JP2625610B2 - Manufacturing method of impregnated cathode - Google Patents
Manufacturing method of impregnated cathodeInfo
- Publication number
- JP2625610B2 JP2625610B2 JP16867292A JP16867292A JP2625610B2 JP 2625610 B2 JP2625610 B2 JP 2625610B2 JP 16867292 A JP16867292 A JP 16867292A JP 16867292 A JP16867292 A JP 16867292A JP 2625610 B2 JP2625610 B2 JP 2625610B2
- Authority
- JP
- Japan
- Prior art keywords
- emitter
- impregnated cathode
- powder
- impregnated
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は高放出電流密度タイプの
電子管用含浸型陰極の製造方法に関し、特に材料の混
合,封入,焼結工程に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high emission current density type impregnated cathode for an electron tube, and more particularly to a process for mixing, enclosing and sintering materials.
【0002】[0002]
【従来の技術】含浸型陰極は酸化物陰極の電子放射特性
をさらに向上させるために工夫されたものである。2. Description of the Related Art Impregnated cathodes have been devised to further improve the electron emission characteristics of oxide cathodes.
【0003】この含浸型陰極は、現在ではタングステン
(以下Wと呼ぶ)多孔質の基体に電子放射物質を含浸さ
せた含浸補給型(impregnated dispenser cathode )が
主流となっており、例えばUSP4,165,473号
やUSP3,358,178号等で詳しく紹介されてい
る。At present, the impregnated dispenser cathode in which a tungsten (hereinafter referred to as W) porous substrate is impregnated with an electron-emitting substance has become the mainstream of the impregnated cathode. For example, US Pat. No. 473 and US Pat. No. 3,358,178.
【0004】そこで従来の含浸型陰極の製造工程につい
て、流れ図である図6を参照して説明する。[0004] A process for manufacturing a conventional impregnated cathode will be described with reference to FIG. 6 which is a flowchart.
【0005】まず工程1で平均粒径が数μmのW粉末を
棒状にしてプレス成形し、この成形体を工程2で水素雰
囲気中,2500℃で焼成する。工程1および工程2で
W粉末の粒度,プレス圧,焼成温度などを調整すること
により性状の制御された多孔質焼結体を工程3で銅(C
u)粉末中に埋めて加熱し、Cuを溶融含浸させて強度を
もたせた後、工程4で所定の形状に機械加工(ペレット
化)する。工程5で、ペレットを真空中で加熱し、含浸
させたCuを溶出する。工程6でBaCO3 ,CaCO3 ,Al2O3
などを適当なモル比で混合した電子放射物質(以下エミ
ッタという)をH2 中1600〜1800℃に加熱し、
ペレット孔部に含浸させる。最後に工程7でペレット表
面に封着した余剰のエミッタを除去するために、ブラッ
シング,研磨及び表面クリーニングを行い、次の組立工
程8に送られる。First, in step 1, W powder having an average particle size of several μm is formed into a rod and press-formed, and in step 2, this compact is fired at 2500 ° C. in a hydrogen atmosphere. In step 1 and step 2, the particle size of the W powder, pressing pressure, sintering temperature and the like are adjusted to produce a porous sintered body having a controlled property in step 3 using copper (C).
u) After being buried in the powder and heated, the Cu is melt-impregnated to give strength, and then machined (pelletized) into a predetermined shape in step 4. In step 5, the pellet is heated in vacuum to elute the impregnated Cu. In step 6, BaCO 3 , CaCO 3 , Al 2 O 3
An electron emitting material (hereinafter referred to as an emitter) in which H 2 is mixed at an appropriate molar ratio is heated to 1600 to 1800 ° C. in H 2 ,
Impregnate the pellet holes. Finally, brushing, polishing, and surface cleaning are performed in order to remove the excess emitter sealed on the pellet surface in step 7, and the resultant is sent to the next assembling step 8.
