JPS58102752A - Manufacture of multilayer board - Google Patents

Manufacture of multilayer board

Info

Publication number
JPS58102752A
JPS58102752A JP56202876A JP20287681A JPS58102752A JP S58102752 A JPS58102752 A JP S58102752A JP 56202876 A JP56202876 A JP 56202876A JP 20287681 A JP20287681 A JP 20287681A JP S58102752 A JPS58102752 A JP S58102752A
Authority
JP
Japan
Prior art keywords
resin
multilayer board
base material
impregnated base
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56202876A
Other languages
Japanese (ja)
Inventor
晃嗣 三輪
今津 強
義昭 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP56202876A priority Critical patent/JPS58102752A/en
Publication of JPS58102752A publication Critical patent/JPS58102752A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、多層配耐板等に用いられる多層板の製法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer board used for multilayer distribution boards and the like.

多層板は、一般に樹脂の硬化収縮や基材のテンション等
に起因する残留応力のため、2次成形後。
Multilayer boards are generally damaged after secondary molding due to residual stress caused by curing shrinkage of the resin, tension of the base material, etc.

エツチング後、半田処理後等に寸法変化が生じる。Dimensional changes occur after etching, soldering, etc.

そのため、多層配線板に用いる場合1回路位置精度が悪
くなってスルホール加工時に不良を生じるという問題が
あった。
Therefore, when used in a multilayer wiring board, there is a problem that the positional accuracy of one circuit deteriorates and defects occur during through-hole processing.

そこで、発明者らは、このような問題を解決すべく研究
を重ねた結果、多層板の製造に用いる樹脂含浸基材に、
所定寸法のガラス繊維粉末およびガラスフレークを単独
でもしくは併せて含ませると、所期の目的が達成される
ことを見いだし、この発明に到達した。
Therefore, as a result of repeated research to solve these problems, the inventors found that the resin-impregnated base material used for manufacturing multilayer boards,
It has been found that the intended purpose can be achieved by including glass fiber powder and glass flakes of a predetermined size, either alone or in combination, leading to the present invention.

すなわち、この発明は、袂数枚の樹脂含浸基材を積層し
硬化芒せて多tvm板を製造する方法であって、複数枚
の樹脂含浸基材のうちの適宜の樹脂含浸基材として下記
の(〜成分および(B)成分の少なくとも一万を含有す
るものを用いることをその蒙旨とするものである。
That is, the present invention is a method for manufacturing a multi-TVM board by laminating and hardening several resin-impregnated base materials, in which the following resin-impregnated base materials are used as appropriate resin-impregnated base materials among the plurality of resin-impregnated base materials. The aim is to use a product containing at least 10,000 of the components (-) and component (B).

(へ 平均繊維長か10〜500μであって、(平均繊
維長)/(if径)が3〜50であるガラス繊維粉末。
Glass fiber powder having an average fiber length of 10 to 500μ and a ratio of (average fiber length)/(if diameter) of 3 to 50.

(81厚みが1〜20μであって、(直径)/(厚み)
が20〜500であるガラスフレーク。
(81 thickness is 1 to 20 μ, (diameter) / (thickness)
is 20 to 500.

無機充填材(炭酸カルシウム、シリカ粉末、タルク、ク
レー等)を樹脂の溶剤浴液に添加し、この樹脂の溶剤浴
液を基材に含浸させて樹脂含浸基材をつくり、これを用
いて多層板を製造することにより、寸法精度を向上させ
ることは、これまでよく行われていたのであるが、この
発明は通常の無機充填材ではなく、と記のような寸法の
ガラス繊維粉末、ガラスフレークを充填材として用いる
ことによシ、特に顕著な寸法精度改良効果を奏するもの
である。
Inorganic fillers (calcium carbonate, silica powder, talc, clay, etc.) are added to a resin solvent bath solution, and the base material is impregnated with this resin solvent bath solution to create a resin-impregnated base material. It has been common practice in the past to improve dimensional accuracy by manufacturing plates, but this invention uses glass fiber powder and glass flakes with the dimensions shown below, rather than ordinary inorganic fillers. By using it as a filler, a particularly remarkable effect of improving dimensional accuracy can be achieved.

