JPH01242456A - Production of rare earth oxysulfide sintered compact - Google Patents

Production of rare earth oxysulfide sintered compact

Info

Publication number
JPH01242456A
JPH01242456A JP63067448A JP6744888A JPH01242456A JP H01242456 A JPH01242456 A JP H01242456A JP 63067448 A JP63067448 A JP 63067448A JP 6744888 A JP6744888 A JP 6744888A JP H01242456 A JPH01242456 A JP H01242456A
Authority
JP
Japan
Prior art keywords
capsule
rare earth
earth oxysulfide
metal
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63067448A
Other languages
Japanese (ja)
Inventor
Akizo Toda
堯三 戸田
Takamichi Yamada
山田 敞馗
Yukio Ito
由喜男 伊藤
Kuninori Imai
今井 邦典
Masabumi Kanetomo
正文 金友
Shigeo Kato
加藤 重雄
Hiroyuki Takeuchi
裕之 竹内
Yasuo Tsukuda
佃 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP63067448A priority Critical patent/JPH01242456A/en
Publication of JPH01242456A publication Critical patent/JPH01242456A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title sintered compact having luminous output with small scattering in a good yield by filling a specified substance together with rare earth oxysulfide powder in a metal capsule, by sealing after making vacuous and by heating and pressing. CONSTITUTION:In the production of rare earth oxysulfide (hereinafter referred to as Gd2O2S) sintered compact by filling Gd2O2S powder in the metal capsule, by sealing after making the capsule vacuous and by heating and pressing, the substance having higher vapor pressure of sulfur at >=500 deg.C than that of Gd2O2S (e.g., FeS2, CuS, Ag2S, PbS) is made to coexist in the capsule. Thereby, the decomposition of Gd2O2S at a high temp. is suppressed and the scattering of the characteristics of Gd2O2S sintered compact is remarkably decreased to obtain the sintered compact suitable as scintillator for X-ray CT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射線検出用シンチレータ材料の製法に係り
、特にX線コンピュータ断層撮影装置(以下X線CT略
す)用シンチレータとして好適な希土類オキシ硫化物(
以下Gd202sと略す)焼結体の製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a scintillator material for radiation detection, and in particular, a rare earth oxysulfide material suitable as a scintillator for an X-ray computed tomography device (hereinafter abbreviated as X-ray CT). thing(
The present invention relates to a method for manufacturing a sintered body (hereinafter abbreviated as Gd202s).

〔従来の技術〕[Conventional technology]

近年、GdzOxS粉末をエポキシ等の樹脂中に分散、
固化させた複合材が、X線CT用シンチレタとして盛ん
に開発が進められている。しかしこの複合材の発光効率
が理論値よりもがなり低く、かつ光透過率が低いので、
厚さを薄くする必要がある。このため複合材に入射した
X線が直接フォトダイオードのような検出素子に達する
のでこれを防ぐためにX線吸収用鉛ガラスを付けなけれ
ばならない等、素子の構造が非常に複雑になるという問
題があった。
In recent years, GdzOxS powder has been dispersed in resins such as epoxy,
Solidified composite materials are being actively developed as scintillators for X-ray CT. However, the luminous efficiency of this composite material is lower than the theoretical value, and the light transmittance is low.
It is necessary to reduce the thickness. For this reason, the X-rays incident on the composite material directly reach the detection element such as a photodiode, and to prevent this, lead glass for X-ray absorption must be attached, resulting in a very complicated element structure. there were.

近年、上記のような問題を解決するために。In recent years, to solve the above problems.

GdzOxS焼結体を用いた検出素子が提案されてする
(特開昭58−204088 、特開昭6l−1276
70)。
A detection element using a GdzOxS sintered body has been proposed (Japanese Patent Application Laid-Open No. 58-204088, Japanese Patent Application Laid-open No. 61-1276).
70).

これらの従来例によるGdzOzS焼結体の製造方法は
次の2つに分けられる。
These conventional methods for manufacturing GdzOzS sintered bodies can be divided into the following two methods.

第1の方法は、GclzOzS粉末を耐熱性のダイスに
充填し、これを上下パンチにより加圧しながら加熱する
いわゆるホットプレス(以下HPと略す)法によるもの
である。GdzOzSは非常に酸化しやすく、通常、約
500℃の空気中加熱によってGdzOzSが分解酸化
し、Sの化合物を放出する。従って、GdzOzSの焼
結は酸素を含まない雰囲気中で行うことが必要である。
The first method is a so-called hot press (hereinafter abbreviated as HP) method in which GclzOzS powder is filled into a heat-resistant die and heated while being pressed with upper and lower punches. GdzOzS is very easily oxidized, and GdzOzS is usually decomposed and oxidized by heating in air at about 500° C., releasing S compounds. Therefore, it is necessary to sinter GdzOzS in an oxygen-free atmosphere.

一方、GdzOzSの圧力に対する安定性を見ると、G
d20zSブロツクの研摩作業において、わずかな研摩
圧が加わってもG d x○2Sの分解に基因するS化
合物特有の臭いを発することが発明者らによって確めら
れた。すなわち、GdzO2Sは酸化及び圧力に対して
極めて不安定であり、容易にSを放出しやすい化合物で
あると言える。
On the other hand, looking at the stability of GdzOzS against pressure, G
The inventors have confirmed that during the polishing work of the d20zS block, even when a slight polishing pressure is applied, the characteristic odor of S compounds caused by the decomposition of G d x○2S is emitted. That is, it can be said that GdzO2S is extremely unstable against oxidation and pressure, and is a compound that easily releases S.

特開昭58−204088によれば、GdzOzS焼結
体をHP法によって作製するとのみ述べているだけで、
具体的な実施例の記述は見当らず、したがって、Gdx
OzS固有の問題に対する配慮がなく、この従来法をそ
のま実用化することは不可能に近ll)。
According to JP-A-58-204088, it only states that a GdzOzS sintered body is produced by the HP method;
I can't find any description of specific examples, so Gdx
It is nearly impossible to put this conventional method into practical use as it is, as there is no consideration given to the problems specific to OzS.

第2の方法は、熱間静水圧プレス法(以下HIPと略す
)によるGdzC)zS焼結体の製法である。
The second method is a method for producing a GdzC)zS sintered body by hot isostatic pressing (hereinafter abbreviated as HIP).

すなわち、G d x○2S粉末を薄肉の金属製容器に
充填し、この容器内を真空排気した後、容器の排気管部
を封止し、次いでこの容器を加熱しながら、ガス圧など
によって等方的に容器に圧力を加え、加圧と加熱を同時
に行って緻密なGdzOzS焼結体を作る方法である。
That is, after filling a thin metal container with G d In this method, a dense GdzOzS sintered body is produced by applying pressure to the container directionally and applying pressure and heating at the same time.