【0006】しかしながらこのような含浸型陰極の製造
方法は各工程が繁雑であり、また工程時間が長くこれに
伴い非常にコストがかかるという欠点を有していた。ま
た1600〜1800℃の高温でエミッタを溶融して多
孔質Wペレット中に含浸させる場合、Wによる還元反応
が過度に進行してしまうおそれがあるという問題も有し
ていた。[0006] However, such a method for producing an impregnated cathode has the disadvantage that each step is complicated and the process time is long, resulting in a very high cost. Further, when the emitter is melted at a high temperature of 1600 to 1800 ° C. and impregnated in the porous W pellet, there is a problem that the reduction reaction by W may excessively proceed.
【0007】これらの欠点を解決する方法として、近
年、熱間静水圧加圧(Hot IsostaticPressing;以下H
IPという)法による粉末焼結型の含浸型陰極の製造方
法(特開平3−55739号公報)及びUSP5,09
6,450号が開示されている。As a method for solving these drawbacks, recently, hot isostatic pressing (hereinafter referred to as H
(Japanese Patent Application Laid-Open No. 3-55739) and US Pat.
No. 6,450 is disclosed.
【0008】[0008]
【発明が解決しようとする課題】ところで、上記のHI
P法による粉末焼結型の含浸型陰極は、高融点耐熱金属
粉とエミッタとを乾式混合及びプレス成形した後、この
成形体をカプセル内に真空封入し、最後にカプセルをH
IP処理して焼結することにより製造することを特徴と
している。By the way, the above HI
The impregnated cathode of the powder sintering type by the P method is prepared by dry-mixing and press-molding a high melting point heat-resistant metal powder and an emitter, vacuum-encapsulating the molded body in a capsule, and finally placing the capsule in H
It is characterized by being manufactured by IP processing and sintering.
【0009】この製造方法によれば、多孔質W焼結体の
製造工程,銅の含浸及び溶出工程,エミッタを高温中で
長時間加熱しながら含浸する工程,などの繁雑で時間を
費やす工程を有しないという利点を有しているが、エミ
ッタとして用いるバリウム(Ba) 化合物をBaO (酸化バ
リウム)の形で添加してHIP処理した場合,処理中に
BaO はW粉と反応してBaWO4 に変わりやすく、後にエミ
ッション発生に必要なBaの単原子層が消費されてしまう
という問題が生じた。According to this manufacturing method, complicated and time-consuming steps such as a step of manufacturing a porous W sintered body, a step of impregnating and eluting copper, and a step of impregnating an emitter while heating it at a high temperature for a long time are performed. Although it has the advantage of not having it, when a barium (Ba) compound used as an emitter is added in the form of BaO (barium oxide) and subjected to HIP processing,
BaO easily reacts with the W powder to change into BaWO 4 , which causes a problem that a monoatomic layer of Ba required for emission generation is consumed later.
【0010】またバリウム化合物としてBaCO3 (炭酸バ
リウム)の形で添加してHIP処理した場合において
も、処理中に炭酸塩中のカーボンがWと反応してWC
(タングステンカーバイド)を生成し、エミッション発
生に必要なWによる還元反応が困難になってしまうとい
う問題が生じた。Also, when HIP treatment is performed by adding a barium compound in the form of BaCO 3 (barium carbonate), carbon in the carbonate reacts with W during the treatment to cause WC.
(Tungsten carbide), and a reduction reaction by W necessary for emission generation becomes difficult.
【0011】[0011]
【課題を解決するための手段】そこで、本発明の含浸型
陰極は、高融点耐熱金属粉と、エミッタとを乾式混合す
る工程,混合粉をプレス成形する工程、成形体をカプセ
ル封入する工程,最後にカプセルを熱間静水圧処理して
混合粉を焼結する工程からなる含浸型陰極の製造方法に
おいて、エミッタとして(m1 BaO ・m2CaO)・nBaAl
2O4 [nは1以上の整数;m1,m2 は0以上の整数;
m1 +m2 ≧1]の形のバリウムアルミネート化合物を
5.7wt%を越え、13.8wt%以下の範囲で、高
融点耐熱金属粉に混入して用い、900℃乃至1400
℃でHIP処理することを特徴とする。Accordingly, the impregnated cathode of the present invention comprises a step of dry-mixing the high melting point heat-resistant metal powder and the emitter, a step of press-molding the mixed powder, a step of encapsulating the compact, Finally, in a method for producing an impregnated cathode comprising a step of sintering the mixed powder by subjecting the capsule to hot isostatic pressure, (m 1 BaO · m 2 CaO) · nBaAl is used as an emitter.
