JPS58106455A - Ultrasonic test equipment - Google Patents

Ultrasonic test equipment

Info

Publication number
JPS58106455A
JPS58106455A JP56205021A JP20502181A JPS58106455A JP S58106455 A JPS58106455 A JP S58106455A JP 56205021 A JP56205021 A JP 56205021A JP 20502181 A JP20502181 A JP 20502181A JP S58106455 A JPS58106455 A JP S58106455A
Authority
JP
Japan
Prior art keywords
signal
analog
digital
probe
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56205021A
Other languages
Japanese (ja)
Inventor
Ichiro Furumura
古村 一朗
Kuniharu Uchida
内田 邦治
Satoshi Nagai
敏 長井
Hideo Kashiwatani
柏谷 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56205021A priority Critical patent/JPS58106455A/en
Publication of JPS58106455A publication Critical patent/JPS58106455A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect the position and size of a fault at each position in a body to be inspected through simple operation with high precision by using a probe whose radiation angle and focusing depth of an ultrasonic wave beam are optionally settable. CONSTITUTION:The flaw detection angle and focusing depth of a radiated ultrasonic wave beam from a probe 5 having oscillators 6i arrayed in the same plane are set by a flaw detection angle setter 7 and a focusing depth setter 8 respectively and when a selected oscillator 6i is excited, the timing of excitation corresponding to a set value is adjusted by a controller 9. Then, an excitation signal is supplied to each selected oscillator 6i through a transmitter 10, each reflected sound by each oscillator 6i is reflected by a fault in the body to be inspected, and each reflected sound is frequency-discriminated by a receiver 11. Further, respective received signals are summed up by a digital adder 13 on the basis of the timing from the controller 9, and the sum signal is processed by a digital analog converter 14 to supply the resulting video output to a waveform display 16.

Description

【発明の詳細な説明】 発明の技術分野 本りも明は金属材料等の被検査体の内部に存在する欠陥
に対し、位置及び寸法を検出する超音波探傷装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention This invention relates to an improvement in an ultrasonic flaw detection device for detecting the position and size of defects existing inside an object to be inspected such as a metal material.

発明の技術的背景とその問題点 金属材料等の被検査体の内部に存在する割目、巣、材質
変化に伴う境界編等の欠陥を超音波を用いて検出する超
音波探傷法としては、被検査体の表面に対し垂直に超音
波ビームを放射する垂直探傷法と、被検査体の表面に対
しある角度を持たせて超音波ビーム全放射する斜角探傷
法が採用されている。
Technical background of the invention and its problems Ultrasonic flaw detection is an ultrasonic flaw detection method that uses ultrasonic waves to detect defects such as cracks, cavities, and boundaries due to material changes that exist inside objects to be inspected such as metal materials. A vertical flaw detection method in which an ultrasonic beam is emitted perpendicular to the surface of the object to be inspected, and an oblique flaw detection method in which the entire ultrasonic beam is emitted at a certain angle to the surface of the object to be inspected are employed.

従来VCおいては、例えば第1図(イ)にボす垂直探傷
法のように、超音波ビームが被検査体2の表面に垂直に
放射するように探触子1ケ設置していた。しかし、探触
子1.、、から放射される超音波ビームは広がり及び音
圧分布を有しているため、探触子1に近い範囲の位置A
 −A’あるいはB −8’で(・ゴ探触子1から放射
される超音波ビームは、その直径が前記探触子1の直径
にほぼ等しいが、探触子1がら、ろる程度離れた位置C
−clでは、探触子1がら放射される超音波ビーム0:
前記探触子や探傷周波数に応じた一定の角度でもって広
がって行く。また上記各位置における超音波ビーム内の
音圧分布は第1図(ロ)に示すように探触子1に近い範
囲の位置A −A’あるいばB −B’に2ける音圧は
、高レベルであるが、その分布に複雑なピークが存在し
、欠陥の位置の検出に際して、誤りを生じ易く、また探
触子1に離れた位置C−c/では超音波ビームの中心か
ら周辺に向って音圧レベルがなだらかに減少している為
に、欠陥の寸法を正確に検出することが困難である。
In the conventional VC, one probe is installed so that the ultrasonic beam is radiated perpendicularly to the surface of the object 2 to be inspected, as in the vertical flaw detection method shown in FIG. 1(A), for example. However, probe 1. Since the ultrasonic beam emitted from , , has a spread and a sound pressure distribution, the position A in the range close to the probe 1
- A' or B -8' (The diameter of the ultrasonic beam emitted from the probe 1 is approximately equal to the diameter of the probe 1, but it is separated from the probe 1 by a certain degree. position C
-cl, ultrasonic beam 0 emitted from probe 1:
It spreads at a certain angle depending on the probe and the flaw detection frequency. In addition, the sound pressure distribution within the ultrasound beam at each of the above positions is as shown in Figure 1 (b). , the level is high, but there are complex peaks in the distribution, which tends to cause errors when detecting the position of the defect. Since the sound pressure level gradually decreases towards the end, it is difficult to accurately detect the size of the defect.