このように、と記のような寸法のガラス繊維粉末、ガラ
スフレークを用いることにより特に顕著な効果が得られ
るのは、それらの形状寸法が寸法精度向上に有効に作用
するからと考えられる。
As described above, the reason why particularly remarkable effects can be obtained by using glass fiber powder and glass flakes having the dimensions shown in the following is thought to be that their shapes and dimensions effectively work to improve dimensional accuracy.

ガラス繊維粉末は、平均繊維長が10〜500μであっ
て、(平均繊維長)/(直径)が3〜50であることが
必要である。すなわち、平均繊維長が10μ未満では寸
法精度改良効果が得られず、逆に500μを超えてもそ
れ以と寸法精度改良効果が会Φ今増加せずかえって均一
分散ができにくくなるからである。また、(平均繊維長
)/(直径)が3未満ではやはシ寸法精度改良効果が得
られず、逆に50を超えてもそれ以上寸法精度改良効果
が増加せずかえって均一分散が損なわれるからである。
It is necessary that the glass fiber powder has an average fiber length of 10 to 500 μm and a ratio of (average fiber length)/(diameter) of 3 to 50. That is, if the average fiber length is less than 10 μm, no effect of improving dimensional accuracy can be obtained, and on the contrary, even if it exceeds 500 μm, the effect of improving dimensional accuracy does not increase further and it becomes difficult to achieve uniform dispersion. Furthermore, if (average fiber length)/(diameter) is less than 3, the effect of improving dimensional accuracy is no longer obtained, and on the other hand, if it exceeds 50, the effect of improving dimensional accuracy does not increase any more, and instead, uniform dispersion is impaired. It is from.

ガラスフレークは、厚みが1〜20μであって、(直径
)/(厚み)が20〜500であることが必要である。
The glass flakes need to have a thickness of 1 to 20 μm and a ratio of (diameter)/(thickness) of 20 to 500.

すなわち、厚みが1μ未満のガラス7レークをつくるの
は実質的に困難であり、また20μを超えても寸法精度
改良効果か劣るよう与どなり表面平滑性も劣るようにな
るからである。また、(直径)/(厚み)が20未満で
は寸法精度改良効果が小さく、500を超えても寸法精
度−(まそれ程向上せずかえって均一分散が阻害される
ようになるからである0 上記のガラス線維粉末、ガラスフレークは、樹脂の溶剤
浴数(フェス)に添加分散され、それをカラス布等の基
材に含浸し乾燥すること等番こより樹脂含浸基材(プリ
プレグ)に含有される。この場合、樹脂としては熱硬化
性樹脂、特↓こポリイミド樹脂、エポキシ樹脂が用いら
れ、ガラス繊維粉末、ガラスフレークの施加菫は、単独
で用1.Nる場合でも併せて用いる場合でも、その址が
樹脂100重皺部(以下「部」と略す)に対して10〜
100部になるように設定することが好ましい。すなわ
ち、添加賞が10部未満では寸法精度改良効果が小さく
、100部を超えるとフェスの粘度が1昇して含浸が困
難になるうえに成形時の流動性が悪化し良好な成形品が
得られにくくなるからである。
That is, it is substantially difficult to produce glass 7 lakes with a thickness of less than 1 μm, and even if the thickness exceeds 20 μm, the effect of improving dimensional accuracy will be poor, and the surface smoothness will also be poor. Furthermore, if (diameter)/(thickness) is less than 20, the effect of improving dimensional accuracy will be small, and if it exceeds 500, dimensional accuracy will not improve much and uniform dispersion will be hindered. Glass fiber powder and glass flakes are added and dispersed in a resin solvent bath, impregnated into a base material such as glass cloth, and dried, thereby being contained in a resin-impregnated base material (prepreg). In this case, the resin used is a thermosetting resin, a special polyimide resin, or an epoxy resin. The area is 10 to 100% for the resin 100 folded part (hereinafter abbreviated as "part").
It is preferable to set the number to 100 copies. That is, if the additive amount is less than 10 parts, the effect of improving dimensional accuracy is small, and if it exceeds 100 parts, the viscosity of the face increases by 1, making impregnation difficult, and the fluidity during molding deteriorates, resulting in a good molded product. This is because it becomes difficult to get caught.

