JPH1197058A - Sodium-sulfur cell - Google Patents
Sodium-sulfur cellInfo
- Publication number
- JPH1197058A JPH1197058A JP9258152A JP25815297A JPH1197058A JP H1197058 A JPH1197058 A JP H1197058A JP 9258152 A JP9258152 A JP 9258152A JP 25815297 A JP25815297 A JP 25815297A JP H1197058 A JPH1197058 A JP H1197058A
- Authority
- JP
- Japan
- Prior art keywords
- container
- anode
- sulfur
- pressure
- anode container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、陽極容器を構成
する材料の温度上昇による強度低下及び陽極容器の内圧
上昇を利用して開裂する解圧部を有し、当該解圧部の開
裂により陽極活物質を陽極容器外に放出して、ナトリウ
ムと硫黄の直接反応とそれに伴う単電池の爆発を防止し
たナトリウム−硫黄単電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a pressure-reducing portion that cleaves by utilizing a decrease in strength of a material constituting an anode container due to a rise in temperature and a rise in the internal pressure of the anode container. The present invention relates to a sodium-sulfur cell in which an active material is discharged outside an anode container to prevent a direct reaction between sodium and sulfur and an explosion of the cell accompanying the reaction.
【0002】[0002]
【従来の技術】 ナトリウム−硫黄電池(以下、NAS電
池という。)は、300〜350 ℃で作動させる高温二次電
池であり、通常は、複数個の単電池を立設集合した電池
モジュールを断熱容器内に収容した、集合電池の形で用
いられる。前記単電池は、陽極金属容器内に陽極活物質
である硫黄と、陰極活物質であるナトリウムを、β−ア
ルミナよりなる固体電解質管の内外に隔離収納するとと
もに、活物質が外気と非接触の状態に保持されるよう
に、陽極容器内を密閉状態に封止した構造を採ってい
る。2. Description of the Related Art A sodium-sulfur battery (hereinafter, referred to as a NAS battery) is a high-temperature secondary battery operated at 300 to 350 ° C. Usually, a battery module in which a plurality of unit cells are erected and assembled is insulated. It is used in the form of a collective battery housed in a container. The unit cell, while storing the anode active material sulfur and the cathode active material sodium in the anode metal container inside and outside the solid electrolyte tube made of β-alumina, the active material is in contact with the outside air. A structure is adopted in which the inside of the anode container is hermetically sealed so as to be maintained in a state.
【0003】 従って、ヒーターの異常加熱、過放電等
が起こると、まず、単電池の温度上昇が起こり、これに
伴い陽極容器に収容された溶融硫黄の蒸気圧が高まっ
て、陽極容器内に配設された固体電解質管が破壊され、
最終的には、固体電解質管により内外に隔離収納されて
いた溶融金属ナトリウムと溶融硫黄が直接接触し、化学
反応を起こすことになる。[0003] Therefore, when abnormal heating of the heater, overdischarge, or the like occurs, first, the temperature of the unit cell rises, and accordingly, the vapor pressure of the molten sulfur contained in the anode container increases, and the cell is placed in the anode container. The installed solid electrolyte tube is destroyed,
Eventually, the molten metal sodium and the molten sulfur, which are separated and housed inside and outside by the solid electrolyte tube, come into direct contact with each other to cause a chemical reaction.
【0004】 硫黄とナトリウムが直接反応を起こした
場合には、その反応熱による大量かつ高温の火炎が電池
モジュールを収容した断熱容器をも溶損し、断熱容器外
にまで火炎が広がる危険性が予想される。そこで、陽極
容器の一部に内圧上昇により開裂するような解圧部を設
けることにより、陽極容器の密閉状態を開放し、内圧上
昇による不具合を防止したNAS単電池が提案されている
(実開昭50-143031号公報、特開昭56-78063号公報、実
開昭56-84274号公報等)。[0004] When sulfur and sodium react directly, a large amount of high-temperature flame due to the heat of the reaction also damages the heat insulating container housing the battery module, and there is a risk that the flame spreads outside the heat insulating container. Is done. Therefore, there has been proposed a NAS cell in which a sealed part of the anode container is opened by providing a pressure-releasing portion in a part of the anode container so as to be broken by an increase in the internal pressure, thereby preventing a problem due to the increase in the internal pressure. JP-A-50-143031, JP-A-56-78063, and JP-A-56-84274.