上記不具合に対して、最近は、垂直探傷法及び斜角探傷
法のいずれにおいても、第2図(イ)。
In response to the above-mentioned problems, recently both the vertical flaw detection method and the oblique flaw detection method have been developed as shown in Fig. 2 (a).

呻)に示すよう蝉、探触子1にノラステノク等よりなる
音響レンズ3を装着し、被検査体2の特に探傷すべき部
位に超音波ビームを集束させて、被検畳体2の欠陥の位
置及び寸法を高精度に探傷できるようにしたものが開発
されている。尚、第2図における4は、超音波ビームが
所定の角度で被検査体2に放射させるための角度設定楔
である。
As shown in Fig. 1, an acoustic lens 3 made of Nora Tenoku or the like is attached to the probe 1, and the ultrasonic beam is focused on the part of the object 2 to be inspected to detect defects. A device has been developed that allows flaw detection of position and size with high precision. Note that 4 in FIG. 2 is an angle setting wedge for radiating the ultrasonic beam to the object 2 to be inspected at a predetermined angle.

このような探触子1による超音波ビームの放射性性は、
第2図(イ)、(ロ)に示すように超音波ビームの焦点
りの位置においては、超音波ビームの広がりは小さく、
シたがって被検畳体2の内部の欠陥の位置及び寸法全^
梢度に探傷できる。
The radioactivity of the ultrasonic beam from the probe 1 is as follows:
As shown in Figure 2 (a) and (b), at the focused position of the ultrasound beam, the spread of the ultrasound beam is small;
Therefore, the position and size of the defect inside the tatami body 2 to be inspected
Can detect flaws with high precision.

一方、超音波ビームの焦点りから離れた位置Eにおいて
は、超音波ビームの幅の広がりが著しく、被検査体2の
欠陥の位置及び寸法をMJn度に深場することはできな
い。
On the other hand, at a position E away from the focal point of the ultrasonic beam, the width of the ultrasonic beam expands significantly, and the position and size of the defect on the object to be inspected 2 cannot be determined to a depth of MJn degrees.

通常、被検査体2の欠陥の探傷を高精度に行なうには、
探傷すべ縫部値で超音波ビームの焦点が合っていなけれ
ばならないが、焦点の位置、すなわち焦点深さは、超音
波ビームの放射角度、拡が9条件により決定され、また
この超音波ビームの放射角度、拡がシ条件は探触子lの
直径、音響レンズ3の構成、角度設定楔4の構成、及び
超音波ビームの局波数号により一義的に決定される。従
って被検査体2の内部の色々な部位に存在しうる欠陥を
高精度に探傷するためには、超音波ビームの放射角度及
び焦点深さが異なりうる種々の探触子1を用意し、探傷
する部位に合せて上記探触子1を取替えて探傷しなけれ
ばならず、探傷操作は繁雑となる。
Normally, in order to detect defects in the inspected object 2 with high precision,
The ultrasonic beam must be focused at all seam values for flaw detection, but the position of the focal point, that is, the depth of focus, is determined by the radiation angle and spread of the ultrasonic beam based on nine conditions. The angle and expansion conditions are uniquely determined by the diameter of the probe 1, the configuration of the acoustic lens 3, the configuration of the angle setting wedge 4, and the local wave number of the ultrasonic beam. Therefore, in order to accurately detect defects that may exist in various parts inside the object 2 to be inspected, various probes 1 with different emission angles and focal depths of ultrasonic beams are prepared, and flaw detection is performed. It is necessary to change the probe 1 according to the part to be inspected, which makes the flaw detection operation complicated.

