WO2020085013A1 - Light emitting article and method for producing light emitting article - Google Patents

Light emitting article and method for producing light emitting article Download PDF

Info

Publication number
WO2020085013A1
WO2020085013A1 PCT/JP2019/038787 JP2019038787W WO2020085013A1 WO 2020085013 A1 WO2020085013 A1 WO 2020085013A1 JP 2019038787 W JP2019038787 W JP 2019038787W WO 2020085013 A1 WO2020085013 A1 WO 2020085013A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix layer
luminescent material
luminescent
container
lead perovskite
Prior art date
Application number
PCT/JP2019/038787
Other languages
French (fr)
Japanese (ja)
Inventor
大長 久芳
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020085013A1 publication Critical patent/WO2020085013A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead

Definitions

  • the present invention relates to a luminescent material and a method for manufacturing a luminescent material, and more particularly to a luminescent material including a core material in a matrix layer and a method for manufacturing a luminescent material.
  • lead perovskite that does not use Cd has been discovered as a material having excellent photoelectric conversion performance, and has attracted attention (see, for example, Patent Document 1). Since the band gap of the lead perovskite material changes depending on the composition of the contained halide, the emission wavelength can be adjusted by selecting the material and the composition, and emission in the visible light range of blue, green, yellow, red, etc. can be obtained. be able to. As described above, the lead perovskite material is expected to be applied to solar cells, wavelength conversion materials, light emitting devices, and the like.
  • the bandgap changes according to the particle size due to the quantum size effect, resulting in high photoluminescence quantum yield and narrow half-width of emission spectrum. It exhibits good light emission characteristics.
  • the lead perovskite material has low moisture resistance and has a problem of being easily deteriorated in the atmosphere.
  • the lead perovskite material of the quantum dot has a problem that it is difficult to handle during the manufacturing process when it is used for a lighting device, a display device, etc., because it has a large specific surface area and is greatly affected by moisture absorption.
  • an object of the present invention is to provide a luminescent material and a manufacturing method of the luminescent material that have good luminescent characteristics and moisture resistance.
  • the luminescent material of the present invention is a luminescent material in which a core material is included in a matrix layer, and the core material contains a lead perovskite material.
  • the core material containing the lead perovskite material is included in the matrix layer, deterioration of the lead perovskite material due to moisture in the atmosphere is suppressed, and the light emitting property and the moisture resistance are improved. Can be good.
  • the matrix layer is crystalline silica.
  • the method for producing a luminescent material of the present invention comprises a raw material preparing step of pulverizing and mixing a raw material of a lead perovskite material and a matrix layer material, and heating and pressing the raw material. It is characterized by comprising a sintering step of binding.
  • the raw material of the lead perovskite material and the matrix layer material are pulverized, mixed and sintered to obtain a light emission in which the core material containing the lead perovskite material is included in the matrix layer. You can get things.
  • an encapsulating step of vacuum-encapsulating the raw material and the matrix layer material in a container is provided, and in the sintering step, the container is heated and pressurized.
  • the container is a quartz tube.
  • a molding step of molding the raw material and the matrix layer material into a tablet shape is provided before the encapsulating step.
  • the present invention it is possible to provide a luminescent material having good luminescent properties and moisture resistance and a method for producing the luminescent material.
  • FIG. 6 is a process drawing showing the method of manufacturing the light-emitting object according to the first embodiment. It is a schematic diagram which shows the sealing process of 1st Embodiment, (a) of FIG. 3 shows before sealing, and (b) of FIG. 3 has shown after sealing. It is a schematic diagram which shows the structure of the light emission object 30 obtained by the manufacturing method of the light emission object of 1st Embodiment.
  • FIG. 1 is a schematic diagram showing the crystal structure of the lead perovskite material contained in the luminescent material of this embodiment.
  • the band gap changes depending on the type and composition ratio of the halogen element located in the face center position of the cubic crystal, and the emission wavelength also changes.
  • this embodiment includes a raw material preparing step, a forming step, an enclosing step, and a sintering step.
  • the raw material of the lead perovskite material and the matrix layer material are prepared.
  • the matrix layer material include amorphous particles of SiO 2 .
  • the prepared raw material of the lead perovskite material and the matrix layer material are pulverized and mixed in an inert atmosphere to form a powder. Examples of the inert atmosphere include an argon gas atmosphere.
  • the powdered raw material and the matrix layer material are molded into tablets.
  • the shape and size of the tablet are not limited, but it is preferable that the tablet has such a diameter and thickness that the raw material and the matrix layer material can be sufficiently sintered even inside the tablet in the later-described sintering step. Further, it is preferable that the molding step is also performed under an inert atmosphere in order to prevent the incorporation of elements in the atmosphere.
  • FIGS. 3A and 3B are schematic views showing the encapsulation process of the present embodiment, where FIG. 3A shows the state before the encapsulation and FIG. 3B shows the state after the encapsulation.
  • the container 10 is prepared, and the raw material and the matrix layer material tablet 20 are put into the container 10 while the container 10 is evacuated. The opening is closed to form the sealing portion 11 for sealing. Since the encapsulation process is performed in a state where the inside of the container 10 is evacuated, the tablet 20 is enclosed in the container 10 under vacuum.
