JP2020529386A - Manufacturing method of electrodes for all-solid-state batteries - Google Patents

Manufacturing method of electrodes for all-solid-state batteries Download PDF

Info

Publication number
JP2020529386A
JP2020529386A JP2020505862A JP2020505862A JP2020529386A JP 2020529386 A JP2020529386 A JP 2020529386A JP 2020505862 A JP2020505862 A JP 2020505862A JP 2020505862 A JP2020505862 A JP 2020505862A JP 2020529386 A JP2020529386 A JP 2020529386A
Authority
JP
Japan
Prior art keywords
sulfur
mpa
sintered member
less
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020505862A
Other languages
Japanese (ja)
Other versions
JP6961794B2 (en
Inventor
祐樹 加藤
祐樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Europe NV SA
Original Assignee
Toyota Motor Europe NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Europe NV SA filed Critical Toyota Motor Europe NV SA
Publication of JP2020529386A publication Critical patent/JP2020529386A/en
Application granted granted Critical
Publication of JP6961794B2 publication Critical patent/JP6961794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

全固体電池用のチタンと硫黄とを含む電極である焼結部材を製造する方法(100)は、チタンと硫黄とを含む粉末混合物を得るために、粉末を混合するステップ(102)と、粉末混合物を含む部材を押圧するステップ(106)と、チタンと硫黄とを含む中間焼結部材を得るために、200Pa〜0.2MPaの硫黄分圧下で部材を焼結するステップ(108)と、チタンと硫黄とを含む焼結部材を得るために、150Pa以下の硫黄分圧および200℃〜400℃の定常温度で中間焼結部材を焼結するステップ(114)とを含み、固体電解質は、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す。The method (100) for producing a sintered member which is an electrode containing titanium and sulfur for an all-solid-state battery includes a step (102) of mixing powders and a powder in order to obtain a powder mixture containing titanium and sulfur. A step of pressing a member containing a mixture (106), a step of sintering a member under a partial pressure of 200 Pa to 0.2 MPa in order to obtain an intermediate sintered member containing titanium and sulfur (108), and titanium. In order to obtain a sintered member containing sulfur and sulfur, a step (114) of sintering the intermediate sintered member at a partial pressure of sulfur of 150 Pa or less and a steady temperature of 200 ° C. to 400 ° C. is included, and the solid electrolyte is CuKα. 2θ = 15.08 ° (± 0.50 °), 15.28 ° (± 0.50 °), 15.92 ° (± 0.50 °), 17.5 in X-ray diffraction measurement using a line. ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °), 23.44 ° (± 0.50 °), 24.48 ° (± 0.50 °) Peaks are shown at ± 0.50 °) and 26.66 ° (± 0.50 °) positions.

Description

開示の分野
本開示は、全固体電池に関し、より具体的には、硫黄を含む固体電解質および/または電極を備えた固体電池に関する。
Fields of Disclosure The present disclosure relates to all-solid-state batteries, and more specifically to solid-state batteries with sulfur-containing solid electrolytes and / or electrodes.

開示の背景
全固体電池は、高エネルギー密度を有する電池パックの提供を可能にする。
Background of Disclosure All-solid-state batteries enable the provision of battery packs with high energy densities.

全固体電池用の固体電解質および/または電極について、異なる材料が研究されている。特に興味深い材料は、チタンと硫黄とを含み、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す材料である。これらの材料は、一般的に、良好なリチウムイオン導電率を有するが、電子導電率が低い。 Different materials are being studied for solid electrolytes and / or electrodes for all-solid-state batteries. Of particular interest are titanium and sulfur, 2θ = 15.08 ° (± 0.50 °), 15.28 ° (± 0.50 °), 15. In X-ray diffraction measurements using CuKα rays. 92 ° (± 0.50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °), 23.44 ° It is a material that shows peaks at positions (± 0.50 °), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °). These materials generally have good lithium ion conductivity but low electron conductivity.

したがって、これらの材料を固体電解質および/または電極として使用するために、その電子導電率を増加する必要がある。 Therefore, in order to use these materials as solid electrolytes and / or electrodes, it is necessary to increase their electronic conductivity.

開示の概要
したがって、本開示の実施形態によれば、全固体電池用のチタンと硫黄とを含む固体電解質および/または電極である焼結部材を製造する方法が提供される。この方法は、チタンと硫黄とを含む粉末混合物を得るために、粉末を混合するステップと、粉末混合物を含む部材を押圧するステップと、チタンと硫黄とを含む中間焼結部材を得るために、200Pa〜0.2MPaの硫黄分圧下で部材を焼結するステップと、チタンと硫黄とを含む焼結部材を得るために、150Pa以下の硫黄分圧および200℃〜400℃の定常温度で中間焼結部材を焼結するステップとを含み、焼結部材は、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す。
Summary of Disclosure Therefore, according to the embodiments of the present disclosure, there is provided a method for producing a sintered member which is a solid electrolyte and / or an electrode containing titanium and sulfur for an all-solid-state battery. This method involves mixing the powder to obtain a powder mixture containing titanium and sulfur, pressing the member containing the powder mixture, and obtaining an intermediate sintered member containing titanium and sulfur. In order to obtain a step of sintering a member under a sulfur partial pressure of 200 Pa to 0.2 MPa and a sintered member containing titanium and sulfur, intermediate firing is performed at a sulfur partial pressure of 150 Pa or less and a steady temperature of 200 ° C. to 400 ° C. Including the step of sintering the connecting member, the sintered member is 2θ = 15.08 ° (± 0.50 °) and 15.28 ° (± 0.50 °) in the X-ray diffraction measurement using CuKα ray. ), 15.92 ° (± 0.50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °), Peaks are shown at 23.44 ° (± 0.50 °), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °).