発明の目的 本発明は上記事情にかんがみてなさnたもので、超音波
ビームの放射角度及び焦点深さ全任意に設定可能とする
探触子により、被検査体の内部の色々な部位に存在する
欠陥の位置及び寸法を高精問に且つ操作容易に探傷し得
る超音波探傷装置を提供することを目的とする。
Purpose of the Invention The present invention has been developed in view of the above circumstances, and uses a probe that allows the emission angle and focal depth of an ultrasonic beam to be set arbitrarily, thereby detecting the presence of ultrasonic beams in various internal parts of an object to be inspected. An object of the present invention is to provide an ultrasonic flaw detection device that can detect the position and size of a defect with high accuracy and with ease of operation.

発明の概要 本発明による超音波探傷装置は複数個の振動子により一
体構成される探触子と、この探触子の各振動子を各々励
損する時間的タイミングを調整可能とする送信系と、前
記探触子の各県動子の各反射音による各受信信号を集合
して波形表示する受信系とから構成されるものである。
Summary of the Invention An ultrasonic flaw detection apparatus according to the present invention includes a probe integrally formed with a plurality of transducers, a transmission system capable of adjusting the temporal timing of exciting each transducer of the probe, and and a receiving system that collects and displays each received signal from each reflected sound of each prefecture element of the probe in a waveform.

発明の実施例 以下本発明の一実施例を図面を鯵照して説明する。Examples of the invention An embodiment of the present invention will be described below with reference to the drawings.

第3図は不光明による超音波探傷装隨の一実施例を示す
構成図である。第3図において、5は等間隔に配置さ扛
、複数個(n伽)の振動子6  i (i−1+ 2 
+・・・In)より一体構成された探触子で、この探触
子5に収納された振動子6−i(i=1.2+・・・I
n)は、圧電セラミックス等の圧電効果を有するものか
らなり、この実施例では、各々の振動子6−i(i=1
゜2、・・・、n)は、電気信号により励振されると超
音波全発生し、また超音波を受信すると受信信号を発生
するものでろる。
FIG. 3 is a configuration diagram showing an embodiment of the ultrasonic flaw detection equipment by Fukomei. In FIG. 3, reference numeral 5 indicates a plurality of (n) oscillators 6 i (i-1+ 2
+...In), and a transducer 6-i (i=1.2+...I) housed in this probe 5.
n) is made of a material having a piezoelectric effect such as piezoelectric ceramics, and in this embodiment, each vibrator 6-i (i=1
2, .

ここで送信系の構成としては、@記探触子5の撮動子6
−1 (1= 1 、 ・2・、 −、n )から放射
される超音波の深漬角度及び焦点深さを設定する探傷角
度設定器7及び焦点深さ設定器8の出力端を、遅延時間
制御器90入力端に接続し、この遅延時間制御器9の一
方の出力端は送信器群100入力端に接続さn、この送
信器群1゜は前記振動子6−i(1=1121・・・I
n)に対応した出力端を有し、この各出力端全前記振動
子6−1(t=1 、2 +”・+ n )の入力端に
接続するものである。壕だ、遅延時間制御器9の他方の
出力端は後述する受信系に導かれる。
Here, the configuration of the transmission system is as follows:
-1 (1=1, ・2・, −, n) The output ends of the flaw detection angle setting device 7 and the focal depth setting device 8, which set the immersion angle and focal depth of the ultrasonic waves emitted from the ultrasonic waves, are delayed. One output end of this delay time controller 9 is connected to an input end of a transmitter group 100, and this transmitter group 1° is connected to the transducer 6-i (1=1121 ...I
n), and each of these output ends is connected to the input ends of all the vibrators 6-1 (t=1, 2 +"・+n). It's a delay time control. The other output end of the receiver 9 is led to a receiving system which will be described later.

