JPH06168661A - Manufacture of impregnation type cathode - Google Patents

Manufacture of impregnation type cathode

Info

Publication number
JPH06168661A
JPH06168661A JP3387893A JP3387893A JPH06168661A JP H06168661 A JPH06168661 A JP H06168661A JP 3387893 A JP3387893 A JP 3387893A JP 3387893 A JP3387893 A JP 3387893A JP H06168661 A JPH06168661 A JP H06168661A
Authority
JP
Japan
Prior art keywords
temperature
hip
powder
emitter
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3387893A
Other languages
Japanese (ja)
Inventor
Toshikazu Sugimura
俊和 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP3387893A priority Critical patent/JPH06168661A/en
Publication of JPH06168661A publication Critical patent/JPH06168661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an excellent electron emitting characteristic by mixing high melting point heat resistant metal powder and an emitter agent together in a dry system, sealing this in a capsule after press molding, putting an atmosphere under hydrogen, inactive gas, vacuum or the like when it is processed and sintered by a hot hydrostatic pressure pressurizing method, and specifying a temperature and time. CONSTITUTION:Barium carbonate, calcium carbonate and aluminum oxide being a raw material of an emitter agent are mixed together in a mole ratio of 4:1:1, and it is heated to 1100 deg.C in the atmosphere, and a barium aluminate compound is formed. Next, this emitter agent 10g and tungsten powder 100g are mixed together in a dry system, and rubber press molding is carried out, and a column shape is formed. Afterwards, an obtained compact 11 is housed in a Pyrex glass container 12, and alumina powder 13 is filled here, and the inside is put under vacuum. Afterwards, a glass container 14 obtained by sealing this is put in a processing furnace 15 for hot hydrostatic pressure pressurization, and is sintered for about ten minutes at a processing temperature 1400 deg.C to 1900 deg.C higher than a processing temperature of a pressurization method. In this way, violent reaction when it is made dense is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高放出電流密度が必要
なディスプレイ装置の受像管等の含浸型陰極の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an impregnated cathode such as a picture tube of a display device which requires a high emission current density.

【0002】[0002]

【従来の技術】含浸型陰極は、酸化物陰極の電子放射特
性をさらに向上させるために工夫されたものである。こ
の含浸型陰極は、現在ではタングステン(以下Wと記
す)多孔質の基体に電子放射物質(以下エミッタ剤と呼
ぶ)を含浸させた含浸補給型が主流となっており、例え
ばUSP4,165,473号やUSP3,358,1
78号等で詳しく紹介されている。
2. Description of the Related Art Impregnated cathodes are devised to further improve the electron emission characteristics of oxide cathodes. As the impregnated cathode, the impregnated replenishment type in which a tungsten (hereinafter referred to as W) porous substrate is impregnated with an electron emitting substance (hereinafter referred to as an emitter agent) is mainly used at present, and for example, USP 4,165,473. No. and USP 3,358,1
It is introduced in detail in No. 78 etc.

【0003】発明者は、近年この含浸補給型の改良型と
して熱間静水圧加圧(Hot Isostatic P
ressing,以下HIPという)法による粉末焼結
型の含浸型陰極の製造(特開平3−55739,USP
5,096,450号)を行っている。
In recent years, the inventor has proposed a hot isostatic press (Hot Isostatic P) as an improved version of this impregnation replenishment type.
Manufacturing of a powder-sintered impregnated cathode by a pressing method (hereinafter referred to as HIP) (JP-A-3-55539, USP).
No. 5,096,450).

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のHI
P法による粉末焼結型の含浸型陰極は、高融点耐熱金属
粉とエミッタ剤とを乾式混合してプレス成形した後、こ
の成形体をカプセル内に真空封入し、最後にカプセルを
HIP処理して、焼結することにより製造することを特
徴としている。
By the way, the above-mentioned HI
The powder-sintered impregnation type cathode by the P method is obtained by dry-mixing high melting point heat-resistant metal powder and an emitter material and press-molding, then vacuum-sealing this molded body, and finally HIP-treating the capsule. It is characterized by being manufactured by sintering.

【0005】この製造方法によれば、HIP法を用いる
ことにより、基体の焼結工程とエミッタ剤の含浸工程と
を同時に行える利点を有しているが、HIP処理温度の
設定を低くすると、基体金属粉同志の焼結による含浸型
陰極の母材の緻密化の進行が不十分なため基体金属とエ
ミッタ剤との密着性が低く、このため陰極作動中に基体
金属とエミッタ剤中のバリウム酸化物との熱分解反応の
進行が遅くなり、含浸型陰極の電子放射特性が悪いとい
う問題を有していた。
According to this manufacturing method, by using the HIP method, there is an advantage that the step of sintering the substrate and the step of impregnating the emitter agent can be performed at the same time. Due to insufficient progress of the densification of the base material of the impregnated cathode due to sintering of metal powders, the adhesion between the base metal and the emitter agent is low, which results in barium oxidation in the base metal and the emitter agent during operation of the cathode. There is a problem in that the progress of the thermal decomposition reaction with the substance is delayed and the electron emission characteristics of the impregnated cathode are poor.