  • the container 10 may be a quartz tube.
  • the degree of vacuum inside the container 10 is preferably a high vacuum of 10 ⁇ 1 Pa to 10 ⁇ 5 Pa.
  • a fusion seal in which a predetermined position in the container 10 such as a quartz tube is heated by a burner or the like, and the heated portion is sandwiched by a jig or the like and then compressed and closed. It is preferable to use the same glove box or the like from the raw material preparing step to the enclosing step.
  • the raw material and the matrix layer material are heated and pressed to sinter them to obtain a sintered body of the luminescent material in the present embodiment.
  • the tablet 20 as shown in FIG. 3B is heated and pressurized together with the vacuum-sealed container 10 to be fired.
  • the firing conditions include a firing temperature in the range of 600 to 1200 ° C., a pressure in the range of 0.5 to 50 MPa, and a firing time in the range of 0.5 to 5 hours.
  • the container 10 since the tablet 20 is vacuum-sealed in the container 10, the container 10 is softened and compressed during the baking process, and baking is performed in a state where the tablet 20 is covered with the material forming the container 10.
  • Raw materials of lead perovskite materials such as PbI 2 , PbBr 2 , PbCl 2 , CsBr, PbBr 2 , and CsI volatilize in a temperature range of 900 ° C. or higher.
  • the pressure sintering process together with the container 10 as in the present embodiment, it is possible to prevent the raw material from volatilizing and obtain a sintered body of the lead perovskite material.
  • FIG. 4 is a schematic diagram showing the structure of a luminescent material 30 obtained by the method for manufacturing a luminescent material according to this embodiment.
  • a state is shown in which, after washing the sintered body with pure water or IPA (isopropyl alcohol), the free halide is removed and crushed into particles of about 30 to 50 ⁇ m in diameter.
  • the luminescent material 30 of the present embodiment has a structure in which the core material 31 and the core material 31 are included in the matrix layer 32, and the core material 31 is nanocomposited by the matrix layer 32. There is.
  • the matrix layer 32 is a layer containing SiO 2 as a main component and covering the periphery of the core substance 31. Since the matrix layer 32 is sintered at a high temperature in the manufacturing process described above, it is made of crystalline silica (cristobalite). The matrix layer 32 of this embodiment is sintered at a high temperature at the same time as the core material 31, and the entire periphery of the core material 31 constitutes crystalline silica. Therefore, the coating is thicker than the core-shell structure, and the moisture resistance can be improved as compared with coating with amorphous silica, a structure in which a plurality of SiO 2 particles are attached, mesoporous silica, or the like.
  • Example 1 1.2 g of amorphous particles of SiO 2 as a matrix layer material, 0.77 g of PbI 2 as a raw material and 0.44 g of CsI were precisely weighed, pulverized and mixed into powder in an argon atmosphere glove box, and formed into tablets. Molded. The obtained tablet 20 was vacuum-sealed in the quartz tube container 10 and baked at 1000 ° C. and 5 MPa for 5 hours. The sintered body obtained after firing was washed with isopropyl alcohol and pure water to obtain a sintered body which was the luminescent material 30 of Example 1.
  • the core material 31 contained the lead perovskite material CsPbI 3 and had a structure in which the core material 31 was included in the matrix layer 32 of crystalline silica.
  • the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, red light having a wavelength of 680 nm due to CsPbI 3 was emitted.
  • Example 2 1.6 g of SiO 2 of amorphous particles as a matrix layer material, 0.82 g of PbBr 2 and 0.95 g of CsBr as raw materials were precisely weighed, and the same steps as in Example 1 were carried out to obtain the luminescent material of Example 2. A sintered body of 30 was obtained.
  • the core material 31 contained the lead perovskite material CsPbBr 3 and had a structure in which the core material 31 was included in the matrix layer 32 of crystalline silica.
  • the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, green light having a wavelength of 510 nm due to CsPbBr 3 was emitted.
  • Example 3 As a matrix layer material, 2.0 g of amorphous particles of SiO 2 and 0.77 g of PbCl 2 and 1.19 g of CsBr as raw materials were precisely weighed, and the same steps as in Example 1 were performed to obtain the luminescent material of Example 3. A sintered body of 30 was obtained.
  • a lead material perovskite material CsPb (Br, Cl) 3 is contained in the core material 31, and the core material 31 is contained in the crystalline silica matrix layer 32.
  • the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, blue light having a wavelength of 450 nm due to CsPb (Br, Cl) 3 was emitted.
  • SiO 2 is amorphous particles as the matrix layer material 2.0 g, 0.48 g of PBI 2 as a raw material, 0.77 g of PbBr 2, 0.29 g of PbCl 2, 0.56 g of CsI, 1.19 g weighed accurately CsBr Then, the same steps as in Example 1 were carried out to obtain a sintered body which was the light emitting material 30 of Example 4.
  • the core material 31 contained the lead perovskite material CsPb (I, Br, Cl) 3, and the core material 31 was included in the matrix layer 32 of crystalline silica. Had a structure.
  • the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, white light due to CsPb (I, Br, Cl) 3 was emitted.
  • the luminescent material 30 of the present embodiment has the structure in which the core material 31 containing the lead perovskite material is included in the matrix layer 32, and therefore the luminescent property and the moisture resistance are good. Become.
  • the molding step was performed between the raw material preparation step and the encapsulation step. However, the molding step was omitted, and the powder obtained by pulverizing and mixing the raw material of the lead perovskite material and the matrix layer material was vacuumed in the container 10. It may be enclosed and sintered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

A light emitting article (30) which contains a core substance (31) within a matrix layer (32), and which is configured such that the core substance (31) contains a lead perovskite material.

