JPS58102198A - Condensed water drain recovering system - Google Patents

Condensed water drain recovering system

Info

Publication number
JPS58102198A
JPS58102198A JP56200200A JP20020081A JPS58102198A JP S58102198 A JPS58102198 A JP S58102198A JP 56200200 A JP56200200 A JP 56200200A JP 20020081 A JP20020081 A JP 20020081A JP S58102198 A JPS58102198 A JP S58102198A
Authority
JP
Japan
Prior art keywords
water
condensate
corrosion
plant
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56200200A
Other languages
Japanese (ja)
Other versions
JPS6257240B2 (en
Inventor
道好 山本
三谷 信次
元浩 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP56200200A priority Critical patent/JPS58102198A/en
Publication of JPS58102198A publication Critical patent/JPS58102198A/en
Publication of JPS6257240B2 publication Critical patent/JPS6257240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、復水ドレン回収システムに係り、特に、蒸気
タービン発電プラントの復水、給水系統の防錆保管対策
P好適な復水ドレン回収システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condensate recovery system, and particularly to a condensate recovery system suitable for rust-proof storage measures for condensate and water supply systems of steam turbine power plants.

従来のプラントの保管は、火力プラントでは、窒素ガス
封入や防錆剤による薬注管理が実施されている。沸騰水
fli原子炉では、−次系冷却水として純水を使用する
ため集注は不可能であ抄、窒素封入は1点検機器の多い
場合KN、ガスの濃度維持が困峻なことおよび安全面の
YJ*が必要なことから使用されていない、従って、従
来は、純水の配管満水状態で放置されていた。このよう
な秦件では、純水の水質は悪化し1例えば導電率はts
g、4両種度となり、溶存酸素濃度も大気中の酸素が飽
和するまで溶解する(約8ppm)ので、鉄の腐食生成
物としてクラッド(p@ρa e F@jL * r 
−FeOOH等)が発生して、保管水の水質が悪化する
。同時にこれらの鉄クラツドがプラント起動時原子炉に
持ち込まれる丸め1機器の損傷が発生しえり、tた腐食
生成物が原子炉内で放射化され。
Conventional plant storage in thermal power plants involves nitrogen gas injection and chemical injection using rust preventive agents. In boiling water reactors, pure water is used as secondary system cooling water, so it is impossible to collect water, and nitrogen filling is difficult when maintaining the gas concentration when there are many inspection equipment and safety issues. Since YJ* is required, it is not used. Therefore, conventionally, the pipes were left full of pure water. In such a case, the quality of pure water deteriorates 1, for example, the conductivity decreases to ts.
g, 4 species, and the dissolved oxygen concentration is dissolved until atmospheric oxygen is saturated (approximately 8 ppm), so cladding (p@ρa e F@jL * r
-FeOOH, etc.), which deteriorates the quality of the stored water. At the same time, these iron claddings may be brought into the reactor during plant start-up, causing damage to equipment, and corrosion products becoming radioactive within the reactor.

腐食生成物核種となり、原子炉−次系の機器にこれらが
付着し、プラントの表面線量率を高める。
They become corrosion product nuclides and adhere to equipment in the reactor system, increasing the surface dose rate of the plant.

従って、運転停止期間中といえども、復水、給水配管の
腐食は少なくすることが望ましい。
Therefore, it is desirable to minimize corrosion of condensate and water supply piping even during the period of shutdown.

これらの対策として、復水、給水系統内の保有水を抜き
出し、乾燥して、肪食をはかることが検討されつつある
。しかしI100MW1級の原子カブラン)4Cなると
系統内配管の保有水は数百トン以上にもなり、多量の放
射性ドレ/を処理しなければならない。
As a countermeasure to these problems, consideration is being given to extracting condensate water and water retained in the water supply system, drying it, and eating fat. However, when it comes to I100MW 1st class nuclear reactors) 4C, the amount of water held in the pipes within the system is several hundred tons or more, and a large amount of radioactive drainage must be disposed of.