【0005】[0005]
【発明が解決しようとする課題】 しかしながら、前記
NAS単電池はいずれも陽極容器に生じた内圧を解圧し、
内圧上昇による陽極容器の体積膨張や爆発を防止する点
については効果があるものの、通常の電池運転時にも解
圧部が開裂してしまうおそれがあった。Problems to be Solved by the Invention
All NAS cells release internal pressure generated in the anode container,
Although effective in preventing volume expansion and explosion of the anode container due to an increase in internal pressure, there is a possibility that the decompression portion may be broken even during normal battery operation.
【0006】 即ち、上述の如くNAS単電池は300〜350
℃の高温で運転する電池であるため、通常運転時におい
ても密閉状態に封止された陽極容器には、いくらかの内
圧が生じることになる。従って、解圧部の設計によって
は、前記通常運転時に生ずる内圧によっても解圧部が開
裂して、陽極容器内に収納された活物質の硫黄等が陽極
容器外に放出されてしまう可能性がある。[0006] That is, as described above, the NAS cell is 300 to 350
Since the battery is operated at a high temperature of ° C., some internal pressure is generated in the hermetically sealed anode container even during normal operation. Therefore, depending on the design of the decompression unit, there is a possibility that the decompression unit is also split by the internal pressure generated during the normal operation, and sulfur or the like of the active material stored in the anode container is released outside the anode container. is there.
【0007】 陽極容器が一旦開裂してしまうと、当該
NAS電池は使用不能となるため、かかる事態は防止する
必要がある。本発明は、このような従来技術の問題に鑑
みてなされたものであって、その目的とするところは、
異常発生時の温度上昇に伴う内圧上昇によってのみ解圧
部が開裂し、通常運転時の内圧上昇による解圧部の開裂
を防止したNAS単電池を提供することにある。[0007] Once the anode container has been broken,
Such a situation needs to be prevented because the NAS battery becomes unusable. The present invention has been made in view of such problems of the related art, and the object thereof is to:
An object of the present invention is to provide a NAS unit cell in which a pressure-reducing portion is broken only by an increase in internal pressure due to a temperature rise at the time of occurrence of an abnormality, and the cracking portion is prevented from being broken by a rise in internal pressure during normal operation.
【0008】[0008]
【課題を解決するための手段】 本発明によれば、陽極
活物質である硫黄を含浸した円筒状の陽極モールドと、
当該陽極モールドを収容する陽極容器と、当該陽極容器
と陰極金具とを接合する絶縁体リングと、当該絶縁体リ
ングの内周部に接合された有底円筒状の固体電解質管
と、当該固体電解質管と前記陰極金具とから形成される
内部空間に配設された、陰極活物質であるナトリウムを
収容するカートリッジと、当該カートリッジと前記固体
電解質管との間隙部に配設された有底円筒状の隔壁管と
を有して構成されたナトリウム−硫黄単電池において、
前記陽極容器の一部に、当該陽極容器の内温及び内圧の
上昇により開裂する解圧部を形成するとともに、当該解
圧部が、陽極容器の内温が444℃以上660℃以下の
範囲内において開裂するように構成したことを特徴とす
るナトリウム−硫黄単電池が提供される。なお、本発明
のナトリウム−硫黄単電池においては、解圧部を陽極容
器の底部に設けることが好ましい。According to the present invention, a cylindrical anode mold impregnated with sulfur as an anode active material;
An anode container for accommodating the anode mold, an insulator ring for joining the anode container and the cathode metal fitting, a bottomed cylindrical solid electrolyte tube joined to an inner peripheral portion of the insulator ring, and the solid electrolyte; A cartridge containing sodium, which is a cathode active material, disposed in an internal space formed by a tube and the cathode fitting; and a bottomed cylindrical shape disposed in a gap between the cartridge and the solid electrolyte tube. In a sodium-sulfur cell configured with a partition tube of
In a part of the anode container, a decompressed portion that is cleaved by an increase in the internal temperature and internal pressure of the anode container is formed, and the internal pressure of the anode container is within a range of 444 ° C or more and 660 ° C or less. And a sodium-sulfur unit cell is provided. In addition, in the sodium-sulfur unit cell of the present invention, it is preferable that the pressure-releasing unit is provided at the bottom of the anode container.
