JPS58107676A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58107676A
JPS58107676A JP56206545A JP20654581A JPS58107676A JP S58107676 A JPS58107676 A JP S58107676A JP 56206545 A JP56206545 A JP 56206545A JP 20654581 A JP20654581 A JP 20654581A JP S58107676 A JPS58107676 A JP S58107676A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
layer
insulating film
transistor
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206545A
Other languages
Japanese (ja)
Inventor
Minoru Araki
荒木 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56206545A priority Critical patent/JPS58107676A/en
Publication of JPS58107676A publication Critical patent/JPS58107676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

PURPOSE:To enhance electric conductivity and make it possible to perform high withstand voltage operation by determining a thin part and a thick part of a gate insulating film, respectively, by a self-aligning method, thereby eliminating unstable elements in manufacturing processes. CONSTITUTION:Source and drain electrode diffused layers 12 and 13 are formed by impurities, whose conducting type is reverse with respect to that of a substrate, in the semiconductor substrate 11. The thin part 14 of the gate insulating film is located between the source and drain electrodes 12 and 13. A first layer polycrystalline silicon electrode 15 is located thereon, and an insulating film 16 is located thereon. A hole 17 is provided at a part thereof, and a second polycrystalline silicon layer 18 is formed thereon. Said polycrystalline silicon 18 completely covers the first layer polycrystalline silicon 15. The same impurities are introduced into the first layer polycrystalline silicon 15 and the second layer polycrystalline silicon 18 and they are electrically shorted through the hole 17.

Description

【発明の詳細な説明】 本発明は、ゲート電極として多結晶シリコンを用い為シ
リコングー)MO8MP導体価置に関装るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a MO8MP conductor using polycrystalline silicon as a gate electrode.

半導体装置として、シリコンゲートMO8)ランジスタ
は、ゲート多結晶シリコンtiスクとして、ソース・ド
レインを形成するので、ゲート電極とソース・ドレイン
拡散層の重なりが少なくなっている。
As a semiconductor device, in a silicon gate MO8) transistor, the source and drain are formed as a gate polycrystalline silicon disk, so the overlap between the gate electrode and the source and drain diffusion layer is reduced.

従来、MOS)ランジスタに於て、ドレインの耐圧を高
める事は、そのトランジスタの動作余裕度を上げる事に
なり、そのような鉄量の応用範囲を拡大する事になりて
いた。そして、今やプログラマブルROM (R@ad
 0nly g@mory ) [以後FROMという
〕に於ては、二層の多結晶シリコンを用いて%ROMセ
ルを構成して、電気的に浮遊した電極に電荷を注入する
事に依りて、常にそのセルがONの状態を作り出し、全
体としてONのトランジスタとOFFのトランジスタを
作す出して、ROMとしている事は良く知られている。
Conventionally, in a MOS (MOS) transistor, increasing the withstand voltage of the drain increases the operational margin of the transistor and expands the range of applications of such iron content. And now programmable ROM (R@ad
0nly g@mory) [FROM] uses two layers of polycrystalline silicon to construct a %ROM cell, and by injecting charge into electrically floating electrodes, the cell is constantly maintained. It is well known that a cell creates an ON state, and as a whole, an ON transistor and an OFF transistor are created to form a ROM.

このようなFROMK於ては、通常の動作は電源5vな
どで行なわれるが、注入動作をしてプログラムする時は
高電圧t−印加して行なう事になっている。そこで、こ
の高電圧を印加し、動作可能なトランジスタと低電圧で
動作可能なトランジスタとを同一基板上に形成する事が
必要になりている。このように高電圧動作が可能なトラ
ンジスタと低電圧で動作可能なトランジスタが同一基板
上にあるという事は、その装置として非常に応用範囲を
拡大する事になり、FROMだけではなく、広く一般の
デバイスにも使用可能である。
In such a FROMK, normal operation is performed with a power supply of 5 V, but when programming by injection operation, a high voltage t- is applied. Therefore, it is necessary to form a transistor that can operate by applying this high voltage and a transistor that can operate at a low voltage on the same substrate. Having a transistor that can operate at high voltages and a transistor that can operate at low voltages on the same substrate greatly expands the range of applications for the device, and is useful not only for FROM but also for a wide range of general applications. It can also be used for devices.