【0006】逆にHIP処理温度の設定を高くすると、
含浸型陰極母材の緻密化が進行し、基体金属とエミッタ
剤との密着性が増加する。これにより良好な電子放射特
性を得ることができる。
On the contrary, when the HIP processing temperature is set high,
The densification of the impregnated cathode base material progresses, and the adhesion between the base metal and the emitter agent increases. As a result, good electron emission characteristics can be obtained.

【0007】しかし、HIP処理のみで、十分に含浸型
陰極母材の緻密化を行うには、長時間(例えば数時
間)、高温(例えば1500℃程度)、高圧雰囲気下に
さらす必要があり、このためこの緻密化の際にエミッタ
剤とW粉との反応が著しく生じ、エミッタ剤が過度に消
費されてしまい、初期特性は良好であるが、寿命が短く
なるという問題を有していた。
However, in order to sufficiently densify the impregnated-type cathode base material only by HIP treatment, it is necessary to expose it to a high-pressure atmosphere for a long time (for example, several hours) at a high temperature (for example, about 1500 ° C.). Therefore, during the densification, a reaction between the emitter agent and the W powder remarkably occurs, the emitter agent is excessively consumed, and the initial characteristics are good, but the life is shortened.

【0008】また、緻密化の進行による含浸型陰極母材
の強度の著しい増加により、HIP処理後のペレット化
への加工が困難になるという問題も有していた。
Further, there has been a problem that the strength of the impregnated-type cathode base material is remarkably increased due to the progress of densification, which makes it difficult to process into pellets after the HIP treatment.

【0009】[0009]

【課題を解決するための手段】そこで本発明の含浸型陰
極は、W粉とエミッタ剤とを乾式混合する工程、混合粉
をプレス成形した後、成形体をカプセル封入する工程、
カプセルをHIP処理して混合粉を焼結する工程からな
る含浸型陰極の製造方法において、800℃以上135
0℃以下のHIP処理温度でのHIP処理により混合粉
を焼結する工程と、Ir,Os−Ru,W−Sc23
などの金属被膜を形成する工程の間に、水素、不活性ガ
スまたは真空雰囲気中にてHIP処理温度より高い14
00℃以上1900℃以下の温度で加熱処理することを
特徴とする。
Therefore, in the impregnated cathode of the present invention, a step of dry-mixing W powder and an emitter agent, a step of press-molding the mixed powder, and then encapsulating the molded body,
In a method for manufacturing an impregnated cathode, which comprises a step of HIP-treating a capsule and sintering a mixed powder, a temperature of 800 ° C. or higher 135
A step of sintering the mixed powder by HIP treatment at a HIP treatment temperature of 0 ° C. or lower, and Ir, Os—Ru, W—Sc 2 O 3
14 above the HIP processing temperature in a hydrogen, inert gas or vacuum atmosphere during the process of forming a metal film such as
The heat treatment is performed at a temperature of 00 ° C. or higher and 1900 ° C. or lower.

【0010】[0010]

【作用】上記の構成によると、800℃以上1350℃
以下と云う比較的低温領域で短時間HIP処理して、混
合粉を焼結することにより、緻密化の進行の際のW粉と
エミッタ剤との著しい反応を妨げることができる。
[Function] According to the above configuration, 800 ° C. or higher and 1350 ° C.
By performing the HIP treatment for a short time in a relatively low temperature region described below and sintering the mixed powder, it is possible to prevent a significant reaction between the W powder and the emitter agent during the progress of densification.

【0011】このHIP処理後に、水素、不活性ガスま
たは真空雰囲気中、HIP処理温度より高い1400℃
以上1900℃以下の温度で短時間加熱するだけで、含
浸型陰極母材の緻密化が進行し,これと同時に基体金属
であるW粉とエミッタ剤との密着性が増加し、これによ
り良好な電子放射特性を得ることができる。
After the HIP treatment, the temperature is higher than the HIP treatment temperature of 1400 ° C. in hydrogen, an inert gas or a vacuum atmosphere.
Only by heating for a short time at a temperature of 1900 ° C. or lower, the impregnation type cathode base material is densified, and at the same time, the adhesion between the W powder, which is the base metal, and the emitter agent is increased. The electron emission characteristics can be obtained.