【0009】[0009]
【発明の実施の形態】 本発明は、NAS単電池に関する
ものであるので、まず、一般的なNAS単電池の全体構造
について概説する。NAS単電池は、例えば図2に示すよ
うに、陽極活物質である硫黄42を含浸した円筒状の陽
極モールド36、陽極モールド36を収容する陽極容器
33、陽極容器33と絶縁体リング32を介して接合さ
れる陰極金具34、絶縁体リング32の内周部に接合さ
れた有底円筒状の固体電解質管35、及び陰極金具34
と固体電解質管35とから形成される内部空間に配設さ
れた、陰極活物質であるナトリウム37を収容して構成
される。BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a NAS cell, and first, an overall structure of a general NAS cell will be outlined. For example, as shown in FIG. 2, the NAS unit cell includes a cylindrical anode mold 36 impregnated with sulfur 42 as an anode active material, an anode container 33 containing the anode mold 36, an anode container 33 and an insulator ring 32. Metal fitting 34, a bottomed cylindrical solid electrolyte tube 35 bonded to the inner periphery of insulator ring 32, and cathode metal fitting 34
And a solid electrolyte tube 35, and accommodates sodium 37, which is a cathode active material, provided in an internal space formed by the solid electrolyte tube 35.
【0010】 前記NAS単電池は、陰極活物質である金
属ナトリウムと陽極活物質の硫黄が固体電解質管により
隔離収納されており、単電池を複数集合した電池モジュ
ール全体を収容する断熱容器の内底部に配置された電気
ヒータにより、断熱容器の内部を300〜350℃に加熱し、
両活物質を溶融してイオンを移動させることにより電気
化学反応を行い、所定のエネルギーを得る仕組みとなっ
ている。In the NAS unit cell, metallic sodium as a cathode active material and sulfur as an anode active material are separated and stored by a solid electrolyte tube, and an inner bottom portion of an insulated container for housing a whole battery module in which a plurality of unit cells are assembled. Heat the inside of the insulated container to 300-350 ° C by the electric heater
An electrochemical reaction is performed by melting the both active materials and moving the ions to obtain a predetermined energy.
【0011】 次に、本発明のNAS単電池の構成につい
て図面を参照しながら詳細に説明する。本発明のNAS単
電池は、例えば図1に示すように、上述した通常のNAS
単電池1の陽極容器3の一部に当該陽極容器3の内圧の
上昇により開裂する解圧部14を設けている。こうする
ことにより、陽極容器3の内圧が上昇すると、固体電解
質管5が破損するより前に、まず陽極容器3の解圧部1
4が開裂して陽極容器3の密閉状態を開放するため、前
記内圧により固体電解質管5が破壊される事態は回避す
ることができる。Next, the configuration of the NAS cell of the present invention will be described in detail with reference to the drawings. The NAS cell of the present invention is, for example, as shown in FIG.
A pressure release portion 14 is provided in a part of the anode container 3 of the cell 1 so as to be cleaved by an increase in the internal pressure of the anode container 3. By doing so, when the internal pressure of the anode container 3 rises, first before the solid electrolyte tube 5 is broken,
Since the anode 4 is opened and the sealed state of the anode container 3 is opened, the situation in which the solid electrolyte tube 5 is broken by the internal pressure can be avoided.
【0012】 解圧部14の構造としては、例えば、陽
極容器3の他の部分に比して脆弱に構成する方法等が考
えられ、更に具体的に言えば、図1に示すように陽極容
器3底部の一部に薄肉部16を形成することが考えられ
る。この場合、薄肉部16の厚みを調整することによっ
て、所望の内圧で解圧するように構成することが理論的
には可能である。As a structure of the pressure release unit 14, for example, a method that is fragile compared to other parts of the anode container 3 can be considered. More specifically, as shown in FIG. It is conceivable to form the thin portion 16 at a part of the three bottoms. In this case, it is theoretically possible to adjust the thickness of the thin portion 16 to release the pressure at a desired internal pressure.