2 O 4 [n is an integer of 1 or more; m 1 and m 2 are integers of 0 or more;
[m 1 + m 2 ≧ 1] barium aluminate compound in a range of more than 5.7 wt% and 13.8 wt% or less, mixed with the high melting point heat-resistant metal powder and used at 900 ° C. to 1400 ° C.
It is characterized in that it is subjected to a HIP treatment at a temperature of ° C.
【0012】また本発明のエミッタは、前記のバリウム
アルミネート化合物が主原料である必要があるが、少量
のBaO,BaCO3 ,カルシウム酸化物などを含有していて
も、むろん問題はない。Although the above-mentioned barium aluminate compound must be the main raw material of the emitter of the present invention, there is no problem even if it contains a small amount of BaO, BaCO 3 , calcium oxide or the like.
【0013】[0013]
【作用】本発明によれば、エミッタとして(m1 BaO ・
m2 CaO )・nBaAl2O4 [nは1以上の整数;m1 ,m
2 は0以上の整数;m1 +m2 ≧1]の形のバリウムア
ルミネート化合物を5.7wt%を越え、13.8wt
%以下の範囲で高融点耐熱金属粉に混入して用い900
℃乃至1400℃でHIP処理することであり、この構
成によるとHIP処理中に、炭酸塩の形のエミッタがW
と反応してWCを生成することもなく、またこれらのバ
リウムアルミネートはBaO に比べ、Wとの反応が生じに
くく、BaWO4 などのタングステートへの変化を著しく抑
えることができ、かつペレット化の容易な良好なカソー
ド焼結体を作製することができる。According to the present invention, (m 1 BaO.
m 2 CaO) · nBaAl 2 O 4 [n is an integer of 1 or more; m 1 , m
2 is an integer of 0 or more; m 1 + m 2 ≧ 1], a barium aluminate compound exceeding 5.7 wt% and 13.8 wt%
% Or less and mixed with high melting point heat-resistant metal powder for use 900
C. to 1400.degree. C., and according to this configuration, during the HIP process, the emitter in the form of a carbonate becomes W
And barium aluminate is less likely to react with W than BaO 2, can significantly suppress the change to tungstate such as BaWO 4 and pelletize. A good cathode sintered body can be produced easily.
【0014】[0014]
【実施例】以下、本発明の実施例を図1乃至図5を参照
して説明する。図1は本発明の含浸型陰極の製造工程の
流れ図を示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a flow chart of the manufacturing process of the impregnated cathode of the present invention.
【0015】まずエミッタ剤の原料である炭酸バリウム
(BaCO3 ),炭酸カルシウム(CaCO3 ),酸化アルミニ
ウム(Al2O3 )を、それぞれ4:1:1のモル比に調合
した混合粉を、大気中1100℃に加熱して、バリウム
アルミネート化合物に変換した。First, a mixed powder prepared by mixing barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), and aluminum oxide (Al 2 O 3 ), which are the raw materials of the emitter agent, in a molar ratio of 4: 1: 1, It was heated to 1100 ° C. in the atmosphere to convert it to a barium aluminate compound.