ここで、前記遅延時間制御器9は、前記振動子6 1(
i=1.2.−、n)のうち、予め選択された、いくつ
か例えばm個(1<m <4 n )の振動子6  i
 (1=1 + 2 + ・・’ r m )が前記採
湯角度設定器7及び焦点深さ設定器8の設定11gに応
じて励振される際の時間的タイミングを設定するもので
ある。
Here, the delay time controller 9 controls the vibrator 6 1 (
i=1.2. -, n), for example, m (1 < m < 4 n ) vibrators 6 i
This is to set the temporal timing when (1=1 + 2 + . . . ' r m ) is excited in accordance with the settings 11g of the hot water sampling angle setting device 7 and focal depth setting device 8.

また送信器群10は予め選択さ扛た振動子6−i(i−
1,2,・・・、m)に対し、所足の時間的タイミング
を介して送信信号を与えるものである。
Further, the transmitter group 10 includes pre-selected transducers 6-i (i-
1, 2, .

ところで、受信系の構成は、前記探触子5の振動子6 
 t (i=1 + 2 +・・・、n)の出力端は、
対応する受信器群1ノの各入力端に接続される。この受
信器群11は、前記各振動子6−i(i=t 121 
・・、n)が受1百波を受信したとき、これを電気信号
に変換した受信信号を、増幅及び周波数フィルタリング
するものである。更に受4H器群11の出力端は高速ア
ナログ、デジタル変換器12の一方の入力端に接続され
、またこの高速アナログ、デジタル変換器11の他方の
入力端は、前記送信系の遅延時間制御器9の他方の出力
端が接続されている。ここで、前記高速アナログ、デジ
タル変換器12は、前記受信器群11により増幅、周波
数フィルタリングされたアナログ量の受信信号を、前記
遅延時間制御器9の出力信号によりデジタル変換開始時
間を設定して、デジタル変換するものである。
By the way, the configuration of the receiving system includes the vibrator 6 of the probe 5.
The output end of t (i=1 + 2 +..., n) is
It is connected to each input terminal of the corresponding receiver group 1. This receiver group 11 includes each vibrator 6-i (i=t 121
..., n) receives 100 waves, the received signal is converted into an electrical signal and is amplified and frequency filtered. Furthermore, the output terminal of the receiver 4H group 11 is connected to one input terminal of a high-speed analog-to-digital converter 12, and the other input terminal of this high-speed analog-to-digital converter 11 is connected to the delay time controller of the transmission system. The other output end of 9 is connected. Here, the high-speed analog-to-digital converter 12 sets the digital conversion start time of the analog received signal that has been amplified and frequency filtered by the receiver group 11 using the output signal of the delay time controller 9. , to be converted digitally.

前記高速アナログ、デジタル変換器12の出力端は、前
記高速アナログ、7″ジタル器12により7′″ジタル
量に変換された各受信信号をデジタル加算するデジタル
加X器13の入力端に接続され、このrソタル加算器1
3の出力端は、前記デジタル加算器13にょシデジタル
7Jl]算された、デジタル加算信号を、アナログ変換
してアナログ量の加算波形を得るデジタル、アナログ変
換器140入力端に接続される。このデジタル、アナロ
グ変換器14の出力端は、検波器15を介して、または
直接にブラウン管オシロスコーノ等の表示器16に、切
撲スイッチ17を介して接続される。ここで検波器15
は前述の加算された受信波形を検波した波形として表示
器16に表示するためのものである。
The output end of the high-speed analog to digital converter 12 is connected to the input end of a digital adder 13 that digitally adds each received signal converted into a 7'' digital amount by the high speed analog to 7'' digital converter 12. , this r sotal adder 1
The output terminal of 3 is connected to the input terminal of a digital-to-analog converter 140 which converts the digital sum signal calculated by the digital adder 13 into analog to obtain an analog sum waveform. The output end of this digital/analog converter 14 is connected via a detector 15 or directly to a display 16 such as a cathode ray tube oscilloscope via a switch 17. Here, the detector 15
is for displaying the above-mentioned added received waveform on the display 16 as a detected waveform.