そこで従来、このような高電圧動作が可能なトランジス
タとして考えられたのは、MO8構造に於て、ゲート絶
縁膜を厚くして、ドレイン電圧に耐圧を持たせようとい
うものであり九。ドレインの耐圧は、ゲート絶縁膜の厚
さに依存していて、薄ければ低い耐圧となり、厚ければ
高い耐圧となる。ここでは、耐圧を高める事を目的とし
ているが、それは非常な高耐圧ではなく、通常ゲート絶
縁膜厚が5ooXs度であれば耐圧約20V程度であり
、100OAであれば耐圧約25V程度が得られ、これ
らの動作電圧に於て、ドレイン耐圧を同一基板内に二種
類以上のトランジスタで構成する事を目的としている。
Conventionally, a transistor capable of such high-voltage operation was conceived by increasing the thickness of the gate insulating film in the MO8 structure to provide a withstand voltage for the drain voltage9. The breakdown voltage of the drain depends on the thickness of the gate insulating film; the thinner the gate insulating film, the lower the breakdown voltage, and the thicker the gate insulation film, the higher the breakdown voltage. The purpose here is to increase the withstand voltage, but it is not an extremely high withstand voltage. Normally, if the gate insulating film thickness is 5ooXs degrees, the withstand voltage is about 20V, and if the gate insulating film is 100OA, the withstand voltage is about 25V. , the purpose is to configure the drain breakdown voltage with two or more types of transistors in the same substrate at these operating voltages.

次に、従来技術のトランジスタの構造を第1図に示す。Next, the structure of a conventional transistor is shown in FIG.

基板1内に、ソース電極拡散層2とドレイン電極拡散層
3があり、その間にゲート絶縁膜の厚い部分4と薄い部
分5を形成し、その上にゲート・多結晶シリコン6が構
成されているものであるが、このトランジスタに於ては
、ドレイン・ソース側のゲート絶縁膜が厚くなっていて
、中央部は薄い膜厚になっている。この構造t−L九ト
ランジスタに於ては、ドレイン電極とゲート電極との間
にはゲート絶縁膜が一部厚くなっているため、この間の
電界強度が低下しているので、空乏層の曲率がゆるやか
になって、限界強度の耐圧が上昇する事になって、この
トランジスタは高耐圧動作)。
In the substrate 1, there are a source electrode diffusion layer 2 and a drain electrode diffusion layer 3, between which a thick part 4 and a thin part 5 of a gate insulating film are formed, and a gate/polycrystalline silicon 6 is formed thereon. However, in this transistor, the gate insulating film on the drain/source side is thicker, and the central part is thinner. In the t-L9 transistor with this structure, the gate insulating film is partially thick between the drain electrode and the gate electrode, so the electric field strength between them is reduced, and the curvature of the depletion layer is reduced. (This transistor operates at a high voltage.)

が可能となる。ゲート絶縁膜が厚い場合は上の理由に依
りて、ドレイン耐圧が上昇するのであるが。
becomes possible. If the gate insulating film is thick, the drain breakdown voltage increases for the above reason.

ゲート絶縁膜が厚くなるとかえりてトランジスタの伝導
率が悪化して来る事になり、トランジスタの大きさを所
定の電流許容を持九せるためには大きくしなければなら
なくなり、高集積化を目的としている集積回路にとって
は不利になる。そこで、ゲート絶縁膜を一部薄くする事
に依って、伝導率を改善して、かつ高耐圧動作を可能に
したのが第1図に示す従来技術で゛ある。
As the gate insulating film becomes thicker, the conductivity of the transistor deteriorates, and the size of the transistor must be increased to maintain a specified current tolerance. This is disadvantageous for integrated circuits. Therefore, the conventional technique shown in FIG. 1 improves the conductivity and enables high breakdown voltage operation by partially thinning the gate insulating film.

この従来例では、所定のゲート絶縁膜の領域に厚い膜と
薄い膜を造るために、まず厚い膜を形成しゼ、その一部
を除去して薄いHを成長させる事になり、薄い膜の領域
を位置決めするのに、膜を除去する工程が入るために、
その除去に用いる方法に依っては、厚い膜の領域が変化
して、不安定な特性になる可能性があった。
In this conventional example, in order to create a thick film and a thin film in a predetermined gate insulating film region, a thick film is first formed, a part of which is removed, and a thin H layer is grown. Because the process of removing the film is involved in positioning the area,
Depending on the method used for its removal, regions of the thick film could change, resulting in unstable properties.