HIP法では、GdzOzS粉末を金属容器に入れ、そ
れを真空排気後、気密封止するために、外気中の酸素に
よるGdzOzSの酸化・分解の問題をかなり防ぐこと
ができる。また、同様に、金属容器内に原料粉末が密充
填されていれば、加圧時のGdzOzSの分解も防ぐこ
とができる。このようにHIP法は、金属容器を用いる
ことによって、GdzOzSの本質的欠点をカバーし、
HP法では達し得ないような優れた特性のGdzO2S
焼結体を作ることができる。
In the HIP method, GdzOzS powder is placed in a metal container, which is evacuated and then hermetically sealed, so that the problem of oxidation and decomposition of GdzOzS due to oxygen in the outside air can be significantly prevented. Similarly, if the raw material powder is tightly packed in the metal container, decomposition of GdzOzS during pressurization can be prevented. In this way, the HIP method covers the essential drawbacks of GdzOzS by using a metal container,
GdzO2S with excellent properties that cannot be achieved with the HP method
A sintered body can be made.

このようにHIP法はGdzOxS焼結体を作る上で非
常に有望な方法ではあるが、Gdz○18固有の安定性
の面から見るとHIP法の利点は、上述の金属容器使用
の有無、言え換えれば金属容器の中の酸素を如何にして
少なくするかという問題に締結される。
As described above, the HIP method is a very promising method for producing GdzOxS sintered bodies, but from the viewpoint of the inherent stability of Gdz○18, the advantages of the HIP method are limited by the use of the metal container mentioned above. In other words, the problem is how to reduce the amount of oxygen in a metal container.

これに関し、特開昭61−127670には以下の技術
がみられる。この従来法は、GdzOzS系の原料粉末
を、石英と鉄製の二重のカプセル内に気密封止し、これ
を1300℃、4時間、1500気圧下で熱間静水圧プ
レス焼結(以下HIPと略す)するものである。
Regarding this, the following technique is found in Japanese Patent Application Laid-Open No. 61-127670. In this conventional method, GdzOzS-based raw material powder is hermetically sealed in a double capsule made of quartz and iron, and then subjected to hot isostatic press sintering (hereinafter referred to as HIP) at 1300°C for 4 hours under 1500 atm. omitted).

しかしながら、GdzOzS粉末と接する石英は、Gd
zOzSと非常に反応しやすく、高温で長時間HIP焼
結した場合、焼結体特性が著しく低下したり、相互の反
応の程度が特性ばらつきの要因になったり、相互反応層
が形成されるために、焼結体中の良質な部分が極めて少
なくなって歩留りが低下し高コストになるなどのいくつ
かの問題がある。石英カプセル使用による上記問題を解
決するため、原料粉末を直接鉄製カプセルに充填後、カ
プセル内を真空排気し、これをHIP処理してGdzO
zS焼結体を製造する方法が提案されている。すなわち
、シンチレータ材の素原料であるGdxOzS粉末を直
径約50m、高さ約60m。
However, the quartz in contact with the GdzOzS powder
It reacts very easily with zOzS, and if HIP sintered at high temperature for a long time, the properties of the sintered body may deteriorate significantly, the degree of mutual reaction may cause variations in properties, and an interaction layer may be formed. In addition, there are several problems such as a very small amount of high-quality parts in the sintered body, resulting in lower yields and higher costs. In order to solve the above problems caused by the use of quartz capsules, raw material powder is directly filled into iron capsules, the inside of the capsules is evacuated, and the capsules are subjected to HIP treatment to produce GdzO.
A method of manufacturing a zS sintered body has been proposed. That is, GdxOzS powder, which is the raw material for the scintillator material, was about 50 m in diameter and about 60 m in height.

肉厚1.5ws程度のステンレス製のカプセルに充填し
、このカプセル全体を100〜200℃に加熱しながら
、カプセルの上部に接続されている直径約1011I1
1の細い排気管を通してカプセル内を真空排気し、所定
時間排気後、排気管を熱圧接して気密封止する。ここで
排気時の真空度は、排気ポンプ側に設置した真空計によ
り、10−2〜1o−4torrに保たれる。次に、真
空封止されたカプセルをI−(rPi置内にセットし、
1300℃、3時間。
It is filled into a stainless steel capsule with a wall thickness of about 1.5ws, and while the whole capsule is heated to 100 to 200℃, a tube with a diameter of about 1011I1 connected to the top of the capsule is filled.
The inside of the capsule is evacuated through a thin exhaust pipe No. 1, and after evacuation for a predetermined period of time, the exhaust pipe is hermetically sealed by heat pressure welding. Here, the degree of vacuum during evacuation is maintained at 10-2 to 10-4 torr by a vacuum gauge installed on the exhaust pump side. Next, set the vacuum-sealed capsule in the I-(rPi device,
1300℃, 3 hours.

1500気圧のような条件でHIP処理するものである
HIP processing is performed under conditions such as 1500 atm.

ここで金属容器を加熱する理由は、原料粉末に吸着され
ている空気を離脱させるためである。原料粉が酸化され
ずに安定であるためには、金属容器の内部を完全に真空
排気しなければならないが、排気管が細く、かつこれに
ガム管が接続されているために、排気管が長くなる。従
来法に限らず、金属容器を用いる場合は、その構造上必
然的に排気管が長くなり、例え長時間排気しても金属容
器の内部を高真空にすることは殆んど不可能に近い。
The reason for heating the metal container here is to release air adsorbed by the raw material powder. In order for the raw material powder to remain stable without being oxidized, the inside of the metal container must be completely evacuated, but because the exhaust pipe is narrow and the gum pipe is connected to it, the exhaust pipe is become longer. Regardless of the conventional method, when using a metal container, the exhaust pipe is inevitably long due to its structure, and it is almost impossible to create a high vacuum inside the metal container even if the exhaust is evacuated for a long time. .

