with Overflow Vaporization System
JPS61184361A (en) Air-cooled heat pump turbo chiller
US2716870A (en) Reverse cycle heat pump system
CN1337552A (en) Ice preventer for wind cooled heat pump air conditioner
JPS5963472A (en) Heat exchanger for air cooling type air conditioner
CN111964188B (en) Thermosiphon-vapor compression composite refrigeration system
CN212081457U (en) Controller cooling system based on two-stage compressor system and air conditioning unit
JP3451539B2 (en) Absorption type cold heat generator
CN210569375U (en) Heat Exchanger Systems and Chillers
JPS5981453A (en) Refrigerator
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner
JP2000283598A (en) Method for controlling engine heat pump
CN118258147A (en) Composite cooling heat pump unit and control method
JP3451538B2 (en) Absorption type cold heat generator
CN120252217A (en) Shell and tube evaporator and refrigeration unit
JPS59189262A (en) Absorption type heat pump device
JPS6135898Y2 (en)
JPS58168851A (en) Method of defrosting air heat source heat pump