Description

発光物および発光物の製造方法Luminescent substance and method for manufacturing luminous substance
 本発明は、発光物および発光物の製造方法に関し、特にコア物質をマトリックス層内に包含した発光物および発光物の製造方法に関する。 The present invention relates to a luminescent material and a method for manufacturing a luminescent material, and more particularly to a luminescent material including a core material in a matrix layer and a method for manufacturing a luminescent material.
 近年になって、光電相互変換性能に優れた材料としてCdを用いない鉛ペロブスカイトが発見されて注目を集めている(例えば特許文献1等を参照)。鉛ペロブスカイト材料は、含まれるハロゲン化物の組成によってバンドギャップが変化するため、材料と組成とを選択することで発光波長を調節でき、青色、緑色、黄色、赤色等の可視光範囲の発光を得ることができる。このように鉛ペロブスカイト材料は、太陽電池や波長変換材料、発光素子などへの応用が見込まれている。 In recent years, lead perovskite that does not use Cd has been discovered as a material having excellent photoelectric conversion performance, and has attracted attention (see, for example, Patent Document 1). Since the band gap of the lead perovskite material changes depending on the composition of the contained halide, the emission wavelength can be adjusted by selecting the material and the composition, and emission in the visible light range of blue, green, yellow, red, etc. can be obtained. be able to. As described above, the lead perovskite material is expected to be applied to solar cells, wavelength conversion materials, light emitting devices, and the like.
 特に、鉛ペロブスカイト材料をナノメートルサイズの粒子径とした量子ドットでは、量子サイズ効果によってバンドギャップが粒子サイズに応じて変化するため、フォトルミネッセンス量子収率が高く、発光スペクトルの半値幅も狭いという良好な発光特性を示す。 In particular, in quantum dots using lead perovskite materials with nanometer-sized particles, the bandgap changes according to the particle size due to the quantum size effect, resulting in high photoluminescence quantum yield and narrow half-width of emission spectrum. It exhibits good light emission characteristics.
日本国特表2018-525776号公報Japan Special Table 2018-525776
 しかし、鉛ペロブスカイト材料は耐湿性が低く、大気中で劣化しやすいという問題があった。特に、量子ドットの鉛ペロブスカイト材料では、比表面積が大きいため吸湿による劣化の影響が大きく、照明装置や表示装置などに用いる際の製造工程中の取り扱いが難しいという問題があった。 However, the lead perovskite material has low moisture resistance and has a problem of being easily deteriorated in the atmosphere. In particular, the lead perovskite material of the quantum dot has a problem that it is difficult to handle during the manufacturing process when it is used for a lighting device, a display device, etc., because it has a large specific surface area and is greatly affected by moisture absorption.
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、発光特性と耐湿性とが良好な発光物および発光物の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a luminescent material and a manufacturing method of the luminescent material that have good luminescent characteristics and moisture resistance.
 上記課題を解決するために、本発明の発光物は、コア物質をマトリックス層内に包含した発光物であって、前記コア物質には、鉛ペロブスカイト材料が含有されていることを特徴とする。 In order to solve the above-mentioned problems, the luminescent material of the present invention is a luminescent material in which a core material is included in a matrix layer, and the core material contains a lead perovskite material.
 このような本発明の発光物では、鉛ペロブスカイト材料が含有されたコア物質をマトリックス層内に包含しているため、大気中の水分による鉛ペロブスカイト材料の劣化を抑制し、発光特性と耐湿性とを良好にすることができる。 In such a luminescent material of the present invention, since the core material containing the lead perovskite material is included in the matrix layer, deterioration of the lead perovskite material due to moisture in the atmosphere is suppressed, and the light emitting property and the moisture resistance are improved. Can be good.
 また本発明の一態様では、前記鉛ペロブスカイト材料は、CsPbX(X=Cl,Br,Iまたはこれらの2種以上の組み合わせ)である。 Further, in one aspect of the present invention, the lead perovskite material is CsPbX 3 (X = Cl, Br, I or a combination of two or more thereof).
 また本発明の一態様では、前記マトリックス層は、結晶性シリカである。 In one aspect of the present invention, the matrix layer is crystalline silica.
 また上記課題を解決するために本発明の発光物の製造方法は、鉛ペロブスカイト材料の原料およびマトリックス層材料を粉砕混合して粉末状にする原料準備工程と、前記原料を加熱および加圧して焼結する焼結工程を備えることを特徴とする。 Further, in order to solve the above problems, the method for producing a luminescent material of the present invention comprises a raw material preparing step of pulverizing and mixing a raw material of a lead perovskite material and a matrix layer material, and heating and pressing the raw material. It is characterized by comprising a sintering step of binding.
 このような本発明の発光物の製造方法では、鉛ペロブスカイト材料の原料とマトリックス層材料を粉砕混合して焼結することで、鉛ペロブスカイト材料が含有されたコア物質をマトリックス層内に包含した発光物を得ることができる。 In such a method for producing a luminescent material of the present invention, the raw material of the lead perovskite material and the matrix layer material are pulverized, mixed and sintered to obtain a light emission in which the core material containing the lead perovskite material is included in the matrix layer. You can get things.
 また本発明の一態様では、前記焼結工程の前に、前記原料および前記マトリックス層材料を容器に真空封入する封入工程を備え、前記焼結工程では、前記容器ごと加熱および加圧する。 Further, according to one aspect of the present invention, before the sintering step, an encapsulating step of vacuum-encapsulating the raw material and the matrix layer material in a container is provided, and in the sintering step, the container is heated and pressurized.
 また本発明の一態様では、前記容器は、石英管である。 In one aspect of the present invention, the container is a quartz tube.