排気時の真空計は、一般に排気ポンプの近くにセットさ
れているから、この真空計が10 ’torrを示して
いても、金属容器内の真空度はそれよりも約2桁低く、
10−2程度である。したがって、この程度の真空度で
あれば金属容器内には空気(酸素)が残留し、それが原
料を酸化させ、ひいては焼結体の特性を劣化させる。さ
らに前述したように、従来技術はG d x○2SのH
IP用金属容器内の脱酸素の点について配慮がされてお
らず、金属容器内に残留した空気、あるいは真空中加熱
によっても除去できない残留吸着空気などのために、H
I濾過程で金属容器内のGdzOzSが局部的に酸化さ
れ、それがGdzO2S焼結体の特性を劣化させ、製造
ロット間の特性ばらつきを大きくするなどの問題があっ
た。
The vacuum gauge during evacuation is generally set near the exhaust pump, so even if this vacuum gauge indicates 10'torr, the degree of vacuum inside the metal container is about two orders of magnitude lower.
It is about 10-2. Therefore, at this degree of vacuum, air (oxygen) remains in the metal container, which oxidizes the raw material and deteriorates the characteristics of the sintered body. Furthermore, as mentioned above, the conventional technology
No consideration was given to deoxidizing the metal container for IP, and H
During the I-filtration process, the GdzOzS in the metal container is locally oxidized, which deteriorates the properties of the GdzO2S sintered body and increases the variation in properties between manufacturing lots.

X線CT用検出素子は、一般に非常数多くのシンチレー
タ材を用いるため、特にシンチレータ材の特性ばらつき
は非常に大きい問題である。
Since detection elements for X-ray CT generally use a large number of scintillator materials, variations in the characteristics of the scintillator materials are a particularly large problem.

本発明の目的は、発光出力のばらつきが小さく、かつ出
力の大きいGdzO2S焼結体の製法を提供することに
ある。
An object of the present invention is to provide a method for manufacturing a GdzO2S sintered body with small variations in light emission output and high output.

吸着ガスによるこの時のGdxOxSの酸化程度は、カ
プセル内の原料粉末の充填度合、加熱・真空排気の条件
、原料粉末の粒度分布や乾燥の度合、カプセル内のデッ
ドスペースの大きさ等、多数の制御困難なプロセス要因
に支配される。したがって、従来法においてはGdzC
)zSの酸化防止やカプセル内の残留ガスや吸着ガスに
対する特別の配慮がされていないため、HIP焼結され
るカプセル毎にカプセル内の残留ガスの状況が変化し、
この結果HI PされたGd2O2S焼結体の特性ばら
つきが、製造ロット毎で10%以上に達するという開音
があった。特にこのような特性のばらつきの大きい焼結
体を用いて作製したX線CT用シンチレータはその再生
像にリングむらやアーチファクトを生じるので実用上大
きな問題である。
The degree of oxidation of GdxOxS by the adsorbed gas at this time depends on many factors, such as the degree of filling of the raw material powder in the capsule, the conditions of heating and evacuation, the particle size distribution and degree of drying of the raw material powder, and the size of the dead space in the capsule. Dominated by process factors that are difficult to control. Therefore, in the conventional method, GdzC
) Since no special consideration has been taken to prevent zS from oxidation or to prevent residual gas or adsorbed gas within the capsule, the status of the residual gas within the capsule changes with each HIP-sintered capsule.
As a result, the characteristic variation of the HIP-treated Gd2O2S sintered body reached 10% or more from production lot to production lot. In particular, an X-ray CT scintillator manufactured using a sintered body with large variations in characteristics causes ring irregularities and artifacts in the reproduced image, which is a serious problem in practice.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述のようなHIP法で作製されたG
dzOzS焼結体の発光出力特性のばらつきを低減する
ことにあり、さらにはこの焼結体を歩留り良く製造する
ことにある。
The object of the present invention is to produce G
The object of the present invention is to reduce variations in the light emitting output characteristics of a dzOzS sintered body, and further to manufacture this sintered body at a high yield.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、GdzOzS粉末を金HL製カプセルに密
充填し、このカプセル内を真空排気機気密封止し、この
封止カプセルをホットプレスしてGdzOzS焼結体を
製造する際に、上記カプセル内にカプセル内の酸素と結
合しやす物質又はそのような物質を放出する物質を共存
させることによって達成される。
The above purpose is to tightly pack GdzOzS powder into a capsule made of gold HL, seal the inside of this capsule with a vacuum exhaust machine, and hot press this sealed capsule to produce a GdzOzS sintered body. This is achieved by coexisting with a substance that easily binds to oxygen in the capsule or a substance that releases such a substance.

上記物質としては第1に、500℃以上におけるSの蒸
気圧がGdzOzSよりも高いような物質(以下第1群
の物質という)、例えば、Fe5z。
The first example of the above-mentioned substances is a substance in which the vapor pressure of S at 500° C. or higher is higher than that of GdzOzS (hereinafter referred to as a first group substance), such as Fe5z.

CuS、AgzS、PbS、FeS、CuzS。CuS, AgzS, PbS, FeS, CuzS.

WS、Mo5t等の群がある。There are groups such as WS and Mo5t.

上記物質としては第2に、Gd20zSよりも、酸素に
対する親和力が大きく、かつ、HIPの行われる120
0〜1400℃の高温でも安定な酸化物を形成するよう
な物質(以下第2群の物質という)例えば、T iv 
Z r HCa t Cr等のような酸化物生成自由エ
ネルギーの大きい金属からなる群がある。
The second substance mentioned above is 120, which has a greater affinity for oxygen than Gd20zS and which undergoes HIP.
Substances that form stable oxides even at high temperatures of 0 to 1400°C (hereinafter referred to as second group substances), for example, Tiv
There is a group consisting of metals with high oxide formation free energy, such as Z r HCa t Cr.

〔作用〕[Effect]

第1群の物質による作用を以下に説明する。 The effects of the first group of substances will be explained below.

GdzO2S粉末の密充填された金属カプセルをホット
プレス装置にセットして加熱すると、カブセル内に共存
しているG d x○2.SよりもSの蒸気圧の高い物
質は、僅かにS蒸気を放出するようになる。一方、カプ
セルの内壁やGclzOzS粉末表面に吸着しているガ
スは、加熱と共に脱離する。
When a metal capsule filled with GdzO2S powder is placed in a hot press and heated, G d x○2. A substance whose vapor pressure is higher than that of S emits a small amount of S vapor. On the other hand, the gas adsorbed on the inner wall of the capsule and the surface of the GclzOzS powder is desorbed with heating.

脱離したガス中の酸素と、放出されたS蒸気とが結合し
、Sow等の硫化ガスとなってカプセル内に広がる。こ
の硫化ガスの形成によってGdzOzSからのSの放出
が抑制されることになる。
The oxygen in the desorbed gas and the released S vapor combine to form a sulfide gas such as Sow, which spreads inside the capsule. This formation of sulfide gas suppresses the release of S from GdzOzS.