本開示の実施形態によれば、全固体電池用のチタンと硫黄とを含む固体電解質および/または電極である焼結部材を製造する方法が提供される。この方法は、チタンと硫黄とを含む粉末混合物を得るために、粉末を混合するステップと、粉末混合物を含む部材を押圧するステップと、チタンと硫黄とを含む中間焼結部材を得るために、200Pa〜0.2MPaの硫黄分圧下で部材を焼結するステップと、チタンと硫黄とを含む焼結部材を得るために、焼結部材を得るために、勾配温度で中間焼結部材を焼結するステップとを含み、中間焼結部材の最高温度は、200℃〜400℃の間にあり、焼結部材は、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す。 According to the embodiments of the present disclosure, there is provided a method for producing a sintered member which is a solid electrolyte and / or an electrode containing titanium and sulfur for an all-solid-state battery. This method involves mixing the powder to obtain a powder mixture containing titanium and sulfur, pressing the member containing the powder mixture, and obtaining an intermediate sintered member containing titanium and sulfur. The step of sintering a member under a sulfur partial pressure of 200 Pa to 0.2 MPa, and in order to obtain a sintered member containing titanium and sulfur, in order to obtain a sintered member, the intermediate sintered member is sintered at a gradient temperature. The maximum temperature of the intermediate sintered member is between 200 ° C. and 400 ° C., and the sintered member is 2θ = 15.08 ° (± 0.) in the X-ray diffraction measurement using CuKα ray. 50 °), 15.28 ° (± 0.50 °), 15.92 ° (± 0.50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °) ), 20.30 ° (± 0.50 °), 23.44 ° (± 0.50 °), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °) A peak is shown at the position of.

焼結部材、すなわち、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す固体電解質および/または電極は、一般的に、良好なリチウムイオン導電率を有するが、電子導電率が低い。 In X-ray diffraction measurement using a sintered member, that is, CuKα ray, 2θ = 15.08 ° (± 0.50 °), 15.28 ° (± 0.50 °), 15.92 ° (± 0. 50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °), 23.44 ° (± 0.50 °) ), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °) positions, solid electrolytes and / or electrodes generally have good lithium ion conductivity. However, the electron conductivity is low.

これらの方法を提供することによって、部材が200Pa(パスカル)〜0.2MPaの硫黄分圧下で焼結されるため、焼結中に硫黄の蒸発が制限され、容積密度を増加する中間焼結部材を得ることができる。実際には、焼結中に硫黄の蒸発が制限され、中間焼結部材の容積密度が増加される。これによって、中間焼結部材の気孔率が減らされる。 By providing these methods, since the member is sintered under a sulfur partial pressure of 200 Pa (Pascal) to 0.2 MPa, the evaporation of sulfur is restricted during sintering, and the intermediate sintered member increases the volume density. Can be obtained. In practice, the evaporation of sulfur is restricted during sintering, increasing the bulk density of the intermediate sintered member. This reduces the porosity of the intermediate sintered member.

固体電解質および/または電極全体の電子導電率の増加は、150Pa以下の硫黄分圧および200℃〜400℃の定常温度で中間焼結部材を焼結することによってまたは中間焼結部材の最高温度が200℃〜400℃の間にある勾配温度で中間焼結部材を焼結することによって得られる。 The increase in electron conductivity of the solid electrolyte and / or the entire electrode can be achieved by sintering the intermediate sintered member at a sulfur partial pressure of 150 Pa or less and a steady temperature of 200 ° C. to 400 ° C. It is obtained by sintering the intermediate sintered member at a gradient temperature between 200 ° C and 400 ° C.

150Pa以下の硫黄分圧および200℃〜400℃の定常温度で中間焼結部材を焼結することによってまたは中間焼結部材の最高温度が200℃〜400℃の間にある勾配温度で中間焼結部材を焼結することによって、中間焼結部材に存在している硫黄の一部は、蒸発させられ、チタンの一部は、Ti4+からTi3+以下に、すなわち、Ti2+またはTiに還元される。チタンを還元することによって、焼結部材の電子導電率が増加される。 Intermediate sintering by sintering the intermediate sintered member at a sulfur partial pressure of 150 Pa or less and a steady temperature of 200 ° C to 400 ° C, or at a gradient temperature where the maximum temperature of the intermediate sintered member is between 200 ° C and 400 ° C. By sintering the member, some of the sulfur present in the intermediate sintered member is evaporated and some of the titanium is reduced from Ti 4+ to Ti 3+ or less, i.e. Ti 2+ or Ti + . Will be done. By reducing titanium, the electron conductivity of the sintered member is increased.

いくつかの実施形態において、150Pa以下の硫黄分圧は、中間焼結部材に希ガスまたは窒素を流すことによって得られる。 In some embodiments, a sulfur partial pressure of 150 Pa or less is obtained by flowing a rare gas or nitrogen through the intermediate sintered member.

いくつかの実施形態において、150Pa以下の硫黄分圧は、中間焼結部材を含む密閉容器内に存在するガスを連続的に排出することにより得られる。 In some embodiments, the sulfur partial pressure of 150 Pa or less is obtained by continuously discharging the gas present in the closed vessel containing the intermediate sintered member.

いくつかの実施形態において、中間焼結部材は、勾配温度での焼結中に密閉容器に密封される。 In some embodiments, the intermediate sintered member is sealed in a closed container during sintering at a gradient temperature.

いくつかの実施形態において、焼結部材は、XTi(PSを含み、Xは、リチウム(Li)、ナトリウム(Na)または銀(Ag)である。 In some embodiments, the sintered member comprises XTi 2 (PS 4 ) 3 , where X is lithium (Li), sodium (Na) or silver (Ag).

いくつかの実施形態において、方法は、アモルファス化粉末混合物を得るために、粉末混合物をアモルファス化するステップを含む。 In some embodiments, the method comprises the step of amorphizing the powder mixture in order to obtain an amorphized powder mixture.

いくつかの実施形態において、200Pa〜0.2MPaの硫黄分圧下での焼結は、500℃以下、好ましくは400℃以下の定常焼結温度を含む。 In some embodiments, sintering under a sulfur partial pressure of 200 Pa to 0.2 MPa comprises a steady sintering temperature of 500 ° C. or lower, preferably 400 ° C. or lower.