 また本発明の一態様では、前記封入工程の前に、前記原料および前記マトリックス層材料をタブレット状に成形する成形工程を備える。 Further, according to one aspect of the present invention, before the encapsulating step, a molding step of molding the raw material and the matrix layer material into a tablet shape is provided.
 本発明では、発光特性と耐湿性とが良好な発光物および発光物の製造方法を提供することができる。 According to the present invention, it is possible to provide a luminescent material having good luminescent properties and moisture resistance and a method for producing the luminescent material.
第1実施形態における発光物に含まれる鉛ペロブスカイト材料の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the lead perovskite material contained in the light emission substance in 1st Embodiment. 第1実施形態における発光物の製造方法を示す工程図である。FIG. 6 is a process drawing showing the method of manufacturing the light-emitting object according to the first embodiment. 第1実施形態の封入工程を示す模式図であり、図3の(a)は封入前を示し、図3の(b)は封入後を示している。It is a schematic diagram which shows the sealing process of 1st Embodiment, (a) of FIG. 3 shows before sealing, and (b) of FIG. 3 has shown after sealing. 第1実施形態の発光物の製造方法によって得られる発光物30の構造を示す模式図である。It is a schematic diagram which shows the structure of the light emission object 30 obtained by the manufacturing method of the light emission object of 1st Embodiment.
 (第1実施形態)
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態の発光物に含まれる鉛ペロブスカイト材料の結晶構造を示す模式図である。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing will be denoted by the same reference numerals, and duplicated description will be omitted as appropriate. FIG. 1 is a schematic diagram showing the crystal structure of the lead perovskite material contained in the luminescent material of this embodiment.
 図1に示すように、本実施形態における鉛ペロブスカイト材料は一般式CsPbX(X=Cl,Br,Iまたはこれらの2種以上の組み合わせ)で表わされ、立方晶の単位格子において各頂点にCsが位置し、体心にPbが位置し、面心にCl,Br,Iなどのハロゲン元素が位置したペロブスカイト構造を有している。このような鉛ペロブスカイト材料では、立方晶の面心位置にあるハロゲン元素の種類と組成比によってバンドギャップが変化し、発光波長も変化する。 As shown in FIG. 1, the lead perovskite material in the present embodiment is represented by the general formula CsPbX 3 (X = Cl, Br, I or a combination of two or more kinds thereof), and each vertex in a cubic unit cell is represented by It has a perovskite structure in which Cs is located, Pb is located in the body center, and halogen elements such as Cl, Br, and I are located in the face center. In such a lead perovskite material, the band gap changes depending on the type and composition ratio of the halogen element located in the face center position of the cubic crystal, and the emission wavelength also changes.
 次に、本実施形態の発光物の製造方法について図2を用いて説明する。本実施形態は図2に示すように、原料準備工程と、成形工程と、封入工程と、焼結工程とを備えている。 Next, a method for manufacturing the luminescent material of this embodiment will be described with reference to FIG. As shown in FIG. 2, this embodiment includes a raw material preparing step, a forming step, an enclosing step, and a sintering step.
 (原料準備工程)
 はじめに原料準備工程で、鉛ペロブスカイト材料の原料とマトリックス層材料とを用意する。鉛ペロブスカイト材料であるCsPbX(X=Cl,Br,Iまたはこれらの2種以上の組み合わせ)の原料としては、PbI、PbBr,PbCl、CsBr、PbBr、CsI等が挙げられる。マトリックス層材料としては、アモルファス粒子のSiOが挙げられる。用意した鉛ペロブスカイト材料の原料とマトリックス層材料を不活性雰囲気下で粉砕混合して粉末状にする。不活性雰囲気としてはアルゴンガス雰囲気が挙げられる。
(Raw material preparation process)
First, in the raw material preparation step, the raw material of the lead perovskite material and the matrix layer material are prepared. Examples of the raw material of CsPbX 3 (X = Cl, Br, I or a combination of two or more thereof) which is a lead perovskite material include PbI 2 , PbBr 2 , PbCl 2 , CsBr, PbBr 2 and CsI. Examples of the matrix layer material include amorphous particles of SiO 2 . The prepared raw material of the lead perovskite material and the matrix layer material are pulverized and mixed in an inert atmosphere to form a powder. Examples of the inert atmosphere include an argon gas atmosphere.
 (成形工程)
 次に成形工程で、粉末状にした原料およびマトリックス層材料をタブレット状に成形する。タブレットの形状や大きさは限定されないが、後述する焼結工程で原料とマトリックス層材料とをタブレット内部でも十分に焼結できるような直径と厚さにすることが好ましい。また、成形工程も雰囲気中の元素取り込みを防止するために不活性雰囲気下で実行することが好ましい。
(Molding process)
Next, in the molding step, the powdered raw material and the matrix layer material are molded into tablets. The shape and size of the tablet are not limited, but it is preferable that the tablet has such a diameter and thickness that the raw material and the matrix layer material can be sufficiently sintered even inside the tablet in the later-described sintering step. Further, it is preferable that the molding step is also performed under an inert atmosphere in order to prevent the incorporation of elements in the atmosphere.
 (封入工程)
 次に封入工程で、原料およびマトリックス層材料を容器に真空封入する。図3は、本実施形態の封入工程を示す模式図であり、図3の(a)は封入前を示し、図3の(b)は封入後を示している。図3の(a)および図3の(b)に示すように容器10を用意して、容器10内を真空にした状態で原料およびマトリックス層材料のタブレット20を容器10内に入れ、容器10の開口部分を閉じて封止部11を形成して封止する。封入工程は容器10内を真空にした状態で実行されるため、タブレット20は容器10内に真空封入される。ここで容器10としては石英管が挙げられる。また、容器10内の真空度としては、10-1Paから10-5Paの高真空が好ましい。
(Encapsulation process)
Next, in a sealing step, the raw material and the matrix layer material are vacuum sealed in a container. 3A and 3B are schematic views showing the encapsulation process of the present embodiment, where FIG. 3A shows the state before the encapsulation and FIG. 3B shows the state after the encapsulation. As shown in FIGS. 3A and 3B, the container 10 is prepared, and the raw material and the matrix layer material tablet 20 are put into the container 10 while the container 10 is evacuated. The opening is closed to form the sealing portion 11 for sealing. Since the encapsulation process is performed in a state where the inside of the container 10 is evacuated, the tablet 20 is enclosed in the container 10 under vacuum. Here, the container 10 may be a quartz tube. The degree of vacuum inside the container 10 is preferably a high vacuum of 10 −1 Pa to 10 −5 Pa.