若し、カプセル内にS蒸気を放出する物質が存在しなか
ったなら、不安定なGdxOzSは加熱によってSを放
出することになり、元のGdzO2S組成がずれること
によって、その特性が著しく低下することになる。また
、GdzOzSの方がS蒸気放出物質よりも蒸気圧が高
いと、加熱時にGd20zSの方から先にS蒸気が放出
されてしまう。
If there was no substance in the capsule that releases S vapor, unstable GdxOzS would release S when heated, and the original GdzO2S composition would shift, resulting in a significant decline in its properties. become. Furthermore, if GdzOzS has a higher vapor pressure than the S vapor releasing substance, S vapor will be released from Gd20zS first during heating.

以上の様に、GdzOzSよりも蒸気圧の高い物質をG
dzOzSと同時に金属カプセル内に共存させることは
、高温におけるGdzOzSの分解を抑制する作用を持
ち、これによって良質のGdzOzS焼結体が得られる
。殊に、金属カプセルの気密封止位置を一定にコントロ
ールすることが難しいことや、金属カプセル内のGdz
OzS粉末の密充填されていない空間の体積を一定にコ
ントロールすることの難しさなどから、金属カプセル内
の残存ガス量を常に一定にすることが実質上極めて困難
であるため、従来は金属カプセルのロット毎のGd20
zS焼結体の特性ばらつきが非常に大きかった。しかし
、本発明によるS蒸気放出物質の作用により、上記Gd
zOzS焼結の特性ばらつきを著しく低減させることが
できる。
As mentioned above, G
Coexisting with dzOzS in the metal capsule has the effect of suppressing the decomposition of GdzOzS at high temperatures, thereby obtaining a high-quality GdzOzS sintered body. In particular, it is difficult to control the hermetically sealed position of the metal capsule, and the Gdz inside the metal capsule is difficult to control.
Due to the difficulty of controlling the volume of the space in which the OzS powder is not tightly packed, it is practically extremely difficult to keep the amount of residual gas in the metal capsule constant at all times. Gd20 per lot
The variation in properties of the zS sintered body was extremely large. However, due to the action of the S vapor releasing substance according to the present invention, the Gd
Characteristic variations in sintered zOzS can be significantly reduced.

なお、GdzOzSは酸素分圧の低い雰囲気中では約5
00℃付近まで比較的安定であるので、金属カプセル内
でGdzOzSと共存させる物質としては、500℃以
上での蒸気圧がGdzOzSよりも高いものであること
が望ましい。
In addition, GdzOzS has a concentration of about 5 in an atmosphere with a low oxygen partial pressure.
Since it is relatively stable up to around 00°C, it is desirable that the substance coexisting with GdzOzS in the metal capsule has a vapor pressure higher than that of GdzOzS at 500°C or higher.

本発明における第2群の物質による作用を以下に説明す
る。
The effects of the second group of substances in the present invention will be explained below.

GdzOzSを密封した金属カプセルをHI濾過程に置
くと、カプセルや排気管の内壁に吸着している空気、及
びGdzOzS粉末に吸着している空気は、これらの被
吸着物から脱離して、カプセル内に広がる。とくに、カ
プセルを排気するときに加熱する際の温度(約200℃
以下)よりも高温になるHI濾過程では、上記被吸着物
体から発生するガスは非常に多くなる。
When a metal capsule sealed with GdzOzS is placed in the HI filtration process, the air adsorbed to the inner wall of the capsule or exhaust pipe, and the air adsorbed to the GdzOzS powder, is desorbed from these adsorbed substances and is absorbed into the capsule. spread to In particular, the temperature at which the capsule is heated when evacuating (approximately 200℃)
In the HI filtration process, where the temperature is higher than that shown below), a large amount of gas is generated from the adsorbed object.

この発生ガスは、500℃近くの温度からGdzOzS
粉末を酸化させ始め、HIP時の温度上昇と共に酸化は
一層進行する。ここで金属容器内に、酸素と化合しやす
くて、容易に酸化物を作る物質、すなわち酸化物自由エ
ネルギーの大きい金属が存在していると、被吸着物体か
ら発生した空気中の酸素は、上記物質と容易に化合し、
発生ガス中の酸素を捕捉することができ、いわゆる脱酸
作用を示す。
This generated gas becomes GdzOzS from the temperature near 500℃.
The powder begins to oxidize, and the oxidation progresses further as the temperature increases during HIP. If there is a substance in the metal container that easily combines with oxygen and easily forms oxides, that is, a metal with large oxide free energy, the oxygen in the air generated from the adsorbed object will easily combines with substances,
It can capture oxygen in generated gas and exhibits a so-called deoxidizing effect.

Ti、Zr、Crなとの金属は、アルゴンガス中の酸素
を除去し、高純度アルゴンガスを作るときの脱酸剤とし
て、またCaは溶鋼の脱酸剤として良く知られている金
属であり、その性能、及び実用上の問題は全くない。
Metals such as Ti, Zr, and Cr are well known as deoxidizing agents when removing oxygen from argon gas and creating high-purity argon gas, and Ca is a metal well known as a deoxidizing agent for molten steel. , its performance, and there are no practical problems.

なお、Ti、Zrなどの金属は、窒素ガスとの親和力も
非常に大きいため、金属容器内の空気中の窒素を捕捉す
る効果も同時にもっている。 HIP時の金属容器内に
は、できるだけ気体の存在しないことが緻密なGdzO
2S焼結体を作る上で望ましいので、この点からもTi
、Zrの脱窒製効果が期待できる。
Note that metals such as Ti and Zr have a very high affinity for nitrogen gas, and therefore also have the effect of trapping nitrogen in the air within the metal container. During HIP, it is important that there is no gas in the metal container as much as possible.
From this point of view, Ti is desirable for making 2S sintered bodies.
, Zr denitrification effects can be expected.

〔実施例〕〔Example〕

以下、第1群の物質を用いた本発明の実施例を第1図に
より説明する。
Hereinafter, an example of the present invention using the first group of substances will be described with reference to FIG.