従来のプラントの例でさもに異体的に説明すると、第t
gで示すように%原子炉圧力容器lで発生した蒸気は主
蒸気管2を通り、高圧タービン3さらに低圧タービン4
を回わす。低圧タービン4からの蒸気の排気は、復水器
5で復水とな抄、復水器s内の復水溜6に落ちる。しか
る後に、配管7、弁8を通過して復水浄化ポンプ9によ
り復水脱塩器10に送られ浄化される。浄化され九復水
は、低圧給水ポンプIIKよって低圧給水加熱器11に
送られ、さらに高圧給水ポンプ12によって高圧給水加
熱器13に送られ、これらの給水加熱器で加熱された後
原子炉圧力容器1に給水される。以上は運転中であるが
、プラントの起動時にはそれぞれの配管および機器から
出た腐食生成物が原子炉中に流入する心配がある。これ
らの配管機器からの腐食生成物は、100〜3QQK4
mspeにもなる。これらが原子炉1に流入すると放射
化してプラントの線量率を高めてしまう。
To explain this in a different way using the example of a conventional plant, the tth
As shown by g, the steam generated in the reactor pressure vessel l passes through the main steam pipe 2, passes through the high pressure turbine 3, and then the low pressure turbine 4.
Turn. Steam exhaust from the low pressure turbine 4 is converted into condensate in a condenser 5 and falls into a condensate reservoir 6 in a condenser s. Thereafter, the condensate passes through a pipe 7 and a valve 8, and is sent to a condensate demineralizer 10 by a condensate purification pump 9, where it is purified. The purified nine-condensate water is sent to the low-pressure feedwater heater 11 by the low-pressure feedwater pump IIK, and further sent to the high-pressure feedwater heater 13 by the high-pressure feedwater pump 12, and after being heated by these feedwater heaters, it is sent to the reactor pressure vessel. Water is supplied to 1. Although the above is currently in operation, there is a concern that corrosion products from each piping and equipment may flow into the reactor when the plant is started up. Corrosion products from these piping equipment are 100~3QQK4
It also becomes mspe. When these flow into the reactor 1, they become radioactive and increase the dose rate of the plant.

本発明の目的は、プラント運転停止中における復水、給
水系統の配管・機器の腐食を低減させる復水ドレン回収
システムを提供することにある。
An object of the present invention is to provide a condensate drain recovery system that reduces condensate and corrosion of piping and equipment of a water supply system during plant shutdown.

停止期間が長期になる場合には、復水・給水内の保有水
を抜き出し、乾燥保管することが検討1れているが、I
100MWe級の大型プラン)Kなると系統内の保有水
は数百トン以上にもなシ、多量の放射性ドレYを処理し
なければならない丸め運用のコストが莫大となる欠点が
あった。本発明は。
If the outage period is long, it is being considered to extract the water contained in the condensate/water supply and store it in a dry manner.
In the case of a large plan (100 MWe class) K, the amount of water held in the system would be several hundred tons or more, and there was a drawback that the cost of rounding operation would be enormous as it would have to process a large amount of radioactive effluent. The present invention is.

抜き出し九保有水の大部分を主復水器水滴に移し。Most of the extracted water is transferred to the main condenser water droplet.

起動時に再利用する丸め、放射性廃液の量を増加させる
ことはない。
Rounding to be reused during startup will not increase the amount of radioactive waste fluid.

以下、沸騰水型原子力発電所に適用し九本発明の一実施
例を第2図によ如説明する。プラント停止後−1復水ポ
ンプ人口弁8、出口弁15および。
Hereinafter, one embodiment of the present invention applied to a boiling water nuclear power plant will be explained with reference to FIG. After plant shutdown -1 condensate pump population valve 8, outlet valve 15 and.

低圧給水ポンプ人口弁16を閉じる。次に、復水管7、
給水管17.およびヒータドレン配管18内の保有水を
、ドレン回収配管19によって水抜きし、ドレン回収タ
ンク20に導く0次に、ポンプ21の駆動によって復水
浄化装置入口に導き。
Close the low pressure water pump population valve 16. Next, the condensate pipe 7,
Water supply pipe 17. The water held in the heater drain pipe 18 is drained by the drain recovery pipe 19 and led to the drain recovery tank 20. Next, the water is led to the inlet of the condensate purification device by driving the pump 21.

ドレン水を浄化した後、復水器水溜に導き、復水。After purifying the drain water, it is led to the condenser water reservoir and condensed.