粉末混合物をアモルファス化すると、粉末混合物は、より反応し易くなる。よって、500℃以下の温度で粉末混合物を焼結することができる。 Amorphizing the powder mixture makes the powder mixture more reactive. Therefore, the powder mixture can be sintered at a temperature of 500 ° C. or lower.

一部の実施形態において、200Pa〜0.2MPaの硫黄分圧下での焼結は、20時間以下、好ましくは10時間以下の定常焼結時間を含む。 In some embodiments, sintering under a sulfur partial pressure of 200 Pa to 0.2 MPa comprises a steady sintering time of 20 hours or less, preferably 10 hours or less.

粉末混合物をアモルファス化すると、粉末混合物は、より反応し易くなる。よって、20時間以下、好ましくは10時間以下の定常焼結時間で粉末混合物を焼結することができる。 Amorphizing the powder mixture makes the powder mixture more reactive. Therefore, the powder mixture can be sintered in a steady sintering time of 20 hours or less, preferably 10 hours or less.

いくつかの実施形態において、200Pa〜0.2MPaの硫黄分圧は、固体硫黄を蒸発させることによって得られる。 In some embodiments, a sulfur partial pressure of 200 Pa-0.2 MPa is obtained by evaporating solid sulfur.

いくつかの実施形態において、部材は、容器に配置され、100Pa以下、好ましくは50Pa以下の圧力のアルゴン下で密封される。 In some embodiments, the members are placed in a container and sealed under argon at a pressure of 100 Pa or less, preferably 50 Pa or less.

いくつかの実施形態において、200Pa〜0.2MPaの硫黄分圧は、硫黄含有ガスから得られる。 In some embodiments, the sulfur partial pressure of 200 Pa-0.2 MPa is obtained from the sulfur-containing gas.

硫黄含有ガスは、硫化水素、硫化炭素または硫化燐などのガスであってもよい。
いくつかの実施形態において、部材は、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下の圧力で押圧される。
The sulfur-containing gas may be a gas such as hydrogen sulfide, carbon sulfide or phosphorus sulfide.
In some embodiments, the member is pressed at a pressure of 25 MPa or higher, preferably 50 MPa or higher, more preferably 75 MPa or higher, 500 MPa or lower, preferably 400 MPa or lower, more preferably 300 MPa or lower.

いくつかの実施形態において、2つの焼結ステップの間に、中間焼結部材は、研磨され、押圧される。 In some embodiments, the intermediate sintered member is polished and pressed during the two sintering steps.

いくつかの実施形態において、研磨および押圧された中間焼結部材は、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下の圧力で押圧される。 In some embodiments, the polished and pressed intermediate sintered member is pressed at a pressure of 25 MPa or higher, preferably 50 MPa or higher, more preferably 75 MPa or higher, 500 MPa or lower, preferably 400 MPa or lower, more preferably 300 MPa or lower. To.

互いに矛盾しない限り、上述した要素と本明細書に記載の要素とを組み合わせることは、意図されている。 It is intended to combine the elements described above with the elements described herein, as long as they are not inconsistent with each other.

理解すべきことは、上記の一般的な説明および以下の詳細な説明の両方は、例示および説明のみであり、特許請求の範囲に記載の本開示を限定しないことである。 It should be understood that both the general description above and the detailed description below are illustration and description only and do not limit the present disclosure as described in the claims.

本明細書に組み込まれ、その一部を構成する添付図面は、本開示の実施形態を例示し、以下の説明と共に、本開示の原理を説明する。 The accompanying drawings, incorporated herein by reference and in part thereof, illustrate embodiments of the present disclosure and illustrate the principles of the present disclosure with the following description.

本開示の実施形態に係る方法を示すフローチャートである。It is a flowchart which shows the method which concerns on embodiment of this disclosure. 本開示のサンプルのX線回折スペクトルを示す図である。It is a figure which shows the X-ray diffraction spectrum of the sample of this disclosure. 比較例のサンプルのX線回折スペクトルを示す図である。It is a figure which shows the X-ray diffraction spectrum of the sample of a comparative example. 周波数に従って変化する電気伝導率の実数部を示す図である。It is a figure which shows the real part of the electric conductivity which changes according to a frequency. 周波数に従って変化する電気伝導率の実数部を示す図である。It is a figure which shows the real part of the electric conductivity which changes according to a frequency.

実施形態の説明
以下、添付の図面に示されている例示を参照して、本開示の例示的な実施形態を詳細に説明する。可能な場合、全ての図面において、同一の参照番号を用いて、同一または類似の部品を指す。
Description of Embodiments Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the examples shown in the accompanying drawings. Where possible, all drawings use the same reference number to refer to the same or similar parts.

図1は、本開示の実施形態に係る方法のフローチャートを示す。
サンプル1は、本開示のサンプルであり、サンプル2は、比較例のサンプルである。
FIG. 1 shows a flowchart of the method according to the embodiment of the present disclosure.
Sample 1 is a sample of the present disclosure, and Sample 2 is a sample of a comparative example.

サンプル1およびサンプル2は、両方ともLiTi(PS固体電解質または電極である。 Sample 1 and Sample 2 are both LiTi 2 (PS 4 ) 3 solid electrolytes or electrodes.

全ての実験は、空気と接触しないように、アルゴンまたは真空または硫黄雰囲気下で行われる。 All experiments are performed in an argon or vacuum or sulfur atmosphere to avoid contact with air.

図1を参照して、サンプル1を用いて、全固体電池用のチタンと硫黄とを含む固体電解質および/または電極を製造する方法100を説明する。 With reference to FIG. 1, a method 100 for producing a solid electrolyte and / or an electrode containing titanium and sulfur for an all-solid-state battery will be described using Sample 1.