[実施例1] 第1図は1本発明によるホットプレス用金属カプセル内
の断面模式図である。金属カプセル1の内部にGdzO
xSの原料粉末2を密充填し、100℃、30分、 1
0−8torrで排気後、排気管3の一部封止して気密
封止部4を形成するのが従来法である。これに対し本発
明では、直径60+m、高さ50mm、肉厚2IIII
の金属カプセル1の底部に100メツシユの大きさのF
eS粒子6を厚さ3I程度に敷き、その上に150メツ
シユのステレンス金綱のスペーサ5を設置後、原料粉末
2を密充填する。金属カプセルの上部に対しても下部の
場合と同様&、−スペーサ5と高蒸気圧物質6を設置し
、然る後に100°Cに加熱しながら10−3torr
で30分間排気し、排気管を加熱圧接して気密封止部3
を作る。
[Example 1] FIG. 1 is a schematic cross-sectional view of the inside of a metal capsule for hot pressing according to the present invention. GdzO inside metal capsule 1
xS raw material powder 2 was tightly packed, 100°C, 30 minutes, 1
The conventional method is to partially seal the exhaust pipe 3 after exhausting at 0-8 torr to form an airtight sealing section 4. In contrast, in the present invention, the diameter is 60+m, the height is 50mm, and the wall thickness is 2III.
F of the size of 100 meshes is placed at the bottom of the metal capsule 1.
eS particles 6 are spread to a thickness of about 3I, a 150-mesh stainless steel spacer 5 is placed thereon, and the raw material powder 2 is tightly packed. Similarly to the lower part, spacers 5 and high vapor pressure substances 6 are placed on the upper part of the metal capsule, and then heated to 100°C and heated to 10-3 torr.
The air is evacuated for 30 minutes, and the exhaust pipe is heated and pressure welded to seal the airtight part 3.
make.

次に、この金属カプセルをホットアイソスタテックプレ
ス(HIPと略称する)装置内にセットし、1300’
c、3時間、1000気圧(7)7/L/ゴン(Ar)
ガス中で焼結させた。
Next, this metal capsule was set in a hot isostatic press (abbreviated as HIP) device, and
c, 3 hours, 1000 atm (7) 7/L/gon (Ar)
Sintered in gas.

HI P終了後、HIP装置から金属カプセルを取り出
し、機械加工によって金属カプセルの外周部を削り去り
、カプセル内のG d z○2S焼結体ブロックを取り
出した。このブロックをダイヤモンドブレードなどを用
いてスライスし、厚さ1.0mのウェハー18枚を得、
さらに各ウェハーの両面を研摩した。
After the HIP was completed, the metal capsule was taken out from the HIP apparatus, the outer peripheral part of the metal capsule was removed by machining, and the G d z○2S sintered body block inside the capsule was taken out. This block was sliced using a diamond blade etc. to obtain 18 wafers with a thickness of 1.0 m.
Additionally, both sides of each wafer were polished.

次に、この研摩されたウェハーを1200℃。Next, this polished wafer was heated to 1200°C.

3時間、Ar中で熱処理を行った後、X#!照射による
発光出力を測定した。第1表は、本発明による4ケの焼
結体ブロック間、および1ケの焼結体ブロック内のウェ
ハー間の発光出力のばらつきを、従来法のそれと比較し
た結果である。これから判るように、本発明によれば、
焼結体ブロック間の発光出力のばらつきは従来のそれよ
りも著しくかさくなり、同一焼結体ブロック内の18枚
のウェハーの特性ばらつきも非常に小さい。
After heat treatment in Ar for 3 hours, X#! The luminescence output due to irradiation was measured. Table 1 shows the results of comparing the variations in light emission output between four sintered blocks according to the present invention and between wafers within one sintered block with those of the conventional method. As will be seen, according to the present invention,
The variation in light emission output between sintered blocks is significantly larger than that of the conventional method, and the variation in characteristics among the 18 wafers within the same sintered block is also very small.

本発明によるGdxOzS焼結体の発光出力のばらつき
がこのように小さくなるのは、HI濾過程においてGd
zOzSの分解が殆んで起っていないことを示しており
、これは高蒸気圧物質のFeSを金属カプセル内に存在
させた効果による。
The reason why the variation in the luminescence output of the GdxOzS sintered body according to the present invention is reduced in this way is because Gd
This shows that almost no decomposition of zOzS has occurred, and this is due to the effect of having FeS, a high vapor pressure substance, present in the metal capsule.

一方、従来法におけるGdzOzS焼結体の特性ばらつ
きが大きいのは、金属カプセル内の残留ガス量がカプセ
ル毎に大きくばらつき、かつこの残留ガスによってGd
zOzSが変質9分解されるからである。
On the other hand, the large variation in properties of GdzOzS sintered bodies in the conventional method is because the amount of residual gas in the metal capsule varies greatly from capsule to capsule, and this residual gas causes Gd
This is because zOzS is degraded and decomposed.

第  1  表 [実施例2] 実施例1と同じ原料、及び同じ金属カプセルを用い、第
1図に示したように、このカプセル1の底部に直径0.
5〜1m程度のCuS6を厚ざ約4mに敷き詰め、その
上にスペーサー5として40メツシユのステンレス鋼製
の鋼をセットし、それからGd2O2S原料を密充填し
た。さらに、この密充填された原料の上に、スペーサー
5として40メツシユのステンレス鋼の網をセットし、
さらにその上にCu3粒6をのせ、実施例1と同様の方
法でカプセル内を排気後、気密封止を行った。
Table 1 [Example 2] The same raw materials and the same metal capsule as in Example 1 were used, and as shown in FIG.
About 5 to 1 m of CuS6 was spread to a thickness of about 4 m, and 40 meshes of stainless steel were set thereon as spacers 5, and then the Gd2O2S raw material was tightly packed. Furthermore, a 40-mesh stainless steel net is set as a spacer 5 on top of this densely packed raw material,
Furthermore, three Cu grains 6 were placed on top of the capsule, and after the inside of the capsule was evacuated in the same manner as in Example 1, the capsule was hermetically sealed.

次に、この金属カプセルを実施例と同じHIP装置を用
い、1320℃、3時間、1200気圧のArガスによ
り、3ケの金属カプセルを同時にHIP焼結した。得ら
れた焼結体ブロックにつき、実施例1と同様の方法でX
線照射時の発光出力を求めた。その結果、本発明による
3ケの焼結体ブロック間の発光出力のばらつきは3.7
%以内にあり、第1表に示した従来法よりも著しく優れ
ていた。また、1ケの焼結体ブロックから、18枚のウ
ェハーが得られるが、このウェハー間の特性ばらつきも
1.7%以内にあった。
Next, the three metal capsules were simultaneously HIP-sintered using the same HIP apparatus as in the example at 1320° C. for 3 hours with Ar gas at 1200 atm. The obtained sintered block was treated with X in the same manner as in Example 1.
The luminescence output during radiation irradiation was determined. As a result, the variation in luminous output among the three sintered blocks according to the present invention was 3.7
%, and was significantly superior to the conventional method shown in Table 1. Further, 18 wafers were obtained from one sintered block, and the variation in characteristics among the wafers was within 1.7%.

以上のように本発明によるG d z○2S焼結体の特
性ばらつきが小さいのは、カプセル内に存在するCuS
によって、GdzOzSからのSの蒸発が抑制されたか
らに他ならない。
As mentioned above, the reason why the characteristic variation of the G d z○2S sintered body according to the present invention is small is due to the CuS present in the capsule.
This is because the evaporation of S from GdzOzS was suppressed.