このような不都合がない構造にしたのが本発明である。The present invention has a structure that does not have such disadvantages.

本発明は、ゲート絶縁膜の薄い部分と厚い部分をそれぞ
れ自己整合的にゲート電極で決定し、製造工程に於ての
不安定要素をなくした構造になっていて、電気伝導率を
高めかつ高耐圧動作が可能な半導体装置を提供するもの
である。
The present invention has a structure in which the thin and thick parts of the gate insulating film are determined by gate electrodes in a self-aligned manner, eliminating unstable factors in the manufacturing process, and increasing electrical conductivity. The present invention provides a semiconductor device capable of voltage-resistant operation.

本発明の構造を第2図に示す。半導体基板11の中に基
板の不純物と反対導電量の不純物でソース・ドレイン電
極拡散層1&13が形成されており、このソース・ドレ
イン電極間にゲート絶縁膜の薄い部分14があり、その
上層に第1層目の多結晶シリコン電極15があり、その
さらに上層に絶縁膜16があるが、その一部に孔17が
設けられて、さらに上層に第2層目の多結晶シリコン1
8があり、この多結晶シリコ、ン18が第1層目の多結
晶シリコン15を完全に覆っている。第1層の多結晶シ
リコン15と第2層の多結晶シリコン謁とは同じ不純物
が導入されており、孔17を通して電気的に短絡してい
る。
The structure of the present invention is shown in FIG. Source/drain electrode diffusion layers 1 & 13 are formed in the semiconductor substrate 11 with impurities having conductivity opposite to that of the substrate, and a thin gate insulating film 14 is located between the source/drain electrodes. There is a first layer of polycrystalline silicon electrode 15, and an insulating film 16 is further above it, and a hole 17 is provided in a part of it, and a second layer of polycrystalline silicon 1 is further above it.
8, and this polycrystalline silicon layer 18 completely covers the first layer of polycrystalline silicon 15. The same impurity is introduced into the first layer of polycrystalline silicon 15 and the second layer of polycrystalline silicon, and they are electrically short-circuited through the hole 17.

この構造に於て、ソース1λドレイン1311に面する
ゲート絶縁膜19.20は、第2層目の多、結晶シリコ
ン18のゲート電極に依りて榎われ、ソース1λドレイ
ン13の拡散層を自己整合的に形成している。従って、
ドレイン13とゲート多結晶シリコン電極18との間の
ゲート絶縁膜20は厚くなりているので、仁の電極間の
電界強度は弱められているので、空乏層の基板11とド
レイン13とのゲート絶縁膜20近傍の界面での曲率が
ゆるやかになって、限界・電界強度となるドレイン耐圧
が高められている。従って、高耐圧動作が可能とカる。
In this structure, the gate insulating film 19.20 facing the source 1λ drain 1311 is covered by the gate electrode of the second layer of polycrystalline silicon 18, and the diffusion layer of the source 1λ drain 13 is self-aligned. It is formed as follows. Therefore,
Since the gate insulating film 20 between the drain 13 and the gate polycrystalline silicon electrode 18 is thick, the electric field strength between the two electrodes is weakened, so that the gate insulation between the depletion layer substrate 11 and the drain 13 is reduced. The curvature at the interface near the film 20 becomes gentler, and the drain breakdown voltage, which is the limit electric field strength, is increased. Therefore, high voltage operation is possible.

また、第1多結晶シリコン15の下層のゲート絶縁膜1
4は薄くなっているため、電気伝導率が向上して、目的
の高耐圧でかつ電気伝導率の改善されたMOS)ランジ
スタを得た事になる。
Further, the gate insulating film 1 below the first polycrystalline silicon 15
Since No. 4 is thinner, the electrical conductivity is improved, and the desired MOS transistor with high withstand voltage and improved electrical conductivity is obtained.