上記のようにして得られる樹脂含浸基材は、ガラス繊維
粉末、ガラス7レークを含むもの同志もしくはそのよう
なガラス繊維粉末等を含まない樹脂含浸基材と適宜に積
層され、硬化させられて多層板イビする。
The resin-impregnated base material obtained as described above is suitably laminated with a resin-impregnated base material containing glass fiber powder, glass 7 lake, or a resin-impregnated base material that does not contain such glass fiber powder, etc., and is cured to form a multilayer. The board is broken.

このようにして得られる多層板は、上記のような寸法の
ガラス繊維粉末、ガラスフレークの作用により、2次成
形後、エツチング後、半田処理後等の寸法変化が抑制さ
れていて寸法精度が極めて高い。したがって、これを多
層配線板に用いる場合、スルホール加工時の不良を大幅
に低減しうるようになる。
The multilayer board thus obtained has extremely high dimensional accuracy, with dimensional changes suppressed after secondary forming, etching, soldering, etc., due to the action of glass fiber powder and glass flakes with the dimensions described above. expensive. Therefore, when this is used in a multilayer wiring board, defects during through-hole processing can be significantly reduced.

つぎに、実施例について比較例と併せて説明する0 まず、下記の第1表に示すような充填材を準備した。Next, examples will be explained along with comparative examples. First, fillers as shown in Table 1 below were prepared.

(以  下  余  白  ) 第    1    表 つぎに、上記充填材を用い、つぎのようにして多層板を
製造した。
(Margin below) Table 1 Next, a multilayer board was manufactured using the above filler in the following manner.

〔実施例1〜3.実施例5〕 ポリイミド樹脂(ローヌプーラン社製、ケルイミド60
1 )100部をN−メチルピロリドン150部に溶解
してワニスをつくシ、これに後記の第2表に示す充填材
を同表に示す菫だけ添加分散したのちガラス布に含浸乾
燥してプリプレグをつくった。
[Examples 1 to 3. Example 5] Polyimide resin (manufactured by Rhone-Poulenc, Kerimide 60
1) Dissolve 100 parts in 150 parts of N-methylpyrrolidone and apply a varnish. Add and disperse the filler shown in Table 2 below in only the violet shown in the same table, then impregnate a glass cloth and dry it to form a prepreg. I made it.

つぎに、このプリプレグを3001角に切断し2枚重ね
て熱圧成形(温度200℃、圧力50 ”v’d を時
間10分)して多層板(成形品)を得た。、〔実施例4
.実施例6.7〕 エポキシ樹脂(シェル化学社製、エピコート1046)
100部、ジシアンジアミド4部、べ/ジルジメチルア
ミン0.2部、アセトン25部、ジメチルフォルムアミ
ド20部、メチルセルソルブ20部を用いてワニスをつ
くり、これに後記の第2表に示す充填材を同表に示す蓋
だけ添加分散した。
Next, this prepreg was cut into 3001 square pieces, two sheets were stacked and hot-press molded (temperature: 200°C, pressure: 50"V'd, time: 10 minutes) to obtain a multilayer board (molded product). [Example] 4
.. Example 6.7] Epoxy resin (manufactured by Shell Chemical Co., Ltd., Epicoat 1046)
A varnish was made using 100 parts of dicyandiamide, 4 parts of dicyandiamide, 0.2 parts of be/zyl dimethylamine, 25 parts of acetone, 20 parts of dimethylformamide, and 20 parts of methylcellosolve, and the fillers shown in Table 2 below. Only the lids shown in the same table were added and dispersed.

これ以降は実施例1〜3と同様にして多層板を得た。After this, a multilayer board was obtained in the same manner as in Examples 1 to 3.

〔比較例1,2〕 充填材の添加を取シ止めた。それ以外は実施flJ1お
よび実施例4と同様にして多層板を得た。
[Comparative Examples 1 and 2] Addition of filler was stopped. A multilayer board was obtained in the same manner as in Example flJ1 and Example 4 except for the above.

〔比較例3,4〕 ガラス繊維粉末充填材に代えて後記の第2表に示す充填
材を用いた。それ以外は実施例1と同様にして多層板を
得た。
[Comparative Examples 3 and 4] Fillers shown in Table 2 below were used in place of the glass fiber powder filler. A multilayer board was obtained in the same manner as in Example 1 except for the above.

以上の実施例および比較例で得られた多層板の板面に図
面に示すように印A、B、C,Dをつけ、AC間、BD
間の寸法を測定した。なお、矢印はワニス含浸時の進行
方向を示す。つぎに、多層板のと下にプリプレグ2枚銅
箔1枚を積層して多層板の成形条件とIHJ様の条件で
熱圧成形した。そして、その後エツチングして銅箔を除
いて乾燥し、再び多層板の板面のAC間、BD間の寸法
を測定して初期寸法に対する変化率を求めた、第2表よ
り、実施レリのものの寸法変化率は比較例のものの寸法
変化率よりかなり小さく、寸法精度か優れていることが
わかる。
Marks A, B, C, and D are marked on the plate surfaces of the multilayer boards obtained in the above Examples and Comparative Examples as shown in the drawings.
The dimensions between the two were measured. Note that the arrow indicates the direction of movement during varnish impregnation. Next, two sheets of prepreg and one sheet of copper foil were laminated under the multilayer board and hot-press molded under the molding conditions of the multilayer board and IHJ-like conditions. After that, it was etched, the copper foil was removed and dried, and the dimensions between AC and BD on the board surface of the multilayer board were measured again to find the rate of change from the initial dimension. It can be seen that the dimensional change rate is considerably smaller than that of the comparative example, and the dimensional accuracy is excellent.

(以  下  余  白   )(Hereafter, the rest is white)

【図面の簡単な説明】[Brief explanation of the drawing]

図面は寸法変化率の測定説明図である。 特許出願人 松下電工株式会社 代理人 弁理士 松 本 武  彦 The drawing is an explanatory diagram of measurement of the dimensional change rate. Patent applicant Matsushita Electric Works Co., Ltd. Agent: Patent Attorney Takehiko Matsumoto

Claims (4)

【特許請求の範囲】[Claims] (1)複数枚の樹脂含浸基材を積層し硬化させて多層板
を製造する方法であって、複数枚の樹脂含浸基材のうち
の適宜の樹脂含浸基材として下記の(〜成分および(ハ
)成分の少なくとも一方を含有するものを用いることを
特徴とする多層板の製法。 (ハ)平均繊維長が10〜500μであって、(平均繊
維長)/(直径)が3〜50であるガラス繊維粉末。 に)厚みが1〜20μであって、(直径)/(厚み)が
20〜500であるガラスフレーク。
(1) A method of manufacturing a multilayer board by laminating and curing a plurality of resin-impregnated base materials, in which an appropriate resin-impregnated base material among the plurality of resin-impregnated base materials is the following (~ components and ( C) A method for manufacturing a multilayer board characterized by using a material containing at least one of the components. A certain glass fiber powder. 2) Glass flakes having a thickness of 1 to 20μ and a ratio of (diameter)/(thickness) of 20 to 500.
(2)(〜成分および(均取分の少なくとも一方を含有
する樹脂含浸基材が、樹脂の溶剤溶液に(〜成分および
(ハ)成分の少なくとも一方を添加分散し、これを基材
に含浸し乾燥することによりつくられたものである特許
請求の範囲第1項記載の多層板の製法。
(2) A resin-impregnated base material containing at least one of component ~ and (3) is prepared by adding and dispersing at least one of component ~ and component (c) to a resin solvent solution, and impregnating the base material with this. A method for producing a multilayer board according to claim 1, which is produced by drying the multilayer board.
(3)(ハ)成分および(ハ)成分の少なくとも一方の
添加皺が、樹脂100重歓部に対して10〜100重に
部に設定されている特許請求の範囲第2項記載の多層板
の製法。
(3) The multilayer board according to claim 2, wherein the wrinkles added to at least one of the component (c) and the component (c) are set at 10 to 100 parts per 100 parts of the resin. manufacturing method.
(4)樹脂含浸基材の樹脂がポリイミド樹脂またはエポ
キシ樹脂である特許請求の範囲第1項ないし第3項のい
ずれかに記載の多層板の製法。
(4) The method for producing a multilayer board according to any one of claims 1 to 3, wherein the resin of the resin-impregnated base material is a polyimide resin or an epoxy resin.
JP56202876A 1981-12-15 1981-12-15 Manufacture of multilayer board Pending JPS58102752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202876A JPS58102752A (en) 1981-12-15 1981-12-15 Manufacture of multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202876A JPS58102752A (en) 1981-12-15 1981-12-15 Manufacture of multilayer board

Publications (1)

Publication Number Publication Date
JPS58102752A true JPS58102752A (en) 1983-06-18

Family

ID=16464657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202876A Pending JPS58102752A (en) 1981-12-15 1981-12-15 Manufacture of multilayer board

Country Status (1)

Country Link
JP (1) JPS58102752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060136A (en) * 1995-10-13 2000-05-09 Cryovac, Inc. High modulus oxygen-permeable multilayer film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52400A (en) * 1975-06-23 1977-01-05 Asahi Fiber Glass Co Ltd Process of an electric insulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52400A (en) * 1975-06-23 1977-01-05 Asahi Fiber Glass Co Ltd Process of an electric insulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060136A (en) * 1995-10-13 2000-05-09 Cryovac, Inc. High modulus oxygen-permeable multilayer film

Similar Documents

Publication Publication Date Title
JPS58102752A (en) Manufacture of multilayer board
DE2134668A1 (en)
JPS6072931A (en) Production of paper-base phenolic resin laminate
JPH0356583B2 (en)
JPS61162344A (en) Printed wiring board
JPH05327148A (en) Laminated plate for printed circuit
JP3173082B2 (en) Manufacturing method of laminated board
JPS5941262A (en) Manufacture of laminated board
JPS61162341A (en) Printed wiring board
JPH02133439A (en) Production of electrical laminate
JPS60174647A (en) Paper base-material epoxy resin laminated board
JPS63172641A (en) Copper-clad laminated board
JPS6330538A (en) Production of laminated sheet
JPH0771839B2 (en) Laminated board manufacturing method
JPH02276624A (en) Thermosetting resin laminated sheet
JPS61162340A (en) Substrate for printed wiring board
JPS62162533A (en) Single-sided metal-lined laminated board
JPS6381036A (en) Manufacture of laminated board
JPH0371459B2 (en)
JPH04234613A (en) Manufacture of resin-impregnated base material
JPS6063145A (en) Laminated board for electricity
JPH04234612A (en) Manufacture of resin-impregnated base material
JPH0239968B2 (en)
JPH01118538A (en) Preparation of epoxy resin laminate
JPH044144B2 (en)