【0016】この時のバリウムアルミネート化合物とし
ては、主にBa5CaAl4O12,Ba3Al2O6,Ba5Al2O8,Ba7Al2
O10 ,Ba10Al2O13,BaCa2Al8O15 等であり、いずれも
(m1BaO ・m2 CaO )・nBaAl2O4 [nは1以上の整
数;m1 ,m2 は0以上の整数;m1 +m2 ≧1]の形
のバリウムアルミネート化合物である。At this time, the barium aluminate compounds mainly include Ba 5 CaAl 4 O 12 , Ba 3 Al 2 O 6 , Ba 5 Al 2 O 8 , Ba 7 Al 2
O 10 , Ba 10 Al 2 O 13 , BaCa 2 Al 8 O 15, etc., and (m 1 BaO · m 2 CaO) · nBaAl 2 O 4 [n is an integer of 1 or more; m 1 and m 2 are An integer of 0 or more; m 1 + m 2 ≧ 1].
【0017】次に、このアルミネートの形を調整したエ
ミッタ剤6g(5.7wt%)と高融点耐熱金属である
W粉末100gとを図1の工程10で乾式混合し、続い
て工程11で約2ton /cm2 の圧力で、ラバープレス成
形を行い、円柱状に成形する。Next, 6 g (5.7 wt%) of the emitter agent adjusted in form of aluminate and 100 g of W powder, which is a refractory metal having a high melting point, are dry-mixed in step 10 of FIG. Rubber press molding is performed at a pressure of about 2 ton / cm 2 to form a column.
【0018】次に図2に示すように、この成形体21を
パイレックスガラス製容器22に収容した後,パイレッ
クスガラス製容器22内にAl2O3 粉末23を充填し、か
つ内部を真空にしてカプセル封入工程12を終了する。Next, as shown in FIG. 2, after the molded body 21 is housed in a Pyrex glass container 22, Al 2 O 3 powder 23 is filled in the Pyrex glass container 22, and the inside is evacuated. The encapsulation step 12 ends.
【0019】次に真空封止したパイレックスガラス製容
器24を図3に示すように、HIP処理炉25内に収容
し、図4に示した昇温,昇圧スケジュールでHIP処理
し焼結体を得た。最終HIP処理条件は、1000℃,
20分間,1500気圧下のアルゴンガス雰囲気であ
る。この工程がHIP処理工程13である。Next, as shown in FIG. 3, the vacuum-sealed Pyrex glass container 24 is housed in an HIP processing furnace 25, and subjected to HIP processing according to the heating and pressurizing schedule shown in FIG. Was. The final HIP processing conditions are 1000 ° C,
An argon gas atmosphere at 1500 atm for 20 minutes. This step is the HIP processing step 13.
【0020】さらにこの焼結体は、機械加工(ペレット
化)工程14で所定の形状に加圧した。Further, the sintered body was pressed into a predetermined shape in a machining (pelleting) step 14.
【0021】最後に工程15としてペレットの表面クリ
ーニングを行い、次の組立工程に送った。また、同様に
エミッタ剤4g(3.8wt%),8g(7.4wt
%),10g(9.1wt%),12g(10.7wt
%),14g(12.3wt%),16g(13.8w
t%),18g(15.3wt%)をそれぞれW粉末1
00gと混合した後、前述した製造工程で含浸型陰極の
作製を行い次の組立工程に送った。Finally, as step 15, the surface of the pellet was cleaned and sent to the next assembling step. Similarly, 4 g (3.8 wt%) and 8 g (7.4 wt%)
%), 10 g (9.1 wt%), 12 g (10.7 wt%)
%), 14 g (12.3 wt%), 16 g (13.8 w
t%) and 18 g (15.3 wt%) of W powder 1 respectively.
After mixing with 00 g, an impregnated cathode was prepared in the above-described manufacturing process and sent to the next assembling process.
【0022】これらのエミッタ剤の含有量の異なる含浸
型陰極の電子放射特性の測定を行った。The electron emission characteristics of the impregnated cathodes having different emitter agent contents were measured.
【0023】図5に、本実施例の含浸型陰極について、
HIP処理温度をパラメータとした時のエミッタの含有
量と動作温度1000℃での放出電流密度(任意単位)
の関係を示す。FIG. 5 shows the impregnated cathode of this embodiment.
Emitter content when HIP processing temperature is used as a parameter and emission current density at operating temperature of 1000 ° C (arbitrary unit)
Shows the relationship.