ステップ102において、0.0396g(グラム)のLiS、0.5745gのPおよび0.3859gのTiSを混合して、粉末混合物を得る。LiS(99%、硫化リチウム、Sigma-Aldrich社(登録商標))、P(98%、五硫化燐、Sigma-Aldrich社(登録商標))およびTiS(99.9%、二硫化チタン、Sigma-Aldrich社(登録商標))は、99質量%以上の純度を有する粉末である。 In step 102, 0.0396 g (grams) of Li 2 S, 0.5745 g of P 2 S 5 and 0.3859 g of Ti S 2 are mixed to obtain a powder mixture. Li 2 S (99%, lithium sulfide, Sigma-Aldrich®), P 2 S 5 (98%, phosphorus pentasulfide, Sigma-Aldrich®) and TiS 2 (99.9%, Titanium disulfide, Sigma-Aldrich (registered trademark), is a powder having a purity of 99% by mass or more.

必須のステップではないステップ104において、粉末混合物は、遊星型研磨装置(Fritsch社、P7)でアモルファス化される。粉末混合物は、アルゴン下でジルコニウムポットに配置された。このジルコニウムポットは、45mL(ミリメートル)の容積を有し、10mm(ミリメートル)の直径を有する18個のジルコニウムボールを含む。370rpm(毎分回転数)で40時間粉末混合物をアモルファス化することによって、アモルファス化粉末混合物を得た。 In step 104, which is not an essential step, the powder mixture is amorphized in a planetary grinder (Fritsch, P7). The powder mixture was placed in a zirconium pot under argon. This zirconium pot has a volume of 45 mL (millimeters) and contains 18 zirconium balls with a diameter of 10 mm (millimeters). The amorphized powder mixture was obtained by amorphizing the powder mixture at 370 rpm (rotational speed per minute) for 40 hours.

ステップ106において、アモルファス化粉末混合物は、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下の圧力で押圧される。 In step 106, the amorphized powder mixture is pressed at a pressure of 25 MPa or more, preferably 50 MPa or more, more preferably 75 MPa or more, 500 MPa or less, preferably 400 MPa or less, more preferably 300 MPa or less.

例えば、100mgのアモルファス化粉末混合物を200MPaで押圧することによって、部材を形成する。 For example, a member is formed by pressing 100 mg of an amorphized powder mixture at 200 MPa.

ステップ108において、150Pa〜0.2MPaの硫黄分圧下で部材を焼結することによって、チタンと硫黄とを含む中間焼結部材を形成する。 In step 108, an intermediate sintered member containing titanium and sulfur is formed by sintering the member under a sulfur partial pressure of 150 Pa to 0.2 MPa.

例えば、100mgの部材を、Sigma-Aldrich社(登録商標)からの5mgの硫黄フレーク(99.99%)と共にガラス管に投入し、ガラス管を非常に低い圧力、例えば30Paのアルゴン下で密封する。400℃(摂氏)の定常温度および8時間の定常時間で部材を焼結することによって、チタンと硫黄とを含む中間焼結部材を形成する。加熱すると、固体の硫黄フレークによって、密封されたガラス管内の硫黄分圧が、200Pa〜0.2MPaになる。 For example, 100 mg of material is charged into a glass tube with 5 mg of sulfur flakes (99.99%) from Sigma-Aldrich® and the glass tube is sealed under very low pressure, eg 30 Pa of argon. .. An intermediate sintered member containing titanium and sulfur is formed by sintering the member at a steady temperature of 400 ° C. (Celsius) and a steady time of 8 hours. When heated, the solid sulfur flakes bring the sulfur partial pressure in the sealed glass tube to 200 Pa-0.2 MPa.

代替的には、150Pa〜0.2MPaの硫黄分圧は、硫黄含有ガス、例えば硫化水素(HS)、二硫化炭素(CS)または硫化燐(P、例えばP、PまたはP)を密閉容器、例えば密封されたガラス管に密封することによって、または開放容器にガスを流すことによって得ることができる。 Alternatively, a sulfur partial pressure of 150 Pa to 0.2 MPa can be applied to sulfur-containing gases such as hydrogen sulfide (H 2 S), carbon disulfide (CS 2 ) or phosphorus sulfide (P x S y , eg P 4 S 3). , P 2 S 3 or P 2 S 5 ) can be obtained by sealing in a closed container, such as a sealed glass tube, or by flowing gas through an open container.

次に、中間焼結部材を150Pa以下の硫黄分圧および200℃〜400℃の定常温度で焼結する(ステップ114)ことによって、チタンと硫黄とを含む焼結部材を形成する。 Next, the intermediate sintered member is sintered at a sulfur partial pressure of 150 Pa or less and a steady temperature of 200 ° C. to 400 ° C. (step 114) to form a sintered member containing titanium and sulfur.

例えば、中間焼結部材は、開放容器において、アルゴン雰囲気下で、すなわち、中間焼結部材にアルゴンを流すことによって、300℃の定常温度および8時間の定常時間で焼結することができる。他のガス、例えば窒素、ヘリウム、ネオンおよびキセノンを使用してもよい。 For example, the intermediate sintered member can be sintered in an open container under an argon atmosphere, that is, by flowing argon through the intermediate sintered member at a steady temperature of 300 ° C. and a steady time of 8 hours. Other gases such as nitrogen, helium, neon and xenon may be used.

2つの焼結ステップ108および114の間に、中間焼結部材を研磨する(ステップ110)ことができ、押圧する(ステップ112)ことができる。これらのステップ110および112は、任意である。 Between the two sintering steps 108 and 114, the intermediate sintered member can be polished (step 110) and pressed (step 112). These steps 110 and 112 are optional.

ステップ106および112に使用された圧力は、異なってもよい。ステップ106および112に使用された圧力は、等しくてもよい。しかしながら、ステップ106および112の両方に使用された圧力は、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下である。 The pressures used in steps 106 and 112 may vary. The pressures used in steps 106 and 112 may be equal. However, the pressure used in both steps 106 and 112 is 25 MPa or higher, preferably 50 MPa or higher, more preferably 75 MPa or higher, 500 MPa or lower, preferably 400 MPa or lower, more preferably 300 MPa or lower.