【0013】 しかしながら、前述の如くNAS単電池
は、通常運転時にも陽極容器の内圧上昇が生ずるため、
異常発生時にのみ解圧部を開裂させるように制御するこ
とは、実際には容易ではない。即ち、通常の電池運転時
の内圧上昇と異常発生時の内圧上昇とを差別化して認識
する必要がある。[0013] However, as described above, the NAS cell increases the internal pressure of the anode container even during normal operation.
In practice, it is not easy to control so as to cleave the decompression section only when an abnormality occurs. That is, it is necessary to differentiate and recognize the rise in internal pressure during normal battery operation and the rise in internal pressure when an abnormality occurs.
【0014】 ここで、NAS単電池の陽極活物質として
用いられている硫黄の沸点は444℃/1atmであるため、
通常の電池運転温度である300〜350℃においては、硫黄
の蒸気圧は比較的低い。従って、通常運転時において
は、硫黄の蒸気圧による陽極容器の内圧の変動範囲を一
定の低いレベルに抑えることが可能である。Here, since the boiling point of sulfur used as the anode active material of the NAS unit cell is 444 ° C./1 atm,
At a normal battery operating temperature of 300 to 350 ° C., the vapor pressure of sulfur is relatively low. Therefore, during normal operation, the fluctuation range of the internal pressure of the anode container due to the vapor pressure of sulfur can be suppressed to a certain low level.
【0015】 更に、硫黄は、上述のような300〜350℃
といった低い温度域においてはS8分子が基本構造とな
るが、沸点以上の温度域においては温度上昇に伴ってS
8分子が分解して生ずるS6、S4、S2といった原子数の
少ない分子が支配的となる。即ち、気体状態の硫黄は温
度上昇に伴って分子数が倍増することになる。[0015] Further, the sulfur is at 300 to 350 ° C. as described above.
In a low temperature range such as this, the S 8 molecule has a basic structure, but in a temperature range above the boiling point, S 8 molecules increase with increasing temperature.
Molecules having a small number of atoms, such as S 6 , S 4 , and S 2 , which are generated by the decomposition of eight molecules, are dominant. That is, the number of molecules of gaseous sulfur doubles with an increase in temperature.
【0016】 従って、図3のグラフに示すように、硫
黄の気体の蒸気圧は、通常の気体分子のように温度上昇
に伴って、緩やかに蒸気圧が増加していくのではなく、
分子の分解に伴う分子数の倍増効果により加速度的に上
昇することになる。また、陽極容器の一部である解圧部
は、通常、陽極容器と同材質のアルミニウム合金により
構成されるが、このアルミニウム合金の引張強度も温度
との相関があり、図4のグラフに示すように温度の上昇
に伴って低下する。Therefore, as shown in the graph of FIG. 3, the vapor pressure of the sulfur gas does not gradually increase with the temperature rise as in the case of ordinary gas molecules.
It will increase at an accelerated rate due to the doubling effect of the number of molecules accompanying the decomposition of the molecules. The pressure-releasing portion, which is a part of the anode container, is usually made of an aluminum alloy of the same material as the anode container. The tensile strength of this aluminum alloy also has a correlation with temperature, and is shown in the graph of FIG. As the temperature rises.
【0017】 本発明者等は、このような硫黄とアルミ
ニウム合金の性質に着目して、解圧部の開裂を制御する
ことに想到した。即ち、本発明のNAS単電池において
は、硫黄の蒸気圧が急激に上昇する1atmでの硫黄の沸点
444℃以上において解圧部が開裂するように構成する。4
44℃の温度では、硫黄の蒸気圧が急激に上昇することに
加え、解圧部を構成するアルミニウム合金の引張強度も
通常運転時の約1/2〜1/3程度に低下するため、このよう
な条件でのみ解圧部が開裂するように設計することは比
較的容易である。従って、300〜350℃の通常運転時の内
圧上昇によっては解圧部が開裂しないように差別化する
ことが可能となる。The present inventors have paid attention to such properties of the sulfur and aluminum alloy and have conceived of controlling the cleavage of the decompression section. That is, in the NAS cell of the present invention, the boiling point of sulfur at 1 atm where the vapor pressure of sulfur rapidly rises
It is configured so that the decompression part is cleaved at 444 ° C or more. Four
At a temperature of 44 ° C, in addition to the rapid increase in sulfur vapor pressure, the tensile strength of the aluminum alloy that constitutes the decompression unit also decreases to about 1/2 to 1/3 of that during normal operation. It is relatively easy to design such that the decompression part is cleaved only under such conditions. Therefore, it is possible to differentiate the pressure relief part so that the pressure release part is not broken by the increase in the internal pressure during the normal operation at 300 to 350 ° C.