次に上記構成の本発明による超音波探傷装置の動作につ
いて、第3図および第4図を参照して説明する◇第4図
(イ)は送信動作を示す図、第4図幹)は受信動作を示
す図、第4図(ハ)は超音波ビームの探傷角度及び焦点
深さの設定動作を説明するための図である。第3図の探
傷角度設定器7と焦点深さ設定器8及び遅延時間制御器
9とにより、第4図(イ)に示す振動子61(i=1.
2.・・・、n)ir励振する送信信号の時間的タイミ
ングが設定されると、これにょシ、送信6群10は、探
触子5の振動子6−i(i=1+2.・・・、n)のう
ち、予め選択した例えばm1園(13m≦n)の振動子
e −t (i =i l 21・・・、m)に対して
送信信号18−1 (1−1+ 2+・・・1m)を出
力し、こ扛らの送信信号18−1(1” 1 + 2 
+ ”’ + m )は各々遅延時間ΔTi(i =1
 r 2 r・・・、m−1)を持って出力されるので
、m個の振動子6−1 (i = 1 、2 、・・・
Next, the operation of the ultrasonic flaw detection device according to the present invention having the above configuration will be explained with reference to FIGS. A diagram showing the operation, FIG. 4(c) is a diagram for explaining the operation of setting the flaw detection angle and focal depth of the ultrasonic beam. The flaw detection angle setting device 7, focal depth setting device 8, and delay time controller 9 shown in FIG.
2. . . . n) When the temporal timing of the transmission signal for IR excitation is set, the 6 transmission groups 10 transmit the transducer 6-i of the probe 5 (i=1+2. . . n), the transmission signal 18-1 (1-1+ 2+... 1m), and their transmission signal 18-1(1" 1 + 2
+ ”' + m ) is the delay time ΔTi (i = 1
r 2 r..., m-1), m oscillators 6-1 (i = 1, 2,...
.

m)は、この遅延時間ΔTl(i==1 、2 、 ・
・・。
m) is this delay time ΔTl(i==1, 2, ・
....

m−1)”k介して励振され、各々超音波を放射する。m-1)"k, and each emits an ultrasonic wave.

ここで最初に放射された超音波は、後に放射された超音
波よりも、被検査体2の内部において、遠方に到達し、
また各々放射された超音波は各々干渉しろうので、音場
として、おる放射角度全もった超音波ビームとなる。尚
、この超音波ビームは、振動子6−1(1=1 + 2
 +・・・+ m )に対して、後れて・放射される超
音波の方向に傾斜する。また上記と同様に遅延時間ΔT
i (1”’1 + 2 + ”’ + m )によっ
て振動子61 (+ =1 r 2 r・・・、m)は
凹面状に並んだように作用し、超音波ビームは果宋する
The ultrasonic waves emitted first here reach further inside the inspected object 2 than the ultrasonic waves emitted later,
Furthermore, since the radiated ultrasonic waves will interfere with each other, the sound field will be an ultrasonic beam with all the radiation angles. Note that this ultrasonic beam has a transducer 6-1 (1=1 + 2
+...+m), it lags behind and tilts in the direction of the emitted ultrasound. Also, similar to the above, the delay time ΔT
i (1'''1 + 2 + ''' + m), the transducers 61 (+ = 1 r 2 r . . . , m) act as if they are lined up in a concave shape, and the ultrasonic beam is emitted.

このように集宋の位置、すなわち焦点深さは定まる。In this way, the position of Jisong, or the depth of focus, is determined.

次に第4図(ロ)により、送信系の動作を祝明する。第
4図(ロ)において、振動子6−i(1=1゜2、・・
・+ m )により探傷角度及び焦点深さを持った超音
波ビームが被検査体2の内部に欠陥19全探纒すると、
この超音波ビームは、欠陥19を音律とする如き球面波
状に拡散し、その一部が振動子6− s (1=1 +
 2 +・・・、m)に到達する。従って振動子6− 
i(1=1 + 2 +・・・、m)においては、欠陥
19からの個々の振動子6− i (i ”’ 1 +
 2 、・・・、m)tでの伝播経路長の差により決ま
る到達時間差をもって反射波が検出さnるので、振動子
6−f(i=1゜j? + ・・’ + m )は受1
1゛信号2O−1(i−1+ 2 。
Next, the operation of the transmission system will be explained using FIG. 4 (b). In Fig. 4 (b), the vibrator 6-i (1=1°2,...
・+m) When the ultrasonic beam with the flaw detection angle and focal depth explores the entire defect 19 inside the inspected object 2,
This ultrasonic beam is diffused in the form of a spherical wave with the defect 19 as a musical temperament, and a part of it spreads through the oscillator 6-s (1=1 +
2 +..., m) is reached. Therefore, the vibrator 6-
For i (1=1 + 2 +..., m), the individual oscillators 6- i (i ''' 1 +
2, ..., m) Since the reflected wave is detected with an arrival time difference determined by the difference in propagation path length at t, the oscillator 6-f (i=1゜j? + ...' + m) is Uke 1
1゛signal 2O-1(i-1+2.