例えば、ステップ106の圧力は、200MPaに等しくてもよく、ステップ112の圧力は、100MPaに等しくてもよい。 For example, the pressure in step 106 may be equal to 200 MPa and the pressure in step 112 may be equal to 100 MPa.

サンプル2の製造方法は、150Pa未満の硫黄分圧下で部材および中間焼結部材を焼結することを除いて、サンプル1の製造方法と同様である。 The method for producing sample 2 is the same as the method for producing sample 1 except that the member and the intermediate sintered member are sintered under a sulfur partial pressure of less than 150 Pa.

部材および中間焼結部材の両方は、例えばサンプル2の部材および中間焼結部材を非常に低い圧力、例えば30Paのアルゴンと共にガラス管に密封することによって、150Pa未満の硫黄分圧下で400℃で8時間に焼結される。したがって、サンプル2の焼結部材は、150MPa未満の硫黄分圧下で400℃で16時間に焼結されている。 Both the member and the intermediate sintered member are 8 at 400 ° C. under a sulfur partial pressure of less than 150 Pa, for example by sealing the member of sample 2 and the intermediate sintered member in a glass tube with a very low pressure, eg 30 Pa of argon. Sintered in time. Therefore, the sintered member of Sample 2 is sintered at 400 ° C. for 16 hours under a sulfur partial pressure of less than 150 MPa.

図2および図3は、サンプル1およびサンプル2のX線回折スペクトルを各々示している。図3および4から分かるように、サンプル1およびサンプル2の両方は、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す。 2 and 3 show the X-ray diffraction spectra of Sample 1 and Sample 2, respectively. As can be seen from FIGS. 3 and 4, both Sample 1 and Sample 2 have 2θ = 15.08 ° (± 0.50 °) and 15.28 ° (± 0.) in the X-ray diffraction measurement using CuKα rays. 50 °), 15.92 ° (± 0.50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °) ), 23.44 ° (± 0.50 °), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °).

サンプル1およびサンプル2を2つのSUS集電体(ステンレス鋼、SUS301)の間に各々挟み、バイオロジック社製のインピーダンス利得位相アナライザを用いて、サンプル1とサンプル2の両方のインピーダンスを測定した。バイオロジック社製のVMP3を周波数応答アナライザ(FRA)として測定に使用した。測定は、10mV(ミリボルト)の交流電圧および1Hz(ヘルツ)〜1MHzの周波数を有する高周波数範囲から開始した。 Samples 1 and 2 were sandwiched between two SUS current collectors (stainless steel, SUS301), and the impedances of both sample 1 and sample 2 were measured using an impedance gain phase analyzer manufactured by Biologic. VMP3 manufactured by Biologic was used for measurement as a frequency response analyzer (FRA). The measurement was started from a high frequency range with an AC voltage of 10 mV (millivolt) and a frequency of 1 Hz (Hertz) to 1 MHz.

サンプル1の電子伝導率は、6.1×10−5S/cm(シーメンス/センチメートル)である。一方、サンプル2のイオン伝導率は、4.6×10−10S/cmである。 The electron conductivity of sample 1 is 6.1 × 10-5 S / cm (Siemens / centimeter). On the other hand, the ionic conductivity of sample 2 is 4.6 × 10 -10 S / cm.

したがって、200Pa〜0.2MPaの硫黄分圧下での焼結およびその後の硫黄を蒸発させる焼結によって、焼結部材の電子導電率が著しく増加した。 Therefore, the electron conductivity of the sintered member was remarkably increased by the sintering under the partial pressure of sulfur of 200 Pa to 0.2 MPa and the subsequent sintering by evaporating the sulfur.

図4および5は、周波数(Hz)に従って変化するサンプル1およびサンプル2の各々の電気伝導率(S/cm)の実数部を示している。 4 and 5 show the real part of the electrical conductivity (S / cm) of each of Sample 1 and Sample 2 which changes according to the frequency (Hz).

サンプル2は、明確な温度依存性を示している。一方、サンプル1は、60℃の温度まで非常に小さな温度依存性を示している。イオン伝導率が温度に強く依存するため、周波数に従って変化するサンプル1の電気伝導率の実数部の準非依存性は、サンプル1の焼結部材が電子伝導を示すことを表す。電気伝導率は、イオン伝導率と電子伝導率の合計である。 Sample 2 shows a clear temperature dependence. On the other hand, Sample 1 shows a very small temperature dependence up to a temperature of 60 ° C. Since the ionic conductivity is strongly temperature-dependent, the quasi-independence of the real part of the electrical conductivity of the sample 1 that changes with frequency indicates that the sintered member of the sample 1 exhibits electron conductivity. Electrical conductivity is the sum of ionic conductivity and electron conductivity.

全てのステップ102〜114を実施することによってサンプル1を得たが、ステップ104および/またはステップ110および112を実施してもしなくても、同様の結果を得ることができる。 Sample 1 was obtained by performing all steps 102-114, but similar results can be obtained with or without performing steps 104 and / or steps 110 and 112.

代替的には、150Pa以下の硫黄分圧は、中間焼結部材を含む密閉容器に存在するガスを連続的に排出することにより得ることができる。 Alternatively, the sulfur partial pressure of 150 Pa or less can be obtained by continuously discharging the gas existing in the closed container including the intermediate sintered member.

代替的には、中間焼結部材の最高温度が200℃〜400℃の間にある勾配温度の下で中間焼結部材を焼結する(ステップ114)ことによって、焼結部材を形成することができる。 Alternatively, the sintered member can be formed by sintering the intermediate sintered member at a gradient temperature where the maximum temperature of the intermediate sintered member is between 200 ° C and 400 ° C (step 114). it can.

例えば、中間焼結部材は、例えば30Paの非常に低い圧力のアルゴン下でガラス管に密封され、一方側が300℃であり、他方側が100℃である勾配温度で、8時間の焼結時間で焼結されてもよい。 For example, the intermediate sintered member is sealed in a glass tube under argon at a very low pressure of, for example, 30 Pa, and is baked at a gradient temperature of 300 ° C. on one side and 100 ° C. on the other side in a sintering time of 8 hours. It may be tied.