[実施例3] 実施例1と同様のGdzC)、S粉末を原料とし、第2
図に示すように50mφ、高さ40 rm 、厚さ2.
0mの軟鋼製カプセル1を用い、このカプセル内に原流
粉末を密充填後、この密充填粉末の上面にスペーサー5
として100メツシユの軟鋼製の金網を敷いた。さらに
、第1図の排気管空間部3に、20メツシユ以下のWS
粒を詰めた後、実施例1と同様に排気、気密封止部4を
形成した。
[Example 3] Using the same GdzC) and S powder as in Example 1 as raw materials, the second
As shown in the figure, it has a diameter of 50 m, a height of 40 rm, and a thickness of 2.
Using a capsule 1 made of mild steel with a diameter of 0 m, after tightly filling the original powder into this capsule, a spacer 5 is placed on the top surface of this tightly packed powder.
A 100-mesh mild steel wire mesh was laid down. Furthermore, in the exhaust pipe space 3 shown in FIG.
After packing the grains, an exhaust and airtight sealing section 4 was formed in the same manner as in Example 1.

この気密封止カプセル3ケを実施例2と同じ条件でHI
PI結し、得られたGdzOzS焼結体ブロックの発光
出力のばらつきを求めた。
These three hermetically sealed capsules were subjected to HI under the same conditions as in Example 2.
PI bonding was performed, and the variation in the light emission output of the obtained GdzOzS sintered block was determined.

その結果、本発明による焼結体の発光出力ばらつきは4
.0%であり、また同一ブロック内のウェハー18枚間
の特性ばらつきは1.8%であった。
As a result, the variation in luminous output of the sintered body according to the present invention was 4
.. 0%, and the characteristic variation among the 18 wafers in the same block was 1.8%.

本発明においては、カプセル内に存在するWS粒子が、
HIPI熱時にS蒸気を放出し、これがカプセル内の残
存雰囲気と反応して残存ガス中の酸素をトラップし、こ
れがGdzOzSの分解を抑制したためであると考えら
れる。
In the present invention, the WS particles present in the capsule are
This is thought to be because S vapor was released during HIPI heating, which reacted with the residual atmosphere in the capsule to trap oxygen in the residual gas, which suppressed the decomposition of GdzOzS.

以下、第2群の物質を用いた本発明の実施例について詳
述する。
Examples of the present invention using substances of the second group will be described in detail below.

[実施例4] 平均粒子径約35μmのGdzO2S粉末(付活材:P
r、Ce、F)に、LizGeFsを0.1wt%焼結
助剤として添加し、これらを十分に均一混合後乾燥して
第1図の原料粉2を作る。次にこの原料粉2を、直径5
0mn+、高さ40m、肉厚1.0inの軟鋼製の金属
容器1に密充填する。このとき、あらかじめ金属容器の
底部に、直径Im程度のスポンジ状Ti6を厚さ約3m
程度に敷き詰め、その上に軟鋼製の20メツシユの綱5
を置き、その上に原料粉を充填した。
[Example 4] GdzO2S powder (activating material: P
LizGeFs is added as a sintering aid in an amount of 0.1 wt % to R, Ce, and F), and these are thoroughly and uniformly mixed and then dried to produce the raw material powder 2 shown in FIG. Next, this raw material powder 2 is
A metal container 1 made of mild steel with a diameter of 0 mn+, a height of 40 m, and a wall thickness of 1.0 inch is tightly packed. At this time, a sponge-like Ti6 with a diameter of about Im is placed on the bottom of the metal container in advance to a thickness of about 3 m.
Lay the rope evenly, and on top of it, attach a 20-mesh rope made of mild steel 5.
was placed and the raw material powder was filled on top of it.

続いて、金属容器1の上部にある直径10+m+の排気
管3を通じて、10−” 10−8torrに排気しつ
つ、金属容器全体を約150〜200℃に加熱し、金属
容器内の空気及び吸着ガスを排気除去した。次にこの排
気操作を続けながら、排気管3の一部に排気管封止部4
を形成し、金属容器の気密封止を完了した。このように
して作製された4ケの金属容器を、黒鉛発熱体のHIP
I置内にセットし、加熱しながらアルゴンガスで加圧し
、1300℃,2h、1000kg/dの条件でHIP
を行った。
Subsequently, the entire metal container is heated to about 150 to 200° C. while exhausting to 10-" 10-8 torr through the exhaust pipe 3 with a diameter of 10+ m+ located at the top of the metal container 1, and the air and adsorbed gas inside the metal container are heated. Next, while continuing this evacuation operation, an exhaust pipe sealing part 4 is attached to a part of the exhaust pipe 3.
and completed the hermetic sealing of the metal container. The four metal containers made in this way were heated using a graphite heating element.
Place it in an oven, pressurize with argon gas while heating, and HIP at 1300℃, 2h, 1000kg/d.
I did it.

HIPI了後、HIPI置から金属容器を取り出し、機
械加工によって金属容器の外周部を削り去り、容器の内
部のGdzOzS焼結体ブロックを取り出した。このブ
ロックをダイヤモンドブレードを用いて縦方向にスライ
スして、厚さ1園のウェハー20枚を得、さらに各ウェ
ハーの両面を研摩した。
After the HIPI was completed, the metal container was taken out from the HIPI equipment, the outer periphery of the metal container was removed by machining, and the GdzOzS sintered block inside the container was taken out. This block was sliced lengthwise using a diamond blade to obtain 20 wafers with a thickness of 1 inch, and both sides of each wafer were polished.

次に、この研摩されたウェハーを1200℃。Next, this polished wafer was heated to 1200°C.

3時間、アルゴンガス中で熱処理を行った後、X線照射
による発光出力を測定した。第2表は、本発明による4
ケの焼結体ブロック、及び1ケの焼結体ブロック内のウ
ェハー間の発光出力のばらつきを従来法のそれと比較し
た結果である。これから明らかなように、本発明によれ
ば、焼結体ブロック間の発光出力ばらつきが約1/2以
下になり、同一焼結体ブロック内のウェハー20枚の特
性ばらつきも従来法に比し非常に小さくなる。
After performing heat treatment in argon gas for 3 hours, the luminescence output by X-ray irradiation was measured. Table 2 shows 4 according to the invention.
These are the results of comparing the variations in light output between two sintered blocks and the wafers within one sintered block with those of the conventional method. As is clear from this, according to the present invention, the variation in luminous output between sintered blocks is reduced to about 1/2 or less, and the variation in characteristics among 20 wafers within the same sintered block is also much greater than in the conventional method. becomes smaller.