【0024】図5より、エミッタ剤の含有量が増加する
につれて著しく放出電流密度は増加し、およそ7wt%
乃至12wt%において放出電流密度が最大になり、さ
らに含有量が増加すると放出電流は急激に減少すること
がわかる。FIG. 5 shows that the emission current density increases remarkably as the content of the emitter agent increases, to about 7 wt%.
It can be seen that the emission current density is maximum at 12 wt%, and the emission current sharply decreases as the content further increases.
【0025】従来レベル以上の放出電流密度が得られる
5.7wt%を越え、13.8wt%以下が有効であ
る。It is effective to exceed 5.7% by weight and obtain 13.8% by weight or less at which emission current density higher than the conventional level can be obtained.
【0026】また、HIP処理温度は1300°Cが最
適であるが、900℃乃至1400℃が有効である。The HIP processing temperature is optimally 1300 ° C., but 900 ° C. to 1400 ° C. is effective.
【0027】本実施例によれば、エミッタ剤中に含まれ
ていたBa5CaAl4O12 ,Ba3Al2O6,Ba5Al2O8等の(m1 Ba
O ・m2 CaO )・nBaAl2O4 [nは1以上の整数;m
1 ,m2 は0以上の整数;m1 +m2 ≧1]の形のバリ
ウムアルミネート化合物は、BaO に比べWとの反応が生
じにくく、このためHIP処理後もタングステートへの
変化が大幅に抑制されていることを確認している。According to this embodiment, (m 1 Ba) such as Ba 5 CaAl 4 O 12 , Ba 3 Al 2 O 6 , Ba 5 Al 2 O 8 contained in the emitter agent is used.
O · m 2 CaO) · nBaAl 2 O 4 [n is an integer of 1 or more; m
1 , m 2 is an integer of 0 or more; m 1 + m 2 ≧ 1], the barium aluminate compound hardly reacts with W as compared with BaO 2, so that the change to tungstate is significant even after HIP treatment. Is confirmed to be suppressed.
【0028】また、これらのバリウムアルミネート化合
物は炭酸塩を含んでおらず、このため炭酸塩中のカーボ
ンがWと反応してWCを生成することもない。Further, these barium aluminate compounds do not contain a carbonate, so that carbon in the carbonate does not react with W to form WC.
【0029】なお本実施例において、エミッタ剤の原料
のBaCO3 ,CaCO3 , Al2O3混合粉をバリウムアルミネー
ト化合物へ変換させるため、上記の本実施例の条件によ
り製造したが、これは一例であり、原料粉の混合比,加
熱処理温度,処理雰囲気等を、適宜設定して、(m1 Ba
O ・m2 CaO )・nBaAl2O4 [nは1以上の整数;m
1 ,m2 は0以上の整数;m1 +m2 ≧1]の形のバリ
ウムアルミネート化合物がエミッタ剤中に多く含まれる
ようにすればよい。In the present embodiment, in order to convert the mixed powder of BaCO 3 , CaCO 3 , and Al 2 O 3 as the raw material of the emitter agent into a barium aluminate compound, it was manufactured under the above-mentioned conditions of the present embodiment. This is an example, and the mixing ratio of the raw material powder, the heat treatment temperature, the treatment atmosphere, and the like are appropriately set, and (m 1 Ba
O · m 2 CaO) · nBaAl 2 O 4 [n is an integer of 1 or more; m
1 , m 2 is an integer of 0 or more; m 1 + m 2 ≧ 1], so that the barium aluminate compound in the form of a large amount may be contained in the emitter agent.
【0030】またHIP処理条件(温度,時間,圧力)
は、実施例の条件に限られたものではないが、HIP処
理温度が900℃より低いと、どのエミッタ剤の含有率
の場合も焼結体の強度が低くなり、ペレット化の工程1
4に耐えることができない。HIP processing conditions (temperature, time, pressure)
Is not limited to the conditions of the examples, but when the HIP processing temperature is lower than 900 ° C., the strength of the sintered body is reduced at any content of the emitter agent, and the pelletizing process 1
4 can not stand.