粉末混合物がアモルファス化されていない場合、すなわち、ステップ104が行われていない場合、ステップ106において、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下の圧力で粉末混合物を押圧する。 When the powder mixture is not amorphized, that is, when step 104 is not performed, in step 106, 25 MPa or more, preferably 50 MPa or more, more preferably 75 MPa or more, 500 MPa or less, preferably 400 MPa or less, more preferably. The powder mixture is pressed at a pressure of 300 MPa or less.

例えば、100mgの粉末混合物を200MPaで押圧することによって、部材を形成する。 For example, a member is formed by pressing a 100 mg powder mixture at 200 MPa.

ステップ108において、200Pa〜0.2MPaの硫黄分圧下で部材を焼結することによって、硫黄を含む中間焼結部材を形成する。 In step 108, an intermediate sintered member containing sulfur is formed by sintering the member under a sulfur partial pressure of 200 Pa to 0.2 MPa.

例えば、100mgの部材を、Sigma-Aldrich社(登録商標)から5mgの硫黄フレーク(99.99%)と共にガラス管に投入し、ガラス管を非常に低い圧力、例えば30Paのアルゴン下で密封する。500℃(摂氏)を超える定常温度、例えば750℃および10時間の定常時間で部材を焼結することによって、チタンと硫黄とを含む中間焼結部材を形成する。 For example, 100 mg of material is charged into a glass tube with 5 mg of sulfur flakes (99.99%) from Sigma-Aldrich® and the glass tube is sealed under very low pressure, eg 30 Pa of argon. An intermediate sintered member containing titanium and sulfur is formed by sintering the member at a steady temperature of over 500 ° C. (Celsius), such as 750 ° C. and a steady time of 10 hours.

代替的には、200Pa〜0.2MPaの硫黄分圧は、密閉容器、例えば密封されたガラス管に硫黄含有ガス、例えば硫化水素(HS)、二硫化炭素(CS)または硫化燐(P、例えばP、PまたはP)を密封することによって、または開放容器にガスを流すことによって得ることができる。 Alternatively, the sulfur partial pressure 200Pa~0.2MPa are sealed containers, for example sealed sulfur-containing gas in a glass tube, for example, hydrogen sulfide (H 2 S), carbon disulfide (CS 2) or phosphorus sulfide ( It can be obtained by sealing P x S y , such as P 4 S 3 , P 2 S 3 or P 2 S 5 ), or by flowing gas into an open vessel.

中間焼結部材の焼結114の条件は、上記と同様である。
特許請求の範囲を含む明細書の全体において、「含む」という用語は、特に明記しない限り、「少なくとも1つを含む」と同義であると理解すべきである。さらに、特許請求の範囲を含む説明に記載された範囲は、特に明記しない限り、両端値を含むものとして理解すべきである。記載された要素の特定の値は、当業者に知られている製造または業界誤差の許容範囲に入ると理解すべきである。「実質的に」および/または「約」および/または「一般的に」という用語は、そのような許容範囲に入ると理解すべきである。
The conditions for sintering 114 of the intermediate sintered member are the same as described above.
Throughout the specification, including the claims, the term "contains" should be understood to be synonymous with "contains at least one" unless otherwise stated. Furthermore, the scope described in the description including the scope of claims should be understood as including the double-ended value unless otherwise specified. It should be understood that the particular values of the described elements fall within the tolerances of manufacturing or industry error known to those of skill in the art. It should be understood that the terms "substantially" and / or "about" and / or "generally" fall within such tolerances.

本開示を特定の実施形態を参照して説明したが、これらの実施形態は、本開示の原理および用途の単なる例示にすぎないことを理解すべきである。 Although the present disclosure has been described with reference to specific embodiments, it should be understood that these embodiments are merely exemplary of the principles and uses of the present disclosure.

本明細書および実施例は、例示のみであり、本開示の真の範囲は、以下の特許請求の範囲によって示される。 The present specification and examples are illustrative only, and the true scope of the present disclosure is indicated by the following claims.

Claims (15)