 容器10に封止部11を形成する方法としては、石英管等の容器10において所定位置をバーナー等で加熱し、加熱部位を治具等で挟み込んで圧縮して閉じる溶封が挙げられる。原料準備工程から封入工程までは、同一のグローブボックス等を用いて実行することが好ましい。 As a method for forming the sealing portion 11 in the container 10, there is a fusion seal in which a predetermined position in the container 10 such as a quartz tube is heated by a burner or the like, and the heated portion is sandwiched by a jig or the like and then compressed and closed. It is preferable to use the same glove box or the like from the raw material preparing step to the enclosing step.
 (焼結工程)
 次に焼結工程で、原料およびマトリックス層材料を加熱および加圧して焼結して、本実施形態における発光物の焼結体を得る。本実施形態では、図3(b)に示すようなタブレット20を真空封入した容器10ごと加熱および加圧して焼成する。焼成の条件としては、焼成温度は600~1200℃の範囲、圧力は0.5~50MPaの範囲、焼成時間は0.5~5時間の範囲が挙げられる。
(Sintering process)
Next, in a sintering step, the raw material and the matrix layer material are heated and pressed to sinter them to obtain a sintered body of the luminescent material in the present embodiment. In the present embodiment, the tablet 20 as shown in FIG. 3B is heated and pressurized together with the vacuum-sealed container 10 to be fired. The firing conditions include a firing temperature in the range of 600 to 1200 ° C., a pressure in the range of 0.5 to 50 MPa, and a firing time in the range of 0.5 to 5 hours.
 本実施形態では、容器10内にタブレット20を真空封入しているので、焼成過程で容器10が軟化するとともに圧縮され、容器10を構成している材料でタブレット20が覆われた状態で焼成が実施される。PbI、PbBr,PbCl、CsBr、PbBr、CsI等の鉛ペロブスカイト材料の原料は、900℃以上の温度範囲では揮発してしまう。しかし、本実施形態のように容器10ごと加圧焼結工程を実施することで、原料の揮発を防止し、鉛ペロブスカイト材料の焼結体を得ることができる。 In this embodiment, since the tablet 20 is vacuum-sealed in the container 10, the container 10 is softened and compressed during the baking process, and baking is performed in a state where the tablet 20 is covered with the material forming the container 10. Be implemented. Raw materials of lead perovskite materials such as PbI 2 , PbBr 2 , PbCl 2 , CsBr, PbBr 2 , and CsI volatilize in a temperature range of 900 ° C. or higher. However, by performing the pressure sintering process together with the container 10 as in the present embodiment, it is possible to prevent the raw material from volatilizing and obtain a sintered body of the lead perovskite material.
 図4は、本実施形態の発光物の製造方法によって得られる発光物30の構造を示す模式図である。ここでは、焼結体を純水またはIPA(イソプロピルアルコール)で洗浄した後に、遊離ハロゲン化物を除去してφ30~50μm程度の粒子状に解砕された状態を示している。本実施形態の発光物30は、コア物質31と、コア物質31をマトリックス層32内に包含する構造を有しており、マトリックス層32によってコア物質31がナノコンポジット化された構造を有している。 FIG. 4 is a schematic diagram showing the structure of a luminescent material 30 obtained by the method for manufacturing a luminescent material according to this embodiment. Here, a state is shown in which, after washing the sintered body with pure water or IPA (isopropyl alcohol), the free halide is removed and crushed into particles of about 30 to 50 μm in diameter. The luminescent material 30 of the present embodiment has a structure in which the core material 31 and the core material 31 are included in the matrix layer 32, and the core material 31 is nanocomposited by the matrix layer 32. There is.
 コア物質31は、鉛ペロブスカイト材料であるCsPbX(X=Cl,Br,Iまたはこれらの2種以上の組み合わせ)を含有した領域であり、1~100nmの粒径を有している。コア物質31に含まれている鉛ペロブスカイト材料は、上述した製造工程で焼結により形成されているため、有機物を含まない全無機のナノ結晶である。 The core substance 31 is a region containing CsPbX 3 (X = Cl, Br, I or a combination of two or more thereof) which is a lead perovskite material, and has a particle size of 1 to 100 nm. Since the lead perovskite material contained in the core substance 31 is formed by sintering in the above-described manufacturing process, it is an all-inorganic nanocrystal containing no organic matter.
 マトリックス層32は、SiOを主成分としてコア物質31の周囲を被覆する層であり、上述した製造工程では高温で焼結されているため、結晶性シリカ(クリストバライト)で構成されている。本実施形態のマトリックス層32は、コア物質31と同時に高温で焼結されており、コア物質31の周囲全体が結晶性シリカを構成している。したがって、コアシェル構造より被覆が厚く、非晶質シリカでの被覆や、SiO粒子を複数付着させる構造、メソポーラスシリカ等よりも耐湿性を向上させることができる。 The matrix layer 32 is a layer containing SiO 2 as a main component and covering the periphery of the core substance 31. Since the matrix layer 32 is sintered at a high temperature in the manufacturing process described above, it is made of crystalline silica (cristobalite). The matrix layer 32 of this embodiment is sintered at a high temperature at the same time as the core material 31, and the entire periphery of the core material 31 constitutes crystalline silica. Therefore, the coating is thicker than the core-shell structure, and the moisture resistance can be improved as compared with coating with amorphous silica, a structure in which a plurality of SiO 2 particles are attached, mesoporous silica, or the like.
 (実施例1)
 マトリックス層材料としてアモルファス粒子のSiOを1.2g、原料としてPbIを0.77gとCsIを0.44g精秤して、アルゴン雰囲気のグローブボックス内で粉末状に粉砕混合し、タブレット状に成形した。得られたタブレット20を石英管の容器10に真空封入し、1000℃、5MPaで5時間焼成した。焼成後に得られた焼結体をイソプロピルアルコールおよび温純粋で洗浄し、実施例1の発光物30である焼結体を得た。
(Example 1)