【0031】逆に1400℃より高い温度では、焼結体
の強度は高くなるが、どのエミッタ剤の含有率の場合
も、エミッタ剤中のバリウムアルミネート化合物がWと
著しく反応して、エミッタとして有効でないタングステ
ートに変換してしまう。On the other hand, at a temperature higher than 1400 ° C., the strength of the sintered body increases, but the barium aluminate compound in the emitter reacts remarkably with W at any content of the emitter, and Convert to an invalid tongue state.
【0032】このため、HIP処理温度は、900℃以
上、1400℃以下にする必要がある。For this reason, the HIP processing temperature needs to be 900 ° C. or higher and 1400 ° C. or lower.
【0033】[0033]
【発明の効果】以上述べたように、エミッタ剤として、
(m1 BaO ・m2 CaO )・nBaAl2O4[nは1以上の整
数;m1 ,m2 は0以上の整数;m1 +m2 ≧1]の形
のバリウムアルミネート化合物を5.7wt%を越え、
13.8wt%以下の範囲で高融点耐熱金属粉に混合し
て用いることにより、またHIP処理温度を900℃以
上1400℃以下にすることによりHIP処理中にエミ
ッタがWと反応してWCを生成することもなく、またバ
リウムアルミネート化合物がBaWO4 などの有効でないタ
ングステートへ変化するのも著しく抑制でき、かつペレ
ット化が容易なカソード焼結体を製造することができ
る。As described above, as an emitter agent,
(M 1 BaO · m 2 CaO) · nBaAl 2 O 4 [n is an integer of 1 or more; m 1 and m 2 are integers of 0 or more; m 1 + m 2 ≧ 1]. Over 7wt%,
The emitter is reacted with W during HIP processing to generate WC by mixing and using the high melting point heat-resistant metal powder in the range of 13.8% by weight or less and by setting the HIP processing temperature to 900 ° C to 1400 ° C. it no to, also barium aluminate compound can be remarkably suppressed even for changes to the tungstate is not valid, such as BaWO 4, and can be pelletized to produce a readily cathode sintered body.
【図1】 本発明に係る含浸型陰極の製造工程の流れ図FIG. 1 is a flowchart of a manufacturing process of an impregnated cathode according to the present invention.
【図2】 本発明にカプセル封入工程を説明するための
断面図FIG. 2 is a sectional view for explaining an encapsulation step in the present invention.
【図3】 本発明のHIP処理工程を説明するための断
面図FIG. 3 is a cross-sectional view for explaining a HIP processing step of the present invention.
【図4】 本発明のHIP処理条件の一例を示すプログ
ラムFIG. 4 is a program showing an example of HIP processing conditions of the present invention.
【図5】 本発明に係る含浸型陰極の電子放出特性を示
す図FIG. 5 is a diagram showing the electron emission characteristics of the impregnated cathode according to the present invention.
【図6】 従来の含浸型陰極の製造工程の流れ図FIG. 6 is a flowchart of a manufacturing process of a conventional impregnated cathode.
10 乾式混合工程 11 プレス成形工程 12 カプセル封入工程 13 HIP処理工程 21 成形体 22 パイレックスガラス製容器 23 アルミナ粉末 24 真空にしたパイレックスガラス製容器 25 HIP処理炉 REFERENCE SIGNS LIST 10 Dry mixing step 11 Press forming step 12 Encapsulation step 13 HIP processing step 21 Molded body 22 Pyrex glass container 23 Alumina powder 24 Vacuumed Pyrex glass container 25 HIP processing furnace
Claims (3)
物質とを乾式混合する工程と、混合粉をプレス成形した
後、成形体をカプセル封入する工程と、カプセルを熱間
静水圧加圧処理して混合粉を焼結する工程からなる含浸
型陰極の製造方法において、前記電子放射物質として、
(m1BaO・m2CaO)・nBaAl2O4 [nは1以上の整数;
m1 ,m2 は0以上の整数;m1 +m2 ≧1]の形のバ
リウムアルミネート化合物を用いることを特徴とする含
浸型陰極の製造方法。At least a step of dry-mixing a high-melting-point heat-resistant metal powder and an electron-emitting substance, a step of press-molding a mixed powder, and encapsulating a molded body; In the method for producing an impregnated cathode comprising a step of sintering the mixed powder and, as the electron emitting material,
(M 1 BaO · m 2 CaO) · nBaAl 2 O 4 [n is an integer of 1 or more;
m 1 and m 2 are integers of 0 or more; m 1 + m 2 ≧ 1], wherein a barium aluminate compound is used.