【0018】 また、本発明のNAS単電池においては、
アルミニウムの融点である660℃以下において解圧部が
開裂するように構成することが必要である。陽極容器
は、主としてアルミニウムで構成され、660℃以上では
溶融破壊されてしまうためである。In the NAS cell of the present invention,
It is necessary to configure the decompression part to be split at 660 ° C or lower, which is the melting point of aluminum. This is because the anode container is mainly made of aluminum and is melted and broken at 660 ° C. or higher.
【0019】 アルミニウム合金製の有底円筒管よりな
る陽極容器を内温444℃から660℃の温度域で解圧させる
ためには、444〜660℃の温度域における陽極容器の内圧
により底部薄肉部に発生する応力値が、その温度域にお
けるアルミニウム合金の引張強度と均衡するように設計
すればよい。当該薄肉部は、機械加工、エッチングその
他の方法により設けることができる。In order to decompress the anode container made of an aluminum alloy bottomed cylindrical tube in a temperature range of 444 ° C. to 660 ° C., the bottom thin portion is formed by the internal pressure of the anode container in a temperature range of 444 ° C. to 660 ° C. May be designed so that the stress value generated at the same time balances the tensile strength of the aluminum alloy in that temperature range. The thin portion can be provided by machining, etching, or another method.
【0020】 解圧部は、陽極容器のいずれの部位に配
設してもよいが、解圧部を陽極容器の側面若しくは底面
に設けることにより、硫黄自体の蒸気圧と解圧部を構成
するアルミニウム合金自身の材料強度低下を利用して硫
黄を陽極容器外に排出することができ、後述する外部容
器の配設と相まって硫黄とナトリウムが接触する可能性
を減ずることができる点において好ましい。The decompression unit may be disposed at any part of the anode container. However, by providing the decompression unit on the side surface or the bottom surface of the anode container, the vapor pressure of sulfur itself and the decompression unit are configured. This is preferable in that sulfur can be discharged to the outside of the anode container by utilizing the reduction in the material strength of the aluminum alloy itself, and the possibility of contact between sulfur and sodium can be reduced in combination with the arrangement of the external container described later.
【0021】 また、硫黄を陽極容器からより完全に排
出することを考慮すると、陽極容器の底部に解圧部を設
ける方が更に好ましい。なお、通常、固体電解質管の底
面が側面に比して肉厚に形成されるため、陽極容器底面
は、電池反応に寄与し難く、腐食の影響も受け難いた
め、腐食により解圧部の肉厚が薄くなり、設計より低い
内圧で解圧してしまう事態を回避できる点においても側
面より好ましい。In consideration of more complete discharge of sulfur from the anode container, it is more preferable to provide a decompression section at the bottom of the anode container. Since the bottom surface of the solid electrolyte tube is usually formed thicker than the side surface, the bottom surface of the anode container hardly contributes to the battery reaction and is hardly affected by corrosion. It is also preferable from the aspect that the thickness becomes thin and a situation in which the internal pressure is released at a lower internal pressure than designed can be avoided.
【0022】 なお、本発明においては、陽極容器に上
述の解圧部を設けるとともに、前記陽極容器を収容し、
かつ、開裂した解圧部から放出された硫黄を陽極容器上
方へ排出するための有底円筒状の外部容器を配設するこ
とが好ましい。こうすることにより、陽極容器の内圧上
昇により解圧部が開裂し、硫黄が放出された場合でも、
沸点の比較的低い硫黄(bp.:444℃、1atm)はその蒸気
圧により外部容器の側壁を伝って外部容器の外に排出さ
れる。In the present invention, the anode container is provided with the above-described pressure relief section, and the anode container is accommodated therein.
In addition, it is preferable to dispose a bottomed cylindrical outer container for discharging sulfur released from the cracked decompression unit to above the anode container. By doing so, even if the pressure release part is broken by the internal pressure rise of the anode container and sulfur is released,
Due to its vapor pressure, sulfur having a relatively low boiling point (bp .: 444 ° C., 1 atm) is discharged to the outside of the outer container along the side wall of the outer container.