第  2  表 本発明によるGdzOzS焼結体の発光出力のばらつき
がこのように小さいのは、HI濾濾過上おけるGdzO
zSの酸化が殆んど起っていないことを示すものであり
、これは脱酸作用をもつTiを金属容器内に存在させた
からに他ならない。一方、従来法における特性ばらつき
が大きいのは、金属容器内に残留している空気の量が、
金属容器毎に大きくばらついていることを指しており、
原料粉の充填の度合、排気管の封止位置など、HIP用
金属容器の構造上避けられない問題に基因している。
Table 2 The reason why the variation in the luminous output of the GdzOzS sintered body according to the present invention is so small is that the GdzO
This shows that almost no oxidation of zS occurred, and this is due to the presence of Ti, which has a deoxidizing effect, in the metal container. On the other hand, the large variation in characteristics in the conventional method is due to the amount of air remaining in the metal container.
This refers to the large variation between metal containers.
This is due to unavoidable problems in the structure of the HIP metal container, such as the degree of filling of the raw material powder and the sealing position of the exhaust pipe.

[実施例5] 実施例4と同じ原料、及び同じ金属容器を用い。[Example 5] The same raw materials and the same metal container as in Example 4 were used.

この金属容器の底部に直径0.5〜2mのスポンジ状Z
r金属6を厚さ4m程度敷き詰め、スペーサー5として
その上に40メツシユのステンレス鋼製の綱をセットし
、それから原料粉2を密充填した。さらに、この密充填
された原料の上面に、第1図に示すように、スペーサー
5としてステンセス製の40メツシユ綱をセットし、そ
の上にスポンジ状Zr6を第1図のように配置後、実施
例4と同様の方法で金属容器内を排気、気密封止を行っ
た。
A sponge-like Z with a diameter of 0.5 to 2 m is attached to the bottom of this metal container.
R metal 6 was spread to a thickness of about 4 m, 40 meshes of stainless steel rope was set thereon as a spacer 5, and raw material powder 2 was then tightly packed. Furthermore, as shown in Fig. 1, a 40 mesh steel made by Stensess was set as a spacer 5 on the upper surface of this densely packed raw material, and a sponge-like Zr6 was placed on top of it as shown in Fig. 1. The inside of the metal container was evacuated and hermetically sealed in the same manner as in Example 4.

次に、実施例4と同じ装置を用い、1280℃。Next, using the same apparatus as in Example 4, the temperature was 1280°C.

3時間、1400kg/ciのアルゴンガスにより、3
ケの金属容器につきHIP処理を行った。得られた3ケ
の焼結体ブロックにつき、実施例4と同様の方法で発光
出力のばらつきを求めた。その結果、本発明による3ケ
のブロック間の発光出力のばらつきは3.6%以下と非
常に小さく、第2表に示した従来法よりも著しく優れて
いた。
3 hours with argon gas at 1400 kg/ci
HIP treatment was performed on two metal containers. For the three obtained sintered blocks, variations in light emission output were determined in the same manner as in Example 4. As a result, the variation in light emission output among the three blocks according to the present invention was very small, 3.6% or less, and was significantly superior to the conventional method shown in Table 2.

[実施例6コ 実施例4と同様の原料、金属容器を用いる。第3図に見
るようにその底部に20メツシユ以下の大きさのCr粉
末6を、厚さ約3mn敷きつめ、その上にスペーサー5
として太さ約0.2Iff11の軟鋼製のファイバーを
約2mの厚さに設置し、さらにその上に原料粉2を密充
填して、その後は実施例4と同様の方法で金属容器を気
密封止した。
[Example 6] The same raw materials and metal container as in Example 4 are used. As shown in Fig. 3, Cr powder 6 with a size of 20 meshes or less is spread on the bottom to a thickness of about 3 mm, and spacers 5 are placed on top of it.
A mild steel fiber with a thickness of approximately 0.2Iff11 was installed to a thickness of approximately 2 m, and the raw material powder 2 was then tightly packed on top of the fiber, and the metal container was then hermetically sealed in the same manner as in Example 4. It stopped.

続いて、実施例4の装置を用い、1300℃。Subsequently, using the apparatus of Example 4, the temperature was 1300°C.

5時間、1200kg/aJのアルゴンガスにより、上
記方法で作製した金属容器5ケをHIP処理した。
Five metal containers produced by the above method were subjected to HIP treatment using argon gas at 1200 kg/aJ for 5 hours.

HIPされたGdxOxS焼結体ブロック5ヶの間の発
光出力のばらつきは3.9%以下であり。
The variation in luminous output among the five HIPed GdxOxS sintered blocks was 3.9% or less.

従来法によるGdzOzS焼結体に比し、その特性ばら
つきは極めて小さかった。本発明による焼結体のブロッ
ク間の特性ばらつきが小さいのは、金属容器内に存在し
ているCr金属がその脱酸機能を十分に発揮したためで
ある。
Compared to the GdzOzS sintered body produced by the conventional method, the variation in properties was extremely small. The reason that the variation in properties between blocks of the sintered body according to the present invention is small is that the Cr metal present in the metal container sufficiently exerts its deoxidizing function.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、HIP焼結時におけ
る金属カプセル内のG d 202Sの分解。
As described above, according to the present invention, G d 202S in the metal capsule is decomposed during HIP sintering.

変質を抑制することができるので、G d z○2S焼
結体の特性のばらつきを著しく低減する効果がある。特
に本発明は特性のばらつき低減というX線CT用検出素
子の実用化上の効果が極めて大きく、さらに、特性の良
い焼結体の歩留り向上という効果があり、これにより検
出素子の低コスト化が図れる。
Since deterioration can be suppressed, it has the effect of significantly reducing variations in the characteristics of the G d z○2S sintered body. In particular, the present invention has an extremely large effect on the practical application of X-ray CT detection elements by reducing variations in characteristics, and also has the effect of improving the yield of sintered bodies with good characteristics, thereby reducing the cost of detection elements. I can figure it out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための金属カプセルの
断面模式図、第2図は本発明の第3の実施例を説明する
ための金属カプセルの断面模式図、第3図は本発明の第
6の実施例を説明するための金属カプセルの断面模式図
である。 1・・金属カプセル、2・・原料粉、3・・・排気管、
4′:4 )区・ 6 焚砕でくるへさゴη頁
FIG. 1 is a schematic cross-sectional view of a metal capsule for explaining the present invention in detail, FIG. 2 is a schematic cross-sectional view of a metal capsule for explaining a third embodiment of the present invention, and FIG. FIG. 6 is a schematic cross-sectional view of a metal capsule for explaining a sixth embodiment of the present invention. 1...metal capsule, 2...raw material powder, 3...exhaust pipe,
4': 4) Ward 6 Hesago made by burning and crushing η page