【0012】この際、従来技術のように、長時間、高
温、高圧雰囲気下でHIP処理して、含浸型陰極母材の
緻密化を行う方法に比べ、高温での短時間の加熱で含浸
型陰極の緻密化を行うため、エミッタ剤の消費を極力抑
えることができる。このため長寿命の含浸型陰極が得ら
れる。
At this time, as compared with the conventional method in which the impregnation type cathode base material is densified by HIPing in a high temperature and high pressure atmosphere for a long time, the impregnation type is heated at high temperature for a short time. Since the cathode is densified, the consumption of the emitter agent can be suppressed as much as possible. Therefore, a long-life impregnated cathode can be obtained.

【0013】また、HIP処理工程後は、比較的含浸型
陰極母材の緻密化が進行しておらず、このためカソード
のペレット化加工をHIP処理工程と、後の熱処理間に
実施すれば容易に行うことができる。
Further, after the HIP processing step, the densification of the impregnated-type cathode base material has not progressed comparatively, so that it is easy to perform the pelletizing process of the cathode between the HIP processing step and the subsequent heat treatment. Can be done.

【0014】その後,水素、不活性ガスまたは真空雰囲
気中での加熱処理を行うことにより、含浸型陰極の緻密
化が加熱処理以前より進行し、良好なエミッション特性
を備えた含浸型陰極ペレットが得られる。
After that, by performing heat treatment in hydrogen, an inert gas or a vacuum atmosphere, densification of the impregnated cathode progresses more than before the heat treatment, and an impregnated cathode pellet having good emission characteristics is obtained. To be

【0015】[0015]

【実施例】以下、本発明の第1実施例を図1から図5を
参照して説明する。図1は本発明の含浸型陰極の製造工
程の流れ図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a flow chart of the manufacturing process of the impregnated cathode of the present invention.

【0016】まずエミッタ剤の原料である炭酸バリウム
(BaCO3 )、炭酸カルシウム(CaCO3 )、酸化
アルミニウム(Al23 )をそれぞれ4:1:1のモ
ル比に調合した混合粉を、大気中1100℃に加熱し
て、バリウムアルミネート化合物に変換した。
First, a mixed powder prepared by mixing barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), and aluminum oxide (Al 2 O 3 ) which are raw materials of the emitter material in a molar ratio of 4: 1: 1, was prepared into the atmosphere. Converted to barium aluminate compound by heating in medium at 1100 ° C.

【0017】次に、バリウムアルミネート化合物に変換
したエミッタ剤10gとW粉末100gとを図1の工程
1で乾式混合し、続いて工程2で約2ton/cm2
圧力でラバープレス成形を行い、円柱状に成形する。な
お、エミッタ剤として、バリウムアルミネート化合物に
限らず、BaO,CaO,Al23 などの酸化物を所
定の割合でW粉末と混合してもよい。
Next, 10 g of the emitter agent converted into a barium aluminate compound and 100 g of W powder are dry-mixed in step 1 of FIG. 1, and subsequently, in step 2, rubber press molding is performed at a pressure of about 2 ton / cm 2. , To form a cylindrical shape. The emitter agent is not limited to the barium aluminate compound, and oxides such as BaO, CaO, and Al 2 O 3 may be mixed with the W powder in a predetermined ratio.

【0018】次に図2に示すように、この成形体11を
パイレックスガラス(登録商標)製容器12に収容した
後、パイレックスガラス(登録商標)製容器12内にA
23 13を充填し、かつ内部を真空にしてカプセル
封入工程3を終了する。
Next, as shown in FIG. 2, after the molded body 11 is accommodated in a Pyrex glass (registered trademark) container 12, A is placed in the Pyrex glass (registered trademark) container 12.
1 2 O 3 13 is filled and the inside is evacuated to complete the encapsulation step 3.

【0019】次に真空封入したパイレックスガラス(登
録商標)製容器14を図3に示すように、HIP処理炉
15内に収容し、図4に示した昇温、昇圧スケジュール
でHIP処理し、焼結体を得た。HIP処理条件は、1
000℃−10分−1500気圧下のアルゴンガス雰囲
気である。この工程がHIP処理工程4である。
Next, a vacuum sealed Pyrex glass (registered trademark) container 14 is housed in a HIP processing furnace 15 as shown in FIG. 3 and subjected to HIP processing according to the temperature rising / pressurization schedule shown in FIG. I got a union. HIP processing condition is 1
It is an argon gas atmosphere under 000 ° C.-10 minutes-1500 atm. This step is the HIP processing step 4.