【0023】 従って、硫黄が陽極容器外に放出された
後に、例えば特開平5-283101号公報に記載されているよ
うな陰極室内に配設された安全管やカートリッジを用い
た場合には、これらの熱膨張による固体電解質管への熱
応力等により固体電解質管が破損し、ナトリウムが硫黄
と同じ経路を通って陽極容器外に流出した場合でも、硫
黄は既に外部容器の外に放出されており、沸点の比較的
高いナトリウム(bp.:897℃、1atm)は相当の高温にな
らない限り外部容器内に留まるため、硫黄とナトリウム
との直接反応を回避することができる。Therefore, after the sulfur is released out of the anode container, if a safety tube or a cartridge disposed in the cathode chamber as described in, for example, JP-A-5-283101 is used, Even if the solid electrolyte tube is damaged due to thermal stress on the solid electrolyte tube due to thermal expansion of the sodium electrolyte and sodium flows out of the anode container through the same path as sulfur, the sulfur has already been released outside the external container. Since sodium having a relatively high boiling point (bp .: 897 ° C., 1 atm) stays in the outer container unless the temperature becomes considerably high, the direct reaction between sulfur and sodium can be avoided.
【0024】 本発明において外部容器とは、陽極容器
を緩挿できる内径を有する、上部が開放された有底円筒
状の容器をいう。本発明のように、陽極容器を外部容器
に収容したNAS単電池としては、特開平5-109433号公報
に示されるような、環状突起を備えた剛性容器に陽極容
器を収容し、陽極容器の軸線方向への伸びを防止したNA
S単電池が提案されている。In the present invention, the term “outer container” refers to a bottomed cylindrical container having an inner diameter capable of loosely inserting the anode container and having an open top. As in the present invention, as a NAS unit cell in which the anode container is housed in an external container, as shown in JP-A-5-109433, the anode container is housed in a rigid container having an annular projection, NA that prevents axial elongation
S cells have been proposed.
【0025】 この単電池は、陽極容器を外部容器に収
容する点において本発明と類似するが、本発明とは異な
り、陽極容器の軸線方向への伸びを防止することを目的
としている。従って、剛性容器の上面及び下面に環状突
起を設ければ足り、剛性容器の底部は開放された状態と
なっている。This unit cell is similar to the present invention in that the anode container is housed in an external container, but is different from the present invention, and aims at preventing the anode container from extending in the axial direction. Therefore, it is sufficient to provide annular projections on the upper and lower surfaces of the rigid container, and the bottom of the rigid container is in an open state.
【0026】 これに対し、本発明においては、陽極容
器から流出した硫黄を陽極容器上方に放出し、かつ、同
じく陽極容器から流出したナトリウムを捕捉する必要が
あるため、有底容器を用いることが必須である点におい
て明らかに異なるものである。但し、本発明において
も、外部容器内に陽極容器を保持し、或いは上記NAS単
電池と同様の効果を得るために、外部容器の上端面には
環状突起を設けることが好ましい。On the other hand, in the present invention, since it is necessary to release the sulfur flowing out of the anode container to the upper part of the anode container and to capture the sodium flowing out of the anode container, it is necessary to use a bottomed container. It is clearly different in that it is essential. However, also in the present invention, it is preferable to provide an annular projection on the upper end surface of the outer container in order to hold the anode container in the outer container or to obtain the same effect as the NAS unit cell.
【0027】 外部容器の外径は、陽極容器が緩挿でき
る程度に陽極容器より大きい外径に形成され、陽極容器
を装填した状態で陽極容器外側面と外部容器内側面が密
着していなければよい。こうすることにより、陽極容器
解圧部から流出する硫黄は、陽極容器と外部容器側面と
の間の空隙部を経て外部容器の外に放出される。外部容
器の材質は、硫黄とナトリウムに対する耐食性を備える
限りにおいて特に限定されず、例えば、ステンレス、セ
ラミックス等を用いることができる。The outer diameter of the outer container is formed to be larger than the anode container so that the anode container can be loosely inserted. If the outer surface of the anode container and the inner surface of the outer container are not in close contact with the anode container loaded, Good. By doing so, the sulfur flowing out of the anode container decompression section is discharged to the outside of the external container through the gap between the anode container and the side surface of the external container. The material of the outer container is not particularly limited as long as it has corrosion resistance to sulfur and sodium. For example, stainless steel, ceramics, or the like can be used.