Claims (4)

【特許請求の範囲】[Claims] 1.希土類オキシ硫化物粉末を金属製カプセルに充填し
、該カプセル内を真空排気後気密封止し、上記カプセル
を加熱,加圧して希土類オキシ硫化物焼結体を製造する
方法において、上記カプセル内に、500℃以上におけ
る硫黄の蒸気圧が希土類オキシ硫化物より高い物質を共
存させることを特徴とする希土類オキシ硫化物焼結体の
製法。
1. In the method of manufacturing a rare earth oxysulfide sintered body by filling a metal capsule with rare earth oxysulfide powder, evacuating the inside of the capsule, and then airtightly sealing the capsule, heating and pressurizing the capsule, A method for producing a rare earth oxysulfide sintered body, characterized in that a substance whose sulfur vapor pressure at 500° C. or higher is higher than that of the rare earth oxysulfide is coexisting.
2.希土類オキシ硫化物と共存させる物質としてFeS
_2,CuS,Ag_2S,PbS,FeS,Cu_2
S,WS_2,MoS_2のうち少なくとも1以上を用
いることを特徴とする特許請求の範囲第1項記載の希土
類オキシ硫化物焼結体の製法。
2. FeS as a substance coexisting with rare earth oxysulfide
_2, CuS, Ag_2S, PbS, FeS, Cu_2
The method for producing a rare earth oxysulfide sintered body according to claim 1, characterized in that at least one of S, WS_2, and MoS_2 is used.
3.希土類オキシ硫化物粉末を金属製カプセルに充填し
、該カプセル内を真空排気後気密封止し、上記カプセル
を加熱,加圧して希土類オキシ硫化物焼結体を製造する
方法において、上記カプセル内に酸化物生成自由エネル
ギーの大きい金属を共存させることを特徴とする希土類
オキシ硫化物焼結体の製法。
3. In the method of manufacturing a rare earth oxysulfide sintered body by filling a metal capsule with rare earth oxysulfide powder, evacuating the inside of the capsule, and then airtightly sealing the capsule, heating and pressurizing the capsule, A method for producing a rare earth oxysulfide sintered body characterized by coexisting a metal with a large oxide formation free energy.
4.希土類オキシ硫化物と共存させる金属として、Z,
Ti,Zr,Cu,Crのうち少なくとも1以上を用い
る特許請求の範囲第3項記載の希土類オキシ硫化物焼結
体の製法。
4. As metals coexisting with rare earth oxysulfides, Z,
A method for producing a rare earth oxysulfide sintered body according to claim 3, using at least one of Ti, Zr, Cu, and Cr.
JP63067448A 1988-03-23 1988-03-23 Production of rare earth oxysulfide sintered compact Pending JPH01242456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067448A JPH01242456A (en) 1988-03-23 1988-03-23 Production of rare earth oxysulfide sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067448A JPH01242456A (en) 1988-03-23 1988-03-23 Production of rare earth oxysulfide sintered compact

Publications (1)

Publication Number Publication Date
JPH01242456A true JPH01242456A (en) 1989-09-27

Family

ID=13345215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067448A Pending JPH01242456A (en) 1988-03-23 1988-03-23 Production of rare earth oxysulfide sintered compact

Country Status (1)

Country Link
JP (1) JPH01242456A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8872119B2 (en) 2008-12-30 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US8877093B2 (en) 2008-12-30 2014-11-04 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9175216B2 (en) 2008-12-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
JP2020529386A (en) * 2017-08-04 2020-10-08 トヨタ・モーター・ヨーロッパToyota Motor Europe Manufacturing method of electrodes for all-solid-state batteries

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US7531109B2 (en) 2005-07-25 2009-05-12 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8460578B2 (en) 2005-07-25 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8872119B2 (en) 2008-12-30 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US8877093B2 (en) 2008-12-30 2014-11-04 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9175216B2 (en) 2008-12-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
JP2020529386A (en) * 2017-08-04 2020-10-08 トヨタ・モーター・ヨーロッパToyota Motor Europe Manufacturing method of electrodes for all-solid-state batteries

Similar Documents

Publication Publication Date Title
JP3407937B2 (en) Preparation of high density rare earth-oxysulfide scintillation ceramics and ceramic body for x-ray computed tomography
CN1095192C (en) A combination of materials for mercury-dispensing device, method of preparation and devices thus obtained
JP5001159B2 (en) Method for controlling the oxygen content of a powder
KR100732258B1 (en) Non-evaporable getter compositions which can be reactivated at low temperature after exposure to reactive gases at a higher temperature
JPH01242456A (en) Production of rare earth oxysulfide sintered compact
CN1126364A (en) A combination of materials for mercury-dispensing devices, method of preparation and devices thus obtained
KR101597083B1 (en) Non-evaporable getter alloys reactivable after exposure to reactive gases
JP2757287B2 (en) Manufacturing method of tungsten target
JP7003939B2 (en) Gadolinium sulfide sulfide sintered body, and scintillator, scintillator array, radiation detector, and radiation inspection device containing gadolinium sulfide sulfide sintered body.
JP2004525848A (en) Method for producing scintillator ceramic and use of said scintillator ceramic
CN1061958C (en) Method for producing lightening material with high translucency
JPS59141144A (en) Method of producing x-ray tube rotary anode and rotary anode
FR2728099A1 (en) PROCESS FOR PACKAGING RADIOACTIVE IODINE, IN PARTICULAR IODINE 129, USING AN APATITE AS A CONTAINMENT MATRIX
WO2020085013A1 (en) Light emitting article and method for producing light emitting article
JP3877071B2 (en) Superconducting wire manufacturing method
WO2004013871A1 (en) Method of producing superconductive wire material
JP2656761B2 (en) Luminescent substance for radiation detector, method for producing ceramic comprising the luminescent substance, and additive for rare earth metal oxysulfide luminous substance ceramic
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
DE60022045T2 (en) GETTER-CONTAINING DEVICES FOR THE EVAPORATION OF CALCIUM
JPH01249619A (en) Production of metal silicide target having high melting point
JPH01242687A (en) Production of ceramic scintillator
JP2625610B2 (en) Manufacturing method of impregnated cathode
JP2965824B2 (en) Production method of mercury alloy for lamp
JPH047391A (en) Scintillator material for radiation ct
JPH06264053A (en) Production of infrared accelerated phosphor, and infrared-visible conversion device