第1層の多結晶シリコン15と第2層多結晶シリコン1
8とは同電位になっていて、ゲート電極として同じ働き
をする。従って、この電極下には、薄いゲート絶縁膜と
厚いゲート絶縁膜が存在して、第1図に示す従来技術と
同じ効果が得られる。ヒの構造になると、薄いゲート絶
縁膜は第1層の多結晶シリコンで決定されており、厚い
絶縁膜は第2層の多結晶シリコンで決定され、多結晶シ
リコンに依って、薄い絶縁膜の領域と厚い絶縁膜の領域
を決定している念め、厚い絶縁膜の領域は、第1層多結
晶シリコンを残す量に依って左右されるが、製造工程で
の多結晶シリコンを残す、除去工程で、第1層多結晶シ
リコンが小さくなる方向にあり、厚い絶縁膜の領域が大
きくなる方向であるので、耐圧を製造工程で不安定にす
るような事がない。従って、製造工程を経る事に依って
、デバイスの耐圧をくるわせる事がなく高耐圧動作でか
つ電気伝導率の良いデバイスを得る事になる。
First layer polycrystalline silicon 15 and second layer polycrystalline silicon 1
8 and has the same potential, and has the same function as the gate electrode. Therefore, a thin gate insulating film and a thick gate insulating film exist under this electrode, and the same effect as the conventional technique shown in FIG. 1 can be obtained. In the structure of H, the thin gate insulating film is determined by the first layer of polycrystalline silicon, and the thick insulating film is determined by the second layer of polycrystalline silicon. Note that the area of the thick insulating film is determined by the amount of the first layer of polycrystalline silicon remaining, but whether the polycrystalline silicon is left or removed during the manufacturing process During the process, the first layer polycrystalline silicon tends to become smaller and the region of the thick insulating film becomes larger, so that the breakdown voltage does not become unstable during the manufacturing process. Therefore, through the manufacturing process, a device with high breakdown voltage operation and good electrical conductivity can be obtained without affecting the breakdown voltage of the device.

次に、第2図に於ては、ソースIIIK於ても厚いゲー
ト絶縁膜を設けているため、トランジスタとしての電気
伝導率はあまり良くない。そ、こで第3図に示す構造に
した場合も考えられる。
Next, in FIG. 2, since a thick gate insulating film is provided also in the source IIIK, the electrical conductivity as a transistor is not very good. Therefore, a structure shown in FIG. 3 may also be considered.

第3図に於て、説明を加えるが、図中番号は第2図と同
じである。基板11の中に1基板と反対導電型の不純物
で構成され九ソースlλドレイン13がある。そのドレ
イン側の構造は第2図と同じであるが、ソース121[
1に於て、第2層目多結       1晶シリコン1
8で層間絶縁膜16を自己整合的に決定し、さらに第1
層の多結晶シリコン15も自己整合的に決定して、ソー
ス12側には厚い絶縁膜を残さないで、第2層多結晶シ
リコン18を第1層多結晶シリコン15より大きく覆う
ようにしないようKしである。こうする事に依って、ソ
ース側には薄い絶縁膜が面する事になり厚い絶縁膜があ
った第2図の場合より電気伝導率の改善された高耐圧デ
バイスを得る事が出来る。この場合でも第2図の本発明
の実施例の意とは同じである。
An explanation will be added in FIG. 3, but the numbers in the figure are the same as in FIG. 2. In the substrate 11, there are nine sources, one λ, and one drain 13, which are made of impurities of conductivity type opposite to that of the substrate. The structure on the drain side is the same as that in FIG. 2, but the source 121 [
In 1, the second layer polycrystalline silicon 1
8, the interlayer insulating film 16 is determined in a self-aligned manner, and then the first
The layer of polycrystalline silicon 15 is also determined in a self-aligned manner so that no thick insulating film is left on the source 12 side, and the second layer of polycrystalline silicon 18 is not covered more than the first layer of polycrystalline silicon 15. It's K. By doing this, the thin insulating film faces the source side, making it possible to obtain a high breakdown voltage device with improved electrical conductivity compared to the case of FIG. 2, which had a thick insulating film. Even in this case, the meaning of the embodiment of the invention shown in FIG. 2 is the same.

次に、このような本発明の高耐圧トランジスタを製造す
る実施例を第4図に示す。この実施例は、前述したFR
OMを構成する場合について述べる事にする。
Next, FIG. 4 shows an embodiment for manufacturing such a high voltage transistor of the present invention. This embodiment is based on the above-mentioned FR
Let us now discuss the case of configuring OM.