【0028】[0028]
【実施例】 以下、本発明のNAS単電池の実施例を示す
が、本発明は図示の実施例に限定されることはない。Hereinafter, embodiments of the NAS unit cell of the present invention will be described, but the present invention is not limited to the illustrated embodiment.
【0029】 解圧部14の構造としては、陽極容器の
内温が500〜540℃で解圧する設計とし、底部中心の直径
30mmの範囲に対し、厚さ1mmの十字の切り欠き溝を入れ
て薄肉部16とした。上記の陽極容器を用いて、図1に
示すように、陽極容器3、絶縁体リング2、陰極金具
4、固体電解質管5等から、通常のNAS単電池を構成し
た。The structure of the pressure-releasing unit 14 is designed so that the internal temperature of the anode container is released at 500 to 540 ° C.
A 1 mm thick cross cut groove was formed in the 30 mm range to form a thin portion 16. Using the above-mentioned anode container, a normal NAS cell was constituted by the anode container 3, the insulator ring 2, the cathode metal fitting 4, the solid electrolyte tube 5, and the like as shown in FIG.
【0030】 図示しないが、上記構成のNAS単電池を
箱形の断熱容器内に複数個立設配置した後に、断熱容器
と単電池との空隙部に防火用砂を充填し、断熱容器を封
止した。このように構成されたNAS集合電池では、異常
発生時の内圧上昇によってのみ解圧部が開裂し、通常運
転時の内圧上昇では解圧部は開裂しない。Although not shown, after a plurality of the NAS cells having the above configuration are erected in a box-shaped heat insulating container, the gap between the heat insulating container and the cells is filled with sand for fire prevention and the heat insulating container is sealed. Stopped. In the NAS assembled battery configured as described above, the decompression section is opened only by an increase in internal pressure when an abnormality occurs, and the decompression section is not opened by an increase in internal pressure during normal operation.
【0031】[0031]
【発明の効果】 以上説明したように、本発明によれ
ば、異常発生時の内圧上昇によってのみ解圧部が開裂
し、通常運転時における解圧部の開裂を防止したNAS単
電池が提供される。As described above, according to the present invention, there is provided a NAS unit cell in which the decompressed portion is broken only by an increase in internal pressure at the time of occurrence of an abnormality and the decomposed portion is prevented from being broken during normal operation. You.
【図1】 本発明のNAS単電池の一の実施例を示す断面
図である。FIG. 1 is a sectional view showing one embodiment of a NAS unit cell of the present invention.
【図2】 従来のNAS単電池の一の実施例を示す断面図
である。FIG. 2 is a cross-sectional view showing one embodiment of a conventional NAS unit cell.
【図3】 硫黄の蒸気圧と温度との関係を示すグラフで
ある。FIG. 3 is a graph showing a relationship between a vapor pressure of sulfur and a temperature.
【図4】 アルミニウム合金の引張強度と温度との関係
を示すグラフである。FIG. 4 is a graph showing the relationship between tensile strength and temperature of an aluminum alloy.
1…NAS単電池、2…絶縁体リング、3…陽極容器、4
…陰極金具、5…固体電解質管、6…陽極モールド、7
…ナトリウム、12…硫黄、14…解圧部、16…薄肉
部、31…NAS単電池、32…絶縁体リング、33…陽
極容器、34…陰極金具、35…固体電解質管、36…
陽極モールド、37…ナトリウム、42…硫黄。1. NAS cell, 2. Insulator ring, 3. Anode container, 4.
... Cathode fitting, 5 ... Solid electrolyte tube, 6 ... Anode mold, 7
... sodium, 12 ... sulfur, 14 ... pressure relief part, 16 ... thin part, 31 ... NAS unit cell, 32 ... insulator ring, 33 ... anode container, 34 ... cathode metal fittings, 35 ... solid electrolyte tube, 36 ...
Anode mold, 37 ... sodium, 42 ... sulfur.