給水、ヒータードレン配管中の保管水の大部分を主復水
器水溜に貯蔵する。同時に、ホットゥルドレン配管22
から、貯蔵水の一部をドレン回賦タンタKjl自さらに
、収集タンクのドレンを移送ポンプから復水脱塩111
0を通して主重水1!IK回収するという閉ループを構
成し、貯蔵水の水質を炭素鋼の防食に好適な条件、すな
わち、第3図に示すように導電率0.05sl18/c
ps、 0.8s87as * K維持する。さらに、
第4図に示すように、配管を流れる純水の流速をα雪m
/s@c以上に維持すれば配管の腐食が抑制できる。゛
これは上記導電率条件(0,055μ8/CF−Q、3
a8/m )では鉄の腐食化学反応が抑制されるまた。
Most of the water stored in the water supply and heater drain piping is stored in the main condenser water reservoir. At the same time, hot drain piping 22
From there, a part of the stored water is drained and recycled, and the drain from the collection tank is transferred from the pump to the condensate desalination 111.
Main heavy water 1 through 0! A closed loop of IK recovery is constructed, and the quality of the stored water is kept under conditions suitable for corrosion protection of carbon steel, that is, the electrical conductivity is 0.05 sl18/c as shown in Figure 3.
ps, maintain 0.8s87as*K. moreover,
As shown in Figure 4, the flow rate of pure water flowing through the pipe is α m
If the temperature is maintained at or above /s@c, corrosion of the piping can be suppressed.゛This is based on the above conductivity conditions (0,055μ8/CF-Q, 3
a8/m ), the corrosion chemical reaction of iron is also suppressed.

大気中の溶存酸素S度がこの反応を助け、鉄表面に&好
な不働態酸化皮膜・を形成するためである。また溶存酸
素が高い保管水中ではもし流動がなければ、孔食が発生
し腐食が゛奉加するため一定の流速に維持する。
This is because the dissolved oxygen S degree in the atmosphere assists this reaction and forms a favorable passive oxide film on the iron surface. Furthermore, if there is no flow in stored water with high dissolved oxygen, pitting corrosion will occur and corrosion will increase, so a constant flow rate must be maintained.

なお、復水器胴体の容量は約4000111’で、復水
器水溜に常時存在する水量および復水、給水、ヒータド
レン配管中に存在する水量はそれぞれ約200トンおよ
び約300トンである九め主復水器水滴の容量は十分で
ある。
The capacity of the condenser body is approximately 4,000,111', and the amount of water constantly present in the condenser water reservoir and the amount of water present in the condensate, water supply, and heater drain piping are approximately 200 tons and 300 tons, respectively. The capacity of the condenser water droplets is sufficient.

本発明は、沸騰水盤原子カプラントの原子炉圧力容器以
外の蒸気発生器、すなわち、加圧水源原子炉および高速
増殖炉の蒸気発生器および火力プラントのボイラへの復
水給水系統に対しても適用できる。
The present invention can also be applied to steam generators other than reactor pressure vessels of boiling water basin nuclear coup plants, that is, steam generators of pressurized water source reactors and fast breeder reactors, and condensate water supply systems to boilers of thermal power plants. .

本発明によれば1、プラント停止時、復水中給水および
ヒータドレン配管中の保有水を除去して保管できるため
、各配管の腐食量を低減でき、プラントの放射能上昇を
抑制できるので効果がある。
According to the present invention, 1. When the plant is stopped, retained water in the condensate water supply and heater drain piping can be removed and stored, which is effective because it reduces the amount of corrosion in each piping and suppresses the increase in radioactivity in the plant. .

炭素鋼の場合、満水保管の場合の腐食速度は。In the case of carbon steel, what is the corrosion rate when stored in full water?

約159mdmであるのく対し、配管中の水を抜いて保
管した場合は、約%15mdmに減少する。
However, when the water in the pipes is drained and stored, it decreases to about 15% mdm.