例えばP型シリコン基板31に通常の選択酸化法に依っ
てフィールド酸化膜32を形成し、ゲート絶縁膜として
比較的薄いシリコン酸化膜33を形成1−1その後第1
層目の多結晶シリコシ管成長し、この多結晶シリコンに
リンのような不純物を導入してN形にする。その後所定
の所に第1層目多結晶シリコン34を残こす〔第4図(
a)〕。
For example, a field oxide film 32 is formed on a P-type silicon substrate 31 by a normal selective oxidation method, and a relatively thin silicon oxide film 33 is formed as a gate insulating film 1-1.
A layer of polycrystalline silicon is grown, and impurities such as phosphorus are introduced into the polycrystalline silicon to make it N-type. After that, the first layer polycrystalline silicon 34 is left in a predetermined place [Fig. 4 (
a)].

次に、第1層目の多結晶シリコンの表面を酸化して、酸
化膜35t−成長させ、第1層目の多結晶シリコン34
の残っていないゲート酸化膜33がこの酸化に依って、
さらに成長して厚いゲート酸化膜36になる。そして、
第1層目多結晶シリコン上の一部37や多結晶シリコン
で直接拡散領域から配線しようとするために厚いゲート
酸化膜36の一部38に適幽な孔を開孔する。その後、
再び多結晶シリコンを成長させて、さらに上層にフォト
レジス)39f:、所定の所に第2層目多結晶シリコン
40を残すためにバターニングを行ナウ。
Next, the surface of the first layer of polycrystalline silicon is oxidized to grow an oxide film 35t, and the first layer of polycrystalline silicon 34 is grown.
Due to this oxidation, the remaining gate oxide film 33 is
It grows further to become a thick gate oxide film 36. and,
A suitable hole is opened in a portion 38 of the thick gate oxide film 36 in order to conduct wiring from a portion 37 on the first layer polycrystalline silicon or a direct diffusion region of polycrystalline silicon. after that,
Polycrystalline silicon is grown again, and photoresist is applied as an upper layer (39f): Buttering is performed to leave the second layer of polycrystalline silicon 40 in a predetermined location.

そしてこのフォトレジスト39をマスクニ、第2層目多
結晶シリコン40tバターニングする〔第4図(b)〕
Then, this photoresist 39 is masked and patterned with 40t of second layer polycrystalline silicon [Fig. 4(b)].
.

次に、フォトレジスト39.第2層目の多結晶シリコン
40t−マスクとして層間の絶縁膜35t−除去し、さ
らに第1一層の多結晶シリコンを除去し。
Next, photoresist 39. The second layer of polycrystalline silicon 40t is removed as a mask and the interlayer insulating film 35t is removed, and the first layer of polycrystalline silicon is further removed.

さらにゲート酸化膜の厚い膜36t−除去する。この後
、例えばイオン注入法や熱気相拡散法を用いて、第2層
目の多結晶シリコン40に対して自己整合的にソース・
ドレイン拡散層41t−形成する〔第4図(C)〕。こ
の時#I2層目の多結晶シリコンにも不純物が導入され
てN形電極と表る。
Further, the thick gate oxide film 36t is removed. Thereafter, using, for example, an ion implantation method or a hot vapor phase diffusion method, a source is applied to the second layer of polycrystalline silicon 40 in a self-aligned manner.
A drain diffusion layer 41t is formed [FIG. 4(C)]. At this time, impurities are also introduced into the #I second layer of polycrystalline silicon, which appears as an N-type electrode.

次に、リンガラスのような絶縁膜42t−気相成長法な
どで成長させて、所定の所に配at施こすための孔を設
け、金属配線43を施こす〔第4図(d) )。
Next, an insulating film 42t such as phosphor glass is grown by vapor phase growth, holes are provided at predetermined locations, and metal wiring 43 is formed (FIG. 4(d)). .

このようにして、出来上がる事になり、第4図中、左の
トランジスタが本発明の高耐圧トランジスタであり、中
央部のトランジスタが嬉1層の多結晶シリコンと第2層
の多結晶シリコンが絶縁膜で分離されて、FROMのメ
モリーセル・トランジスタを構成している。右のトラン
ジスタは、ゲート絶縁膜が厚くなっていて、耐圧は高く
なっているが、電気伝導率が悪いトランジスタである。
In this way, the transistor on the left in Figure 4 is the high voltage transistor of the present invention, and the transistor in the center is insulated between the first layer of polycrystalline silicon and the second layer of polycrystalline silicon. They are separated by a membrane and constitute a FROM memory cell/transistor. The transistor on the right has a thicker gate insulating film and has a higher breakdown voltage, but has poor electrical conductivity.