Claims (2)
の陽極モールドと、 当該陽極モールドを収容する陽極容器と、 当該陽極容器と陰極金具とを接合する絶縁体リングと、 当該絶縁体リングの内周部に接合された有底円筒状の固
体電解質管と、 当該固体電解質管と前記陰極金具とから形成される内部
空間に陰極活物質であるナトリウムを収容して構成され
たナトリウム−硫黄単電池において、 前記陽極容器の一部に、当該陽極容器の内温及び内圧の
上昇により開裂する解圧部を形成するとともに、 当該解圧部が、陽極容器の内温が444℃以上660℃
以下の範囲内において開裂するように構成したことを特
徴とするナトリウム−硫黄単電池。1. A cylindrical anode mold impregnated with sulfur as an anode active material, an anode container accommodating the anode mold, an insulator ring for joining the anode container and a cathode fitting, and the insulator ring A solid electrolyte tube having a bottom and a cylindrical shape joined to an inner peripheral portion thereof; a sodium-sulfur configured to contain sodium as a cathode active material in an internal space formed by the solid electrolyte tube and the cathode fitting. In the unit cell, a pressure-release portion that is cleaved by an increase in the internal temperature and internal pressure of the anode container is formed in a part of the anode container, and the pressure-release portion is configured such that the internal temperature of the anode container is 444 ° C. or higher and 660 ° C.
A sodium-sulfur unit cell configured to be cleaved within the following range.
1に記載のナトリウム−硫黄単電池。2. The sodium-sulfur unit cell according to claim 1, wherein the pressure-reducing portion is provided at the bottom of the anode container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9258152A JPH1197058A (en) | 1997-09-24 | 1997-09-24 | Sodium-sulfur cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9258152A JPH1197058A (en) | 1997-09-24 | 1997-09-24 | Sodium-sulfur cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1197058A true JPH1197058A (en) | 1999-04-09 |
Family
ID=17316255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9258152A Pending JPH1197058A (en) | 1997-09-24 | 1997-09-24 | Sodium-sulfur cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1197058A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020529386A (en) * | 2017-08-04 | 2020-10-08 | トヨタ・モーター・ヨーロッパToyota Motor Europe | Manufacturing method of electrodes for all-solid-state batteries |
-
1997
- 1997-09-24 JP JP9258152A patent/JPH1197058A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020529386A (en) * | 2017-08-04 | 2020-10-08 | トヨタ・モーター・ヨーロッパToyota Motor Europe | Manufacturing method of electrodes for all-solid-state batteries |
US12113165B2 (en) | 2017-08-04 | 2024-10-08 | Toyota Jidosha Kabushiki Kaisha | Method for producing electrodes for all-solid state batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6632559B1 (en) | Safety device for sealed battery and sealed battery using it | |
JP2001135301A (en) | Sealed battery | |
US10978720B2 (en) | Thermal battery assembly and related methods | |
US7442462B2 (en) | Polymer electrolyte membrane fuel cell with tandem fuel tanks and inertial trigger | |
KR20140085764A (en) | Sodium-sulfur rechargeable battery and module using the same | |
WO2017061378A1 (en) | Sodium-sulfur battery | |
JPH1197058A (en) | Sodium-sulfur cell | |
JP2007265656A (en) | Square battery case and square battery | |
JP3281580B2 (en) | Sodium-sulfur cell | |
KR101218370B1 (en) | Lithium battery with safety | |
JP2005302427A (en) | Liquid active material battery | |
JP2008270032A (en) | Secondary-battery module | |
KR100416080B1 (en) | Battery with reinforcing structure for preventing expansion | |
JP3328868B2 (en) | High temperature battery module and battery system using the same | |
KR101507946B1 (en) | sodium sulfur battery | |
KR101380404B1 (en) | Sodium sulfur battery | |
KR101419475B1 (en) | Sodium sulfur rechargeable battery | |
KR101460280B1 (en) | Sodium sulfur rechargeable battery | |
JP4751056B2 (en) | Explosion-proof structure of polymer electrolyte fuel cell system | |
JPH1186819A (en) | Safety structure for sealed battery | |
JP2003217651A (en) | Sodium - sulfur battery | |
JPH10275547A (en) | Thermal fuse and mounting structure of thermal fuse in secondary battery | |
JP2003223928A (en) | Sodium-sulfur battery | |
JPH1064580A (en) | Sodium-sulfur battery | |
JP3085910B2 (en) | Sodium-sulfur battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020416 |