・・・+ m )を受信する。この受信信号2o−t(
t=1121・・・、m)は受信器群11vcより各々
増鴨及び周波数フィルタリングさ扛て、また高速アナロ
グ、デジタル変換器12で各々デノタル量に変換さ扛、
デジタル加算器13Vcてそれしはrジタル加算さ扛て
、アノタル。アナログ変換器14で再びアナログ量に変
換さ扛て、力ロ典波形21を得る。この加算波形21は
、第3図の波形表示器I6で直接全波表示するか、わる
いは検波器15を介して検波された波形で表示されるも
のである。
...+m) is received. This received signal 2o-t(
t=1121..., m) are each subjected to frequency filtering and frequency filtering from the receiver group 11vc, and are each converted into digital quantities by the high-speed analog to digital converter 12,
If the digital adder 13Vc is used, then r digital addition is performed. The analog converter 14 converts the signal into an analog quantity again to obtain a force measurement waveform 21. This addition waveform 21 is displayed as a full wave directly on the waveform display I6 in FIG.

この実施例によれば、複数個の振動子6−i(i ”’
 1 r 2 +・・・、n)に対して加える送信信号
の遅延時間及び受信信号の遅延時間を任意に設定するこ
とが可能なため、第4図19に示す如く超音波ビームの
探傷角度及び焦点深さを任意に設定でき、被検査体2の
色々な部位に存在する欠陥の位置及び寸法に対して高稍
屁な探傷が可能となる。
According to this embodiment, a plurality of oscillators 6-i (i ”'
1 r 2 +..., n), it is possible to arbitrarily set the delay time of the transmitted signal and the delay time of the received signal. The depth of focus can be set arbitrarily, and highly detailed flaw detection can be performed for the positions and dimensions of defects present in various parts of the object 2 to be inspected.

尚、本発明は、上記実施例に限定されるものではなく、
例えば、振動子6−1(i=l、2゜・・・、n)を送
信用と受信用の各々独立に構成し、それらを同一の容器
に収納する二分割探触子法による探触子5、わるいは振
動子6−i(i=1.2.・・・+nンを送信用と受信
用の各々独立にl1lltし、それらを別個の容器に収
納するクンガム法による探触子5でも可能である。
Note that the present invention is not limited to the above embodiments,
For example, a probe using the two-split probe method in which the transducer 6-1 (i=l, 2°..., n) is configured independently for transmitting and receiving, and is housed in the same container. A probe 5 using the Kungham method, in which the transducer 5, vibrator 6-i (i = 1.2...+n) is independently used for transmitting and receiving, and is housed in separate containers. But it is possible.

1だ被検査体2の内部の欠陥の位置によって反射波の強
度を補正する回路、すなわち距離減衰特性補正回路を設
けてもよい。
However, a circuit for correcting the intensity of the reflected wave depending on the position of the defect inside the object to be inspected 2, that is, a distance attenuation characteristic correction circuit may be provided.

この他、被検査体2の内部における超音波ビーム上の任
意の位置に電気的なケ゛−トを設け、そのケ゛−ト内の
受信波の波高値をアナログ量、るるいはrノタル量を出
力して放射波と反射波全明確に判別し得るようにした回
路を設けても実施可能である。また上記実施例において
は、各受信信号をアナログ、デジタル変換したrノクル
量を加算して、再びデジタル、アナログ変換してアナロ
グ量の加算波形を得るようにしたが、適当なアナログ加
算器を用いて、各受信信号を直接アナログ加算して波形
表示器16に導いたものでも実施可能である。
In addition, an electrical gate is provided at an arbitrary position on the ultrasonic beam inside the object to be inspected 2, and the peak value of the received wave within the gate is expressed as an analog quantity, a square or a total quantity. It is also possible to implement the method by providing a circuit that outputs and makes it possible to clearly distinguish between radiated waves and reflected waves. In addition, in the above embodiment, each received signal is converted into analog and digital, and the r-nockle amounts are added together, and then converted into digital and analog again to obtain the summed waveform of the analog amounts. It is also possible to perform direct analog addition of each received signal and guide it to the waveform display 16.