全固体電池用のチタンと硫黄とを含む固体電解質および/または電極である焼結部材を製造する方法(100)であって、
チタンと硫黄とを含む粉末混合物を得るために、粉末を混合するステップ(102)と、
前記粉末混合物を含む部材を押圧するステップ(106)と、
チタンと硫黄とを含む中間焼結部材を得るために、200Pa〜0.2MPaの硫黄分圧下で前記部材を焼結するステップ(108)と、
チタンと硫黄とを含む焼結部材を得るために、150Pa以下の硫黄分圧および200℃〜400℃の定常温度で前記中間焼結部材を焼結するステップ(114)とを含み、
前記焼結部材は、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す、方法(100)。
A method (100) for producing a sintered member which is a solid electrolyte and / or an electrode containing titanium and sulfur for an all-solid-state battery.
In step (102) of mixing the powders to obtain a powder mixture containing titanium and sulfur,
The step (106) of pressing the member containing the powder mixture and
In order to obtain an intermediate sintered member containing titanium and sulfur, the step (108) of sintering the member under a sulfur partial pressure of 200 Pa to 0.2 MPa, and
In order to obtain a sintered member containing titanium and sulfur, the step (114) of sintering the intermediate sintered member at a partial pressure of sulfur of 150 Pa or less and a steady temperature of 200 ° C. to 400 ° C. is included.
The sintered member has 2θ = 15.08 ° (± 0.50 °), 15.28 ° (± 0.50 °), and 15.92 ° (± 0.92 °) in X-ray diffraction measurement using CuKα rays. 50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °), 23.44 ° (± 0.50 °) ), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °) positions, the method (100).
150Pa以下の硫黄分圧は、前記中間焼結部材に希ガスまたは窒素を流すことによって得られる、請求項1に記載の方法(100)。 The method (100) according to claim 1, wherein the sulfur partial pressure of 150 Pa or less is obtained by flowing a rare gas or nitrogen through the intermediate sintered member. 150Pa以下の硫黄分圧は、前記中間焼結部材を含む密閉容器に存在するガスを連続的に排出することによって得られる、請求項1または2に記載の方法(100)。 The method (100) according to claim 1 or 2, wherein the sulfur partial pressure of 150 Pa or less is obtained by continuously discharging the gas existing in the closed container including the intermediate sintered member. 全固体電池用のチタンと硫黄とを含む固体電解質および/または電極である焼結部材を製造する方法(100)であって、
チタンと硫黄とを含む粉末混合物を得るために、粉末を混合するステップ(102)と、
前記粉末混合物を含む部材を押圧するステップ(106)と、
チタンと硫黄とを含む中間焼結部材を得るために、200Pa〜0.2MPaの硫黄分圧下で前記部材を焼結するステップ(108)と、
焼結部材を得るために、勾配温度で前記中間焼結部材を焼結するステップ(114)とを含み、前記中間焼結部材の最高温度は、200℃〜400℃の間にあり、
前記焼結部材は、CuKα線を使用したX線回折測定において2θ=15.08°(±0.50°)、15.28°(±0.50°)、15.92°(±0.50°)、17.5°(±0.50°)、18.24°(±0.50°)、20.30°(±0.50°)、23.44°(±0.50°)、24.48°(±0.50°)、および26.66°(±0.50°)の位置にピークを示す、方法(100)。
A method (100) for producing a sintered member which is a solid electrolyte and / or an electrode containing titanium and sulfur for an all-solid-state battery.
In step (102) of mixing the powders to obtain a powder mixture containing titanium and sulfur,
The step (106) of pressing the member containing the powder mixture and
In order to obtain an intermediate sintered member containing titanium and sulfur, the step (108) of sintering the member under a sulfur partial pressure of 200 Pa to 0.2 MPa, and
Including a step (114) of sintering the intermediate sintered member at a gradient temperature in order to obtain a sintered member, the maximum temperature of the intermediate sintered member is between 200 ° C. and 400 ° C.
The sintered member has 2θ = 15.08 ° (± 0.50 °), 15.28 ° (± 0.50 °), and 15.92 ° (± 0.92 °) in X-ray diffraction measurement using CuKα rays. 50 °), 17.5 ° (± 0.50 °), 18.24 ° (± 0.50 °), 20.30 ° (± 0.50 °), 23.44 ° (± 0.50 °) ), 24.48 ° (± 0.50 °), and 26.66 ° (± 0.50 °) positions, the method (100).
前記中間焼結部材は、前記勾配温度での焼結中に密閉容器に密封される、請求項4に記載の方法(100)。 The method (100) according to claim 4, wherein the intermediate sintered member is sealed in a closed container during sintering at the gradient temperature. 前記焼結部材は、XTi(PSを含み、Xは、リチウム(Li)、ナトリウム(Na)または銀(Ag)である、請求項1から5のいずれか一項に記載の方法(100)。 The method according to any one of claims 1 to 5, wherein the sintered member comprises XTi 2 (PS 4 ) 3 , where X is lithium (Li), sodium (Na) or silver (Ag). (100). 前記方法は、アモルファス化粉末混合物を得るために、前記粉末混合物をアモルファス化するステップ(104)を含む、請求項1から6のいずれか一項に記載の方法(100)。 The method (100) according to any one of claims 1 to 6, wherein the method comprises the step (104) of amorphizing the powder mixture in order to obtain an amorphized powder mixture. 200Pa〜0.2MPaの硫黄分圧下での焼結(108)は、500℃以下、好ましくは400℃以下の定常焼結温度を含む、請求項7に記載の方法(100)。 The method (100) according to claim 7, wherein the sintering (108) under a sulfur partial pressure of 200 Pa to 0.2 MPa includes a steady sintering temperature of 500 ° C. or lower, preferably 400 ° C. or lower. 200Pa〜0.2MPaの硫黄分圧下での焼結(108)は、20時間以下、好ましくは10時間以下の定常焼結時間を含む、請求項7または8に記載の方法(100)。 The method (100) according to claim 7 or 8, wherein the sintering (108) under a sulfur partial pressure of 200 Pa to 0.2 MPa includes a steady sintering time of 20 hours or less, preferably 10 hours or less. 200Pa〜0.2MPaの前記硫黄分圧は、固体硫黄を蒸発させることによって得られる、請求項1から9のいずれか一項に記載の方法(100)。 The method (100) according to any one of claims 1 to 9, wherein the sulfur partial pressure of 200 Pa to 0.2 MPa is obtained by evaporating solid sulfur. 前記部材は、容器に配置され、100Pa以下、好ましくは50Pa以下の圧力のアルゴン下で密封される、請求項10に記載の方法(100)。 The method (100) of claim 10, wherein the member is placed in a container and sealed under argon at a pressure of 100 Pa or less, preferably 50 Pa or less. 200Pa〜0.2MPaの前記硫黄分圧は、硫黄含有ガスから得られる、請求項1から11のいずれか一項に記載の方法(100)。 The method (100) according to any one of claims 1 to 11, wherein the sulfur partial pressure of 200 Pa to 0.2 MPa is obtained from a sulfur-containing gas. 前記部材は、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下の圧力で押圧される(106)、請求項1から12のいずれか一項に記載の方法(100)。 The member is pressed at a pressure of 25 MPa or more, preferably 50 MPa or more, more preferably 75 MPa or more, 500 MPa or less, preferably 400 MPa or less, more preferably 300 MPa or less (106), any one of claims 1 to 12. The method according to item (100). 前記2つの焼結ステップ(108、114)の間に、前記中間焼結部材は、研磨され(110)、押圧される(112)、請求項1から13のいずれか一項に記載の方法(100)。 The method according to any one of claims 1 to 13, wherein the intermediate sintered member is polished (110) and pressed (112) between the two sintering steps (108, 114). 100). 前記研磨および押圧された中間焼結部材は、25MPa以上、好ましくは50MPa以上、より好ましくは75MPa以上、500MPa以下、好ましくは400MPa以下、より好ましくは300MPa以下の圧力で押圧される(112)、請求項14に記載の方法。 The polished and pressed intermediate sintered member is pressed at a pressure of 25 MPa or more, preferably 50 MPa or more, more preferably 75 MPa or more, 500 MPa or less, preferably 400 MPa or less, more preferably 300 MPa or less (112). Item 14. The method according to item 14.
JP2020505862A 2017-08-04 2017-08-04 Manufacturing method of electrodes for all-solid-state batteries Active JP6961794B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/069858 WO2019025014A1 (en) 2017-08-04 2017-08-04 Method for producing electrodes for all-solid state batteries