このトランジスタに於て、孔38の所で設けられた配線
部は、第1層目の多結晶シリコンと第2層目の多結晶シ
リコンとを電気的に短絡するための孔37を設ける時に
同時に開孔して、拡散層と多結晶シリコン配mを直接・
接続が可能となる。ここで、電気伝導率の良いトランジ
スタ、すなわちゲート酸化膜の比較的薄い膜を用いた通
常の耐圧の低いトランジスタを構成する場合は、第4図
の中央部のセル・トランジスタに於て、第1層の多結晶
シリコンと第2層の多結晶シリコンとを直接・結びつけ
る孔を設ければよい。この時この第2層の多結晶シリコ
ンで、第1層の多結晶シリコンが自己整合的に位置決め
されて同じ幅でバターニングされる。従って、このトラ
ンジスタのゲート酸化膜は比較的薄い膜で構成され、伝
導率の喪いトランジスタが得られる。
In this transistor, the wiring portion provided at the hole 38 is formed at the same time as the hole 37 is provided for electrically shorting the first layer of polycrystalline silicon and the second layer of polycrystalline silicon. Open a hole and directly connect the diffusion layer and polycrystalline silicon matrix.
Connection is now possible. Here, when configuring a transistor with good electrical conductivity, that is, a normal transistor with low breakdown voltage using a relatively thin gate oxide film, in the cell transistor in the center part of FIG. It is sufficient to provide a hole that directly connects the polycrystalline silicon layer and the second layer polycrystalline silicon. At this time, the second layer of polycrystalline silicon and the first layer of polycrystalline silicon are positioned in a self-aligned manner and patterned to have the same width. Therefore, the gate oxide film of this transistor is made of a relatively thin film, resulting in a transistor with reduced conductivity.

本発明のトランジスタは、第4図の左に示し九トランジ
スタであり、図から明らかなように第2層の多結晶シリ
コンを第1層の多結晶シリコンより大きく設定し、第1
層目の多結晶シリコンを覆って、この両者を同電位・電
極として、ゲート絶縁膜を厚いゲート絶縁膜で高耐圧に
、薄いケート絶縁膜で伝導率を高やた事ttpi徴とし
ているトランジスタである。
The transistor of the present invention is a nine transistor shown on the left side of FIG.
This is a transistor that covers a layer of polycrystalline silicon, uses the same potential and electrodes, and has a thick gate insulating film for high breakdown voltage and a thin gate insulating film for high conductivity. be.

ここでは、FROMO製造方法で説明したが、このデバ
イスは、二層の多結晶シリコンを用いるデバイスであれ
ば適用出来、二層目の多結晶シリコンを配線に用いるな
ど、広範囲の応用が可能であり、また単独のトランジス
タをこの例で示した製造方法で利用する事も可能である
。        )
Although the FROMO manufacturing method has been explained here, this device can be applied to any device that uses two layers of polycrystalline silicon, and can be used in a wide range of applications, such as using the second layer of polycrystalline silicon for wiring. , it is also possible to use a single transistor in the manufacturing method shown in this example. )

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の半導体装置の構造断面図であり、第2
図は本発明の実施例の半導体装置の構造断面図であり、
第3図は第2図の半導体装置の形をかえ九装置の構造断
面図であり、第4図(a)〜(d)は本発明の半導体装
置を娩明する製造方法を示し九工程断面図である。 尚、図において、1,11.31・・・・・・半導体基
板、λ3.1&13.41・・・・・・ソース・ドレイ
ン拡散層、4.19,20.36・・・・・・厚いゲー
ト絶縁膜、5.14゜33・・・・・・薄いゲート絶縁
膜、6・・・・・・ゲート多結晶シリコン、1&34・
・・・・・第1層ゲート多結晶シリコン、18.40・
・・・・・第、2層ゲート多結晶シリコン、16.35
・・・・・・層間絶縁膜である。 ト1旧 S    f   D
FIG. 1 is a cross-sectional view of the structure of a conventional semiconductor device.
The figure is a structural cross-sectional view of a semiconductor device according to an embodiment of the present invention,
FIG. 3 is a cross-sectional view of the structure of the semiconductor device shown in FIG. 2, and FIGS. It is a diagram. In the figure, 1, 11.31... semiconductor substrate, λ3.1 & 13.41... source/drain diffusion layer, 4.19, 20.36... thick Gate insulating film, 5.14°33... Thin gate insulating film, 6... Gate polycrystalline silicon, 1&34.
...First layer gate polycrystalline silicon, 18.40.
...Second layer gate polycrystalline silicon, 16.35
...It is an interlayer insulating film. 1 Old S f D