発明の効果 以上述べた本発明によれば、探触子を、深傷角度及び焦
点深さに応じ種々取換えを心安としないで、被検査体の
色々な部位に存在する欠陥の位置及び寸法を高精度、且
つ操作容易に探傷し得る超音波探傷装置を提供できる。
Effects of the Invention According to the present invention described above, the position and size of defects present in various parts of the object to be inspected can be determined without worrying about changing the probe depending on the depth of the flaw angle and depth of focus. It is possible to provide an ultrasonic flaw detection device that can detect flaws with high precision and ease of operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の探触子における超音波ビームの拡がりを
示す図、第2図は従来における固趙焦点型探触子を示す
図、第3図は本発明による超音波探傷装置の一実施例を
示す構成図、第4図は本発明の詳細な説明するための図
である。 5・・・探触子、6−i・・・振動子、7・・・探傷角
度設定器、8・・・焦点深さ設定器、9・・・遅延時間
制御器、10 ・送信器群、1ノ・・・受信器群、12
・・高速アナログ、デジタル変換器、13・・・rソタ
ル加算器、14・・・デジタル、アナログ変換器、15
・・・検波器、16・・・波形表示器、17 ・切換ス
イ、テ。       、5 出願人代理人  弁理士 鈴 江 武 彦=15− 347
Fig. 1 is a diagram showing the spread of an ultrasonic beam in a conventional probe, Fig. 2 is a diagram showing a conventional fixed-focus type probe, and Fig. 3 is an implementation of an ultrasonic flaw detection device according to the present invention. FIG. 4, which is a configuration diagram showing an example, is a diagram for explaining the present invention in detail. 5... Probe, 6-i... Vibrator, 7... Flaw detection angle setting device, 8... Focal depth setting device, 9... Delay time controller, 10 - Transmitter group , 1 No. Receiver group, 12
...high-speed analog to digital converter, 13...r sotal adder, 14...digital to analog converter, 15
...Detector, 16...Waveform display, 17 - Switching switch, Te. , 5 Applicant's agent Patent attorney Takehiko Suzue = 15- 347

Claims (3)