1.2 g of amorphous particles of SiO 2 as a matrix layer material, 0.77 g of PbI 2 as a raw material and 0.44 g of CsI were precisely weighed, pulverized and mixed into powder in an argon atmosphere glove box, and formed into tablets. Molded. The obtained tablet 20 was vacuum-sealed in the quartz tube container 10 and baked at 1000 ° C. and 5 MPa for 5 hours. The sintered body obtained after firing was washed with isopropyl alcohol and pure water to obtain a sintered body which was the luminescent material 30 of Example 1.
 得られた発光物30の焼結体では、コア物質31に鉛ペロブスカイト材料のCsPbIが含有されており、コア物質31を結晶性シリカのマトリックス層32内に包含した構造を有していた。発光物30に波長385nmの近紫外光を照射すると、CsPbIに起因する波長680nmの赤色光を発光した。 In the obtained sintered body of the luminescent material 30, the core material 31 contained the lead perovskite material CsPbI 3 and had a structure in which the core material 31 was included in the matrix layer 32 of crystalline silica. When the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, red light having a wavelength of 680 nm due to CsPbI 3 was emitted.
 (実施例2)
 マトリックス層材料としてアモルファス粒子のSiOを1.6g、原料としてPbBrを0.82gとCsBrを0.95g精秤して、実施例1と同様の工程を実施して実施例2の発光物30である焼結体を得た。
(Example 2)
1.6 g of SiO 2 of amorphous particles as a matrix layer material, 0.82 g of PbBr 2 and 0.95 g of CsBr as raw materials were precisely weighed, and the same steps as in Example 1 were carried out to obtain the luminescent material of Example 2. A sintered body of 30 was obtained.
 得られた発光物30の焼結体では、コア物質31に鉛ペロブスカイト材料のCsPbBrが含有されており、コア物質31を結晶性シリカのマトリックス層32内に包含した構造を有していた。発光物30に波長385nmの近紫外光を照射すると、CsPbBrに起因する波長510nmの緑色光を発光した。 In the obtained sintered body of the luminescent material 30, the core material 31 contained the lead perovskite material CsPbBr 3 and had a structure in which the core material 31 was included in the matrix layer 32 of crystalline silica. When the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, green light having a wavelength of 510 nm due to CsPbBr 3 was emitted.
 (実施例3)
 マトリックス層材料としてアモルファス粒子のSiOを2.0g、原料としてPbClを0.77gとCsBrを1.19g精秤して、実施例1と同様の工程を実施して実施例3の発光物30である焼結体を得た。
(Example 3)
As a matrix layer material, 2.0 g of amorphous particles of SiO 2 and 0.77 g of PbCl 2 and 1.19 g of CsBr as raw materials were precisely weighed, and the same steps as in Example 1 were performed to obtain the luminescent material of Example 3. A sintered body of 30 was obtained.
 得られた発光物30の焼結体では、コア物質31に鉛ペロブスカイト材料のCsPb(Br,Cl)が含有されており、コア物質31を結晶性シリカのマトリックス層32内に包含した構造を有していた。発光物30に波長385nmの近紫外光を照射すると、CsPb(Br,Cl)に起因する波長450nmの青色光を発光した。 In the obtained sintered body of the luminescent material 30, a lead material perovskite material CsPb (Br, Cl) 3 is contained in the core material 31, and the core material 31 is contained in the crystalline silica matrix layer 32. Had. When the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, blue light having a wavelength of 450 nm due to CsPb (Br, Cl) 3 was emitted.
 (実施例4)
 マトリックス層材料としてアモルファス粒子のSiOを2.0g、原料としてPBIを0.48g、PbBrを0.77g、PbClを0.29g、CsIを0.56g、CsBrを1.19g精秤して、実施例1と同様の工程を実施して実施例4の発光物30である焼結体を得た。
(Example 4)
SiO 2 is amorphous particles as the matrix layer material 2.0 g, 0.48 g of PBI 2 as a raw material, 0.77 g of PbBr 2, 0.29 g of PbCl 2, 0.56 g of CsI, 1.19 g weighed accurately CsBr Then, the same steps as in Example 1 were carried out to obtain a sintered body which was the light emitting material 30 of Example 4.
 得られた発光物30の焼結体では、コア物質31に鉛ペロブスカイト材料のCsPb(I,Br,Cl)が含有されており、コア物質31を結晶性シリカのマトリックス層32内に包含した構造を有していた。発光物30に波長385nmの近紫外光を照射すると、CsPb(I,Br,Cl)に起因する白色光を発光した。 In the obtained sintered body of the luminescent material 30, the core material 31 contained the lead perovskite material CsPb (I, Br, Cl) 3, and the core material 31 was included in the matrix layer 32 of crystalline silica. Had a structure. When the luminescent material 30 was irradiated with near-ultraviolet light having a wavelength of 385 nm, white light due to CsPb (I, Br, Cl) 3 was emitted.
 以上に述べたように、本実施形態の発光物30は、マトリックス層32内に鉛ペロブスカイト材料を含有したコア物質31を包含した構造を有しているため、発光特性と耐湿性とが良好となる。 As described above, the luminescent material 30 of the present embodiment has the structure in which the core material 31 containing the lead perovskite material is included in the matrix layer 32, and therefore the luminescent property and the moisture resistance are good. Become.
 (第2実施形態)
 第1実施形態では、原料準備工程と封入工程との間に成形工程を実施したが、成形工程を省略して、鉛ペロブスカイト材料の原料とマトリックス層材料とを粉砕混合した粉末を容器10に真空封入して焼結してもよい。
(Second embodiment)
In the first embodiment, the molding step was performed between the raw material preparation step and the encapsulation step. However, the molding step was omitted, and the powder obtained by pulverizing and mixing the raw material of the lead perovskite material and the matrix layer material was vacuumed in the container 10. It may be enclosed and sintered.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments Is also included in the technical scope of the present invention.
 なお、本願は、2018年10月26日付で出願された日本国特許出願(特願2018-201629)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 The present application is based on the Japanese patent application filed on October 26, 2018 (Japanese Patent Application No. 2018-201629), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated in their entirety.
10…容器
11…封止部
20…タブレット
30…発光物
31…コア物質
32…マトリックス層
10 ... Container 11 ... Sealing part 20 ... Tablet 30 ... Luminescent substance 31 ... Core substance 32 ... Matrix layer