【0020】さらにこの焼結体は、機械加工(ペレット
化)工程5で所定の形状に加工した。所定の形状に加工
した焼結体を水素気流中、図5に示した昇温スケジュー
ルで加熱処理を行った。加熱処理条件は1800℃−3
分、水素気流雰囲気である。この工程が加熱処理工程6
である。加熱処理工程の後、工程7としてペレットの表
面研磨処理、表面クリーニング処理を行い、最後に工程
8として、Ir膜を5000オングストロームの厚さで
ペレット表面にスパッタリングで成膜し、次の組立工程
9に送った。本発明のHIP処理温度と加熱処理温度の
種々の組合せに対する電子放射特性と寿命特性を従来技
術と比較して表1に示す。記号は特性が優れている順に
◎>○>△である。
Further, this sintered body was processed into a predetermined shape in a machining (pelletizing) step 5. The sintered body processed into a predetermined shape was subjected to a heat treatment in a hydrogen stream according to the temperature rising schedule shown in FIG. Heat treatment condition is 1800 ° C-3
Minutes, hydrogen atmosphere. This step is the heat treatment step 6
Is. After the heat treatment step, the pellet surface polishing treatment and the surface cleaning treatment are performed in step 7, and finally, in step 8, an Ir film is formed on the surface of the pellet by sputtering to a thickness of 5000 angstroms, and the next assembling step 9 is performed. Sent to. Table 1 shows electron emission characteristics and lifetime characteristics of various combinations of the HIP processing temperature and the heat processing temperature of the present invention in comparison with the prior art. The symbols are ◎>○> △ in the order of excellent characteristics.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、HIP処理条件の範囲であるが、H
IP処理温度が800℃未満では、後の機械加工工程に
おいて所定形状に加工するための強度を有していないた
め良くなく、また、1350℃を超えると、焼結中にW
とエミッタ剤の反応が著しく進行し、エミッタ剤が過度
に消費されるから良くない。このためHIP処理条件の
範囲は800℃以上1350℃以下にする必要がある。
中でも好ましいHIP処理温度の範囲は、900℃以上
1100℃以下である。
Although it is within the range of HIP processing conditions,
If the IP treatment temperature is less than 800 ° C, it is not good because it does not have the strength for processing into a predetermined shape in the subsequent machining step, and if it exceeds 1350 ° C, the W during sintering is increased.
And the reaction of the emitter agent proceeds remarkably, and the emitter agent is excessively consumed, which is not good. Therefore, the range of HIP processing conditions needs to be 800 ° C. or higher and 1350 ° C. or lower.
Above all, the preferable range of the HIP treatment temperature is 900 ° C. or higher and 1100 ° C. or lower.

【0023】次に、HIP処理後の加熱処理条件の範囲
であるが、加熱処理温度が1400℃未満では、含浸型
陰極母材の緻密化が不十分であり、また1900℃を超
えると、Wとエミッタ剤との反応が著しく進行し、エミ
ッタ剤が過度に消費されるから良くない。従って加熱処
理温度の範囲は1400℃以上1900℃以下が良好
で、特に1550℃以上1800℃以下が適する。
Next, within the range of heat treatment conditions after the HIP treatment, if the heat treatment temperature is less than 1400 ° C., the impregnation type cathode base material is insufficiently densified, and if it exceeds 1900 ° C., W Is not good because the reaction with the emitter agent proceeds remarkably and the emitter agent is excessively consumed. Therefore, the range of the heat treatment temperature is preferably 1400 ° C or higher and 1900 ° C or lower, and particularly preferably 1550 ° C or higher and 1800 ° C or lower.

【0024】この加熱処理する雰囲気は、水素、アルゴ
ンなどの不活性ガス中、または真空中において有効であ
るが、この中でも高温に加熱した際にエミッタ剤の劣化
が生じにくい水素雰囲気が最も好ましい。
The atmosphere for this heat treatment is effective in an inert gas such as hydrogen or argon, or in a vacuum, but of these, a hydrogen atmosphere in which deterioration of the emitter agent does not easily occur when heated to a high temperature is most preferable.

【0025】なお、工程8ではIr膜を形成したが、O
s−Ru,W−Sc23 などの金属被膜を形成しても
よい。
Although the Ir film was formed in step 8,
s-Ru, may be formed a metal film such as W-Sc 2 O 3.

【0026】[0026]

【発明の効果】以上述べた様に、800℃以上1350
℃以下のHIP処理温度でのHIP処理により混合粉を
焼結する工程と、Ir,Os−Ru,W−Sc23
どの金属被膜を行う工程の間に、水素、不活性ガス、ま
たは真空雰囲気中、HIP処理温度より高い1400℃
以上1900℃以下の温度で加熱することにより、Wと
エミッタ剤が著しく反応してエミッタ剤を過度に消費す
る事無く含浸型陰極母材の緻密化が進行し、基体金属で
あるW粉とエミッタ剤との密着性が増加し、これにより
初期特性が良好で、かつ長寿命な電子放射特性を有する
含浸型陰極を得ることが出来る。
As described above, 800 ° C. or more and 1350 or more
℃ and a step of sintering the mixed powder by HIP treatment following the HIP treatment temperature, Ir, Os-Ru, during the step of performing a