Claims (1)

【特許請求の範囲】 第1導電1iioip導体基板に設けられ九第2導電置
のソースおよびドレイン領域と、該ソースおよびドレイ
ン領域間の前記半導体基板表面に設けられた薄いゲート
絶縁属および厚いゲート絶縁属と。 前記薄いゲート絶縁属上に設けられ大第1の多結晶シリ
コンゲート電極と、諌第1の多結晶シリコンゲート電極
を覆う絶縁膜と、前記厚いゲート絶縁属上に設けられ、
前記絶縁膜に接し、前記第1の多結晶シリコンゲート電
極に接続しかつ少くとも前記ト°レイン領域と自己整合
的な位置関係を有する第2の多結晶シリ;ンゲート電極
とを有することt4I黴とする半導体装置。
[Scope of Claims] A source and drain region of a second conductive layer provided on a first conductive substrate, and a thin gate insulator and a thick gate insulator provided on the surface of the semiconductor substrate between the source and drain regions. With the genus. a large first polycrystalline silicon gate electrode provided on the thin gate insulating layer; an insulating film covering the first polycrystalline silicon gate electrode; provided on the thick gate insulating layer;
a second polycrystalline silicon gate electrode in contact with the insulating film, connected to the first polycrystalline silicon gate electrode, and having a self-aligned positional relationship with at least the train region; semiconductor device.
JP56206545A 1981-12-21 1981-12-21 Semiconductor device Pending JPS58107676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206545A JPS58107676A (en) 1981-12-21 1981-12-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206545A JPS58107676A (en) 1981-12-21 1981-12-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58107676A true JPS58107676A (en) 1983-06-27

Family

ID=16525149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206545A Pending JPS58107676A (en) 1981-12-21 1981-12-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58107676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299280A (en) * 1987-05-29 1988-12-06 Toshiba Corp Semiconductor device and manufacture thereof
US5124769A (en) * 1990-03-02 1992-06-23 Nippon Telegraph And Telephone Corporation Thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299280A (en) * 1987-05-29 1988-12-06 Toshiba Corp Semiconductor device and manufacture thereof
US5124769A (en) * 1990-03-02 1992-06-23 Nippon Telegraph And Telephone Corporation Thin film transistor

Similar Documents

Publication Publication Date Title
US6037627A (en) MOS semiconductor device
KR100243497B1 (en) Semiconductor device and method of manufacturing the same
JPH021964A (en) High voltage capacitor of integrated circuit
JPH02166762A (en) Compact cmos device and
JPH08255913A (en) Structure of high-voltage mosfet, and process for its manufacture
JPS59210658A (en) Semiconductor device and manufacture thereof
US6194270B1 (en) Process for the manufacturing of an electrically programmable non-volatile memory device
JPH06103745B2 (en) Integrated circuit element
US6297093B1 (en) Method of making an electrically programmable memory cell
JPS58107676A (en) Semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
JP4224149B2 (en) Nonvolatile semiconductor device manufacturing method
JP2970858B2 (en) Method for manufacturing semiconductor integrated circuit device
US5641697A (en) Method of making a MOS device with an input protection circuit LP
JPH04316333A (en) Manufacture of thin-film transistor
JPS63305562A (en) Semiconductor device
JPH11214511A (en) Semiconductor device and wiring method in semiconductor device
JPH039572A (en) Manufacture of semiconductor device
JPH08306875A (en) Semiconductor device
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JP4202031B2 (en) MOS type semiconductor device and manufacturing method thereof
JPH1098111A (en) Mos semiconductor device and manufacture thereof
JPS63237567A (en) Manufacture of semiconductor device
JP2000082809A (en) Semiconductor device with mos transistor and manufacture thereof
JPH0378244A (en) Semiconductor device