Claims (7)

  1.  コア物質をマトリックス層内に包含した発光物であって、
     前記コア物質には、鉛ペロブスカイト材料が含有されていることを特徴とする発光物。
    A luminescent material including a core material in a matrix layer,
    A luminescent material, wherein the core material contains a lead perovskite material.
  2.  請求項1に記載の発光物であって、
     前記鉛ペロブスカイト材料は、CsPbX(X=Cl,Br,Iまたはこれらの2種以上の組み合わせ)であることを特徴とする発光物。
    The luminescent material according to claim 1, wherein
    The luminescent material, wherein the lead perovskite material is CsPbX 3 (X = Cl, Br, I or a combination of two or more thereof).
  3.  請求項1または2に記載の発光物であって、
     前記マトリックス層は、結晶性シリカであることを特徴とする発光物。
    The luminescent material according to claim 1 or 2, wherein:
    The luminescent material, wherein the matrix layer is crystalline silica.
  4.  鉛ペロブスカイト材料の原料およびマトリックス層材料を粉砕混合して粉末状にする原料準備工程と、
     前記原料および前記マトリックス層材料を加熱および加圧して焼結する焼結工程を備えることを特徴とする発光物の製造方法。
    A raw material preparation step of pulverizing and mixing the raw material of the lead perovskite material and the matrix layer material to form a powder,
    A method of manufacturing a luminescent material, comprising a sintering step of heating and pressing the raw material and the matrix layer material to sinter them.
  5.  請求項4に記載の発光物の製造方法であって、
     前記焼結工程の前に、前記原料および前記マトリックス層材料を容器に真空封入する封入工程を備え、
     前記焼結工程では、前記容器ごと加熱および加圧することを特徴とする発光物の製造方法。
    The method for manufacturing a luminescent material according to claim 4, wherein
    Before the sintering step, an encapsulation step of vacuum encapsulating the raw material and the matrix layer material in a container is provided,
    In the sintering step, the container is heated and pressurized, and the method for producing a luminescent material is characterized.
  6.  請求項5に記載の発光物の製造方法であって、
     前記容器は、石英管であることを特徴とする発光物の製造方法。
    The method for manufacturing a luminescent material according to claim 5, wherein
    The said container is a quartz tube, The manufacturing method of the luminescent material characterized by the above-mentioned.
  7.  請求項5または6に記載の発光物の製造方法であって、
     前記封入工程の前に、前記原料および前記マトリックス層材料をタブレット状に成形する成形工程を備えることを特徴とする発光物の製造方法。
    A method for producing a luminescent material according to claim 5 or 6, wherein
    A method for producing a luminescent material, comprising a forming step of forming the raw material and the matrix layer material into a tablet shape before the encapsulating step.
PCT/JP2019/038787 2018-10-26 2019-10-01 Light emitting article and method for producing light emitting article WO2020085013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018201629A JP2020066705A (en) 2018-10-26 2018-10-26 Light emitting material and production method for light emitting material
JP2018-201629 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085013A1 true WO2020085013A1 (en) 2020-04-30

Family

ID=70330692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038787 WO2020085013A1 (en) 2018-10-26 2019-10-01 Light emitting article and method for producing light emitting article

Country Status (2)