【特許請求の範囲】[Claims] (1)複数個の振動子が同一平面に並設された探触子と
、この探触子から放射される超音波ビームの探傷角度及
び焦点深さ全設定する設定器と、前記複数個の振動子の
うち予め選択されたいくつかの振動子を励振する際に、
Jrff記設定器の設定値に対応して、励振される時間
的タイミングを調整する制御器と、この選択された各振
動子に励振信号を与える送信器と、この送信器によジ励
振された各振動子による各反射音が、被検査体内部の欠
陥により反射されて、その各反射音を電気信号に変換し
た各受信信号を各々増幅及び周波数フィルタリングする
受信器と、前記制御器による時間的タイミングに対応し
て各受信信号の加算を行ない、この加算信号を映像信号
に信号処理する信号処理器と、この信号処理器の映像出
力を表示する波形表示器とからなる超音波探傷装置。
(1) A probe in which a plurality of transducers are arranged in parallel on the same plane, a setting device for setting the entire flaw detection angle and focal depth of the ultrasonic beam emitted from the probe, and When exciting some pre-selected oscillators,
a controller that adjusts the temporal timing of excitation in accordance with the setting value of the setting device; a transmitter that provides an excitation signal to each selected vibrator; Each reflected sound from each vibrator is reflected by a defect inside the object to be inspected, and each reflected sound is converted into an electrical signal. A receiver amplifies and frequency filters each received signal, and a time control circuit by the controller. An ultrasonic flaw detection device comprising a signal processor that adds each received signal in accordance with timing and processes the added signal into a video signal, and a waveform display that displays the video output of the signal processor.
(2)!p!f訂請求の範囲第1項記載の信号処理器は
、受信器の出力である各振動子のアナログ量の受信信号
を、制御器による時間的タイミングに対応してデジタル
変換開始時間を設定してアナログ6デジタル変換する高
速アナログ、7″ソタル変換と、この高速アナログ、デ
ノタル変換部の出力としてのデジタル量の各受信信号を
デジタル加算器 タル加算器のデジタル加算信号をデジタル、アナログ変
換し映像信号全出力するデジタル、アナログ変換部とか
ら構成される超音波採湯装置。
(2)! p! The signal processor according to claim 1 sets the digital conversion start time of the analog received signal of each vibrator, which is the output of the receiver, in accordance with the temporal timing by the controller. High-speed analog to 6-digital conversion, 7'' sotal conversion, and each received signal of the digital amount as the output of this high-speed analog to digital converter is converted into a digital adder. Ultrasonic hot water sampling device consisting of a full output digital and analog converter.
(3)特許請求の範囲第1項記載の信号処理器は、受信
器の出力である各振動子のアナログ量の受信信号を、制
御器による時間的タイミングに対応して、加算開始時間
を設定してアナログ加算するアナログ加算部と、このア
ナログ加算部の出力であるアナログ加算信号を、映像信
号として出力する映像出力部とから構成される超音波採
湯装置。
(3) The signal processor according to claim 1 sets the addition start time of the analog received signal of each vibrator, which is the output of the receiver, in accordance with the temporal timing by the controller. An ultrasonic hot water extraction device comprising: an analog addition section that performs analog summation; and a video output section that outputs the analog addition signal that is the output of the analog addition section as a video signal.
JP56205021A 1981-12-18 1981-12-18 Ultrasonic test equipment Pending JPS58106455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56205021A JPS58106455A (en) 1981-12-18 1981-12-18 Ultrasonic test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56205021A JPS58106455A (en) 1981-12-18 1981-12-18 Ultrasonic test equipment

Publications (1)

Publication Number Publication Date
JPS58106455A true JPS58106455A (en) 1983-06-24

Family

ID=16500125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56205021A Pending JPS58106455A (en) 1981-12-18 1981-12-18 Ultrasonic test equipment

Country Status (1)

Country Link
JP (1) JPS58106455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201156A (en) * 1985-03-04 1986-09-05 Tokyo Keiki Co Ltd Sector circuit in scanning type ultrasonic flaw detecting instrument
CN113358751A (en) * 2021-06-01 2021-09-07 中车青岛四方机车车辆股份有限公司 Workpiece defect detection method, device and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201156A (en) * 1985-03-04 1986-09-05 Tokyo Keiki Co Ltd Sector circuit in scanning type ultrasonic flaw detecting instrument
CN113358751A (en) * 2021-06-01 2021-09-07 中车青岛四方机车车辆股份有限公司 Workpiece defect detection method, device and system

Similar Documents

Publication Publication Date Title
JP6926011B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JPS58106455A (en) Ultrasonic test equipment
JPH069562B2 (en) Ultrasonic diagnostic equipment
JPH01156661A (en) Joint part survey instrument
JPS59151057A (en) Ultrasonic flaw detector
JPH0619341B2 (en) Electronic scanning ultrasonic flaw detector
JP2501488B2 (en) Ultrasonic testing of pipes
JPS6228869B2 (en)
JPS6014166A (en) Method and device for ultrasonic flaw detection
JP2612890B2 (en) Ultrasonic flaw detection method
JPS61253458A (en) Ultrasonic flaw detection
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
KR200184719Y1 (en) Underwater investigation device
JPS6356946B2 (en)
SU1345063A1 (en) Method of determining depth and velocity of propagation of ultrasonic waves in articles
JPS597260A (en) Method and device for ultrasonic flaw detection
JP2001124747A (en) Calibration system for time base of digital ultrasonic testing apparatus
JPS5960354A (en) Ultrasonic flaw detector
JPH0658915A (en) Physically property measuring device
JPH0324623B2 (en)
RU2168723C2 (en) Ultrasonic flaw detector
JPH0474962A (en) Ultrasonic measuring apparatus
JP3088614B2 (en) Array flaw detection method and device therefor
Baboux et al. Measurement of the ultrasonic energy radiated by transducers used in echography
JPS62112059A (en) Ultrasonic flaw inspection device