温度が900℃以上,1400℃以下の温度であること
を特徴とする含浸型陰極の製造方法。2. A method for producing an impregnated cathode, wherein the treatment temperature of the hot isostatic pressure treatment according to claim 1 is a temperature of 900 ° C. or more and 1400 ° C. or less.
るバリウムアルミネート化合物の混合比が5.7wt%
を越え、13.8wt%以下であることを特徴とする含
浸型陰極の製造方法。3. The barium aluminate compound to be mixed with the high melting point heat-resistant metal powder according to claim 1 has a mixing ratio of 5.7% by weight.
, And not more than 13.8 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16867292A JP2625610B2 (en) | 1991-09-18 | 1992-06-26 | Manufacturing method of impregnated cathode |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23773691 | 1991-09-18 | ||
JP3-237736 | 1991-09-18 | ||
JP16867292A JP2625610B2 (en) | 1991-09-18 | 1992-06-26 | Manufacturing method of impregnated cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05198257A JPH05198257A (en) | 1993-08-06 |
JP2625610B2 true JP2625610B2 (en) | 1997-07-02 |
Family
ID=26492284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16867292A Expired - Lifetime JP2625610B2 (en) | 1991-09-18 | 1992-06-26 | Manufacturing method of impregnated cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2625610B2 (en) |
-
1992
- 1992-06-26 JP JP16867292A patent/JP2625610B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05198257A (en) | 1993-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2700000A (en) | Thermionic cathode and method of manufacturing same | |
JPS6191821A (en) | Manufacture of scandium dispensor cathode and dispensor cathode manufactured thereby | |
US4083811A (en) | Lanthanated thermionic cathodes | |
JP2635415B2 (en) | Manufacturing method of impregnated cathode | |
US5306189A (en) | Cathode impregnated by an electron emissive substance comprising (PBAO.QCAO).NBAA1204, where P>1, Q>0, N>1 | |
JP2625610B2 (en) | Manufacturing method of impregnated cathode | |
US3458749A (en) | Dispenser cathode made of tungsten powder having a grain size of less than three microns | |
GB2226694A (en) | Dispenser cathode and manufacturing method therefor | |
EP0525646B1 (en) | Preparation of cathode structures for impregnated cathodes | |
JPH01204329A (en) | Impregnated cathode and its manufacture | |
JPH0765694A (en) | Cathode for electron tube | |
JP2710700B2 (en) | Method for producing impregnated cathode and cathode obtained by this method | |
JP2004250725A (en) | Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode | |
JP2001006521A (en) | Cathode body structure and color picture tube | |
US2917415A (en) | Method of making thermionic dispenser cathode and cathode made by said method | |
US3653883A (en) | Method of fabricating a porous tungsten body for a dispenser cathode | |
JPH06168661A (en) | Manufacture of impregnation type cathode | |
KR920001333B1 (en) | Dispenser cathode | |
JP3205638B2 (en) | Manufacturing method of impregnated cathode | |
JPH0630214B2 (en) | Impregnated cathode and manufacturing method thereof | |
JPS62133632A (en) | Impregnated type cathode | |
JPH05250981A (en) | Impregnation type cathode and its manufacturing thereof | |
JPH07169383A (en) | Impregnated cathode and electron tube or electron beam applying apparatus using same | |
JPH05282994A (en) | Impregnation type cathode and manufacture thereof | |
KR910007795B1 (en) | Dispenser cathode and the method of making the same |