Country Link
JP (1) JP2020066705A (en)
WO (1) WO2020085013A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039715A1 (en) * 2021-09-14 2023-03-23 深圳先进技术研究院 Environmentally stable perovskite core-shell composite material, preparation method therefor and application thereof
WO2023039716A1 (en) * 2021-09-14 2023-03-23 深圳先进技术研究院 Composite material of perovskite and molecular sieve, preparation method therefor and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259320A (en) * 1995-03-23 1996-10-08 Koichi Niihara Perovskite compound sintered compact
JPH09295865A (en) * 1996-04-30 1997-11-18 Agency Of Ind Science & Technol Ceramic composite
JP2007112951A (en) * 2005-10-24 2007-05-10 Fujifilm Corp Inorganic compound, composition and molded body containing the same, light-emitting device, and solid laser device
JP2008523614A (en) * 2004-12-07 2008-07-03 トヨタ テクニカル センター,ユー.エス.エー.,インコーポレイティド Nanostructured bulk thermoelectric materials
JP2014078392A (en) * 2012-10-10 2014-05-01 Peccell Technologies Inc Electroluminescence element using perovskite compound
JP2017142486A (en) * 2015-11-30 2017-08-17 隆達電子股▲ふん▼有限公司 Quantum dot composite material and manufacturing method and application thereof
WO2018028870A1 (en) * 2016-08-11 2018-02-15 Avantama Ag Solid polymer composition
JP2018104685A (en) * 2016-12-22 2018-07-05 アファンタマ アクチェンゲゼルシャフト Luminescent composite materials
JP2018522959A (en) * 2015-05-14 2018-08-16 北京理工大学 Perovskite / polymer composite luminescent material, manufacturing method and application
JP2018525776A (en) * 2015-06-30 2018-09-06 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Luminescent device
WO2019094207A1 (en) * 2017-11-10 2019-05-16 Cree, Inc. Stabilized luminescent nanoparticles comprising perovskite semiconductor and method of fabrication
WO2019094206A1 (en) * 2017-11-10 2019-05-16 Cree, Inc. Stabilized quantum dot composite and method of making a stabilized quantum dot composite

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259320A (en) * 1995-03-23 1996-10-08 Koichi Niihara Perovskite compound sintered compact
JPH09295865A (en) * 1996-04-30 1997-11-18 Agency Of Ind Science & Technol Ceramic composite
JP2008523614A (en) * 2004-12-07 2008-07-03 トヨタ テクニカル センター,ユー.エス.エー.,インコーポレイティド Nanostructured bulk thermoelectric materials
JP2007112951A (en) * 2005-10-24 2007-05-10 Fujifilm Corp Inorganic compound, composition and molded body containing the same, light-emitting device, and solid laser device
JP2014078392A (en) * 2012-10-10 2014-05-01 Peccell Technologies Inc Electroluminescence element using perovskite compound
JP2018522959A (en) * 2015-05-14 2018-08-16 北京理工大学 Perovskite / polymer composite luminescent material, manufacturing method and application
JP2018525776A (en) * 2015-06-30 2018-09-06 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Luminescent device
JP2017142486A (en) * 2015-11-30 2017-08-17 隆達電子股▲ふん▼有限公司 Quantum dot composite material and manufacturing method and application thereof
WO2018028870A1 (en) * 2016-08-11 2018-02-15 Avantama Ag Solid polymer composition
JP2018104685A (en) * 2016-12-22 2018-07-05 アファンタマ アクチェンゲゼルシャフト Luminescent composite materials
WO2019094207A1 (en) * 2017-11-10 2019-05-16 Cree, Inc. Stabilized luminescent nanoparticles comprising perovskite semiconductor and method of fabrication
WO2019094206A1 (en) * 2017-11-10 2019-05-16 Cree, Inc. Stabilized quantum dot composite and method of making a stabilized quantum dot composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039715A1 (en) * 2021-09-14 2023-03-23 深圳先进技术研究院 Environmentally stable perovskite core-shell composite material, preparation method therefor and application thereof
WO2023039716A1 (en) * 2021-09-14 2023-03-23 深圳先进技术研究院 Composite material of perovskite and molecular sieve, preparation method therefor and application thereof

Also Published As

Publication number Publication date
JP2020066705A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
EP3630917B1 (en) Uniformly encapsulated nanoparticles and uses thereof
Yoon et al. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance
KR101312238B1 (en) Light-emitting diode (led) devices comprising nanocrystals
JP6393043B2 (en) Red lamp with quantum dot layer
CN101903300B (en) Frit-containing pastes for producing sintered frit patterns on glass sheets
WO2020085013A1 (en) Light emitting article and method for producing light emitting article
CN108473859A (en) Luminescence component
US9995458B2 (en) Ceramic phosphor plate and lighting device including the same
US20180138359A1 (en) Stratified Quantum Dot Phosphor Structure
JP2011508437A (en) Encapsulation assembly for an electronic device having a flat surface
JP2010509764A (en) Illumination system including a monolithic ceramic luminescence converter
JP2008218393A (en) Seal for light emitting display device and method
CN109713026A (en) A kind of silicon substrate electroluminescence display panel and its manufacturing method, display device
JP6693360B2 (en) Light conversion member, illumination light source, and method for manufacturing light conversion member
JP2009096653A (en) Manufacturing method of color converting member
JP2010538102A (en) Light emitting device with ceramic material based on composite material SiAlON
CN102701591A (en) Laser packaged glass powder sealing material for photoelectric device packaging
TW201526302A (en) Light extraction element
CN108017390A (en) Based on rear-earth-doped non-plumbum ferroelectric photochromic material and its preparation method and application
JP2011091068A (en) Luminescent color conversion member and method of manufacturing the same, and light-emitting element
KR101762223B1 (en) Manufacturing method for led chip encapsulation member comprising phosphor
CN111072374B (en) Fluorescent ceramic and preparation method thereof
JP2022552054A (en) Fluorescent ceramics, manufacturing method thereof, and light source device
CN106935693A (en) Luminous quantum dot CSP backlights in a kind of five face and preparation method thereof
TW201611352A (en) Process for producing wavelength conversion member, and wavelength conversion member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876586

Country of ref document: EP

Kind code of ref document: A1