Publications (2)

Publication Number Publication Date
JP2020529386A true JP2020529386A (en) 2020-10-08
JP6961794B2 JP6961794B2 (en) 2021-11-05

Family

ID=59523150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020505862A Active JP6961794B2 (en) 2017-08-04 2017-08-04 Manufacturing method of electrodes for all-solid-state batteries

Country Status (5)

Country Link
US (1) US20200243900A1 (en)
EP (1) EP3662523B1 (en)
JP (1) JP6961794B2 (en)
CN (1) CN110998917A (en)
WO (1) WO2019025014A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242456A (en) * 1988-03-23 1989-09-27 Hitachi Ltd Production of rare earth oxysulfide sintered compact
JPH1197058A (en) * 1997-09-24 1999-04-09 Tokyo Electric Power Co Inc:The Sodium-sulfur cell
JP2013037897A (en) * 2011-08-08 2013-02-21 Toyota Motor Corp Production method of sulfide solid electrolyte material, and sulfide solid electrolyte material
JP2013137889A (en) * 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd Sulfide-based solid electrolyte
CN103401017A (en) * 2013-08-02 2013-11-20 北京理工大学 Li2S-P2S5-TiS2 amorphous electrolyte material
JP2016006674A (en) * 2015-08-19 2016-01-14 株式会社リコー Image processor, program, image processing method and imaging system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596638B2 (en) * 1990-11-27 1997-04-02 防衛庁技術研究本部長 Manufacturing method of sulfide ceramics
JP4948659B1 (en) * 2011-04-12 2012-06-06 三井金属鉱業株式会社 Method for producing lithium sulfide for solid electrolyte material of lithium ion battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242456A (en) * 1988-03-23 1989-09-27 Hitachi Ltd Production of rare earth oxysulfide sintered compact
JPH1197058A (en) * 1997-09-24 1999-04-09 Tokyo Electric Power Co Inc:The Sodium-sulfur cell
JP2013037897A (en) * 2011-08-08 2013-02-21 Toyota Motor Corp Production method of sulfide solid electrolyte material, and sulfide solid electrolyte material
JP2013137889A (en) * 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd Sulfide-based solid electrolyte
CN103401017A (en) * 2013-08-02 2013-11-20 北京理工大学 Li2S-P2S5-TiS2 amorphous electrolyte material
JP2016006674A (en) * 2015-08-19 2016-01-14 株式会社リコー Image processor, program, image processing method and imaging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN YANGYUNら: "All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electr", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. Soc. 161, JPN6021007988, 2014, pages 154 - 159, ISSN: 0004460663 *

Also Published As

Publication number Publication date
EP3662523A1 (en) 2020-06-10
US20200243900A1 (en) 2020-07-30
CN110998917A (en) 2020-04-10
JP6961794B2 (en) 2021-11-05
WO2019025014A1 (en) 2019-02-07
EP3662523B1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
Chi et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries
Wang et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte
Wang et al. Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries
Tang et al. Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes
Kehne et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance
CN105355871B (en) A kind of combination electrode material, preparation method and solid lithium battery
Wang et al. High-performance Li 6 PS 5 Cl-based all-solid-state lithium-ion batteries
Sveinbjörnsson et al. The LiBH4-LiI solid solution as an electrolyte in an all-solid-state battery
Kumar et al. Solid-state rechargeable magnesium cell with poly (vinylidenefluoride)–magnesium triflate gel polymer electrolyte
Jadhav et al. Highly stable bilayer of LiPON and B2O3 added Li1. 5Al0. 5Ge1. 5 (PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries
KR20180105721A (en) A pre-solid lithium-sulfur battery and its manufacturing method
CN113745651B (en) Coated sulfide solid electrolyte and preparation method and application thereof
Lu et al. Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries
Shrestha et al. Effect of amorphous LiPON coating on electrochemical performance of LiNi0. 8Mn0. 1Co0. 1O2 (NMC811) in all solid-state batteries
Niu et al. Exploration of Na 7 Fe 4.5 (P 2 O 7) 4 as a cathode material for sodium-ion batteries
Huang et al. Highly dense perovskite electrolyte with a high Li+ conductivity for Li–ion batteries
Song et al. Constructing a PVDF-based composite solid-state electrolyte with high ionic conductivity Li6. 5La3Zr1. 5Ta0. 1Nb0. 4O12 for lithium metal battery
Gutiérrez-Pardo et al. Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte?
JP6961794B2 (en) Manufacturing method of electrodes for all-solid-state batteries
Chen et al. High Li-ionic conductivity of Li29Zr9Nb3O40 ceramic sintered in oxygen-deficient atmosphere
JP7223367B2 (en) Electrolyte for all-solid secondary battery
Il’ina et al. All-solid-state battery Li–Ga–Ag| Li 7 La 3 Zr 2 O 12+ Li 2 O–Y 2 O 3–SiO 2| Li 2 O–V 2 O 5–B 2 O 3
Carides et al. Equilibrium properties of lithium/niobium selenide, nonaqueous secondary cells
Kartal et al. Electrical conductivity, viscosity and thermal properties of tegdme-based composite electrolytes for lithium-air batteries
US20200185699A1 (en) Method for producing solid electrolyte and electrode for all-solid state batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6961794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350