また、満水保管の場合の鉄発生量は3ケ月間で約200
−であるが、水抜き保管の場合は、60−と非常に少な
くなる。
In addition, the amount of iron generated in the case of full water storage is approximately 200% over 3 months.
-, but when stored without water, it becomes very low at 60-.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術を説明するBWRプラントの復水給
水系の系統図,第2図は本発明の一実施例を説明するB
WRプラントの復水ドレン回収システムを有する系統の
概要図、第3図は炭素鋼の腐食適度比と導電率Om係を
示す図、第4図は。 炭素鋼の腐食速度比と流速の関係を示す図である。 5・・・主復水器、6・・・主復水器水溜め、7・・・
復水配管、8,15.ll、16.23・・・仕切シ弁
。 10・・・復水脱塩器、7・・・復水配管、17・・・
給水配管、19・・・復水ドレン回収配管、20・・・
ドレン回収タンク、9,21,11.13・・・ポンプ
Fig. 1 is a system diagram of a condensate water supply system of a BWR plant to explain the prior art, and Fig. 2 is a BWR plant diagram to explain an embodiment of the present invention.
A schematic diagram of a system having a condensate drain recovery system of a WR plant, Fig. 3 is a diagram showing the corrosion mode ratio and conductivity Om ratio of carbon steel, and Fig. 4 is a diagram showing the ratio of corrosion mode to carbon steel. FIG. 3 is a diagram showing the relationship between corrosion rate ratio and flow rate of carbon steel. 5... Main condenser, 6... Main condenser water reservoir, 7...
Condensate piping, 8,15. ll, 16.23...Gate valve. 10... Condensate demineralizer, 7... Condensate piping, 17...
Water supply piping, 19... Condensate drain recovery piping, 20...
Drain recovery tank, 9, 21, 11. 13...pump.

Claims (1)

【特許請求の範囲】[Claims] 1、 プラントの運転停止中に、復水器と蒸気発生器を
連絡する復水・給水系配管内の水をドレンする第1配管
と、前記ドレン収集するタンクと、前記タンク内のドレ
ンを前記復水器に導く第3配管と、前記第2配管に設け
られる浄化手段とからなる復水ドレン回収システム。
1. While the plant is out of operation, the first pipe for draining water in the condensate/water supply system piping that connects the condenser and the steam generator, the tank for collecting the drain, and the drain in the tank A condensate drain recovery system comprising a third pipe leading to a condenser and a purifying means provided in the second pipe.
JP56200200A 1981-12-14 1981-12-14 Condensed water drain recovering system Granted JPS58102198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200200A JPS58102198A (en) 1981-12-14 1981-12-14 Condensed water drain recovering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200200A JPS58102198A (en) 1981-12-14 1981-12-14 Condensed water drain recovering system

Publications (2)

Publication Number Publication Date
JPS58102198A true JPS58102198A (en) 1983-06-17
JPS6257240B2 JPS6257240B2 (en) 1987-11-30

Family

ID=16420459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200200A Granted JPS58102198A (en) 1981-12-14 1981-12-14 Condensed water drain recovering system

Country Status (1)

Country Link
JP (1) JPS58102198A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651696A (en) * 1979-10-04 1981-05-09 Tokyo Shibaura Electric Co Nuclear reactor feedwater device * and its operation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651696A (en) * 1979-10-04 1981-05-09 Tokyo Shibaura Electric Co Nuclear reactor feedwater device * and its operation method

Also Published As

Publication number Publication date
JPS6257240B2 (en) 1987-11-30

Similar Documents

Publication Publication Date Title
US5089216A (en) System for chemical decontamination of nuclear reactor primary systems
JPS58102198A (en) Condensed water drain recovering system
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JP2895267B2 (en) Reactor water purification system
JPS6398597A (en) Condensate system
JPS629296A (en) Structural material of nuclear-reactor primary cooling system
Oliker et al. Heater drain deaeration in BWR nuclear station under pumped forward conditions
JPS6147592A (en) Condemiless condensate purifying facility
Pearl et al. PWR secondary water chemistry study
Fortune Boiler Feed‐water Treatment for Corrosion Control—Part 2
JPS642237B2 (en)
JPS604439B2 (en) How to operate a nuclear reactor plant
Lee et al. A Feasibility Study on Improvement of Boron Recovery System using Vacuum Equipment
JPH049279B2 (en)
Shibayama et al. Backfit of a condensate polishing system in a pressurized water reactor plant
Ko et al. Study on Application of Vacuum Degasifier for Degasification of the Reactor Coolant
JPS61104298A (en) Radioactivity accumulation reducer for nuclear reactor primary cooling system
JPS63150504A (en) Water treatment equipment
JPS61162798A (en) Boiling water cooling type reactor
JPS5844390A (en) Reactor water sampling device prevented adhesion in pipe
Emsperger et al. Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPS62190496A (en) Purifier for coolant of nuclear reactor
Rinald A STUDY OF THE TEMPERATURE AND PRESSURE IN THE REACTOR AND THE DRAIN TANKS OF THE PAR DURING AN EMERGENCY DRAIN
Sawochka et al. Control of corrosion product transport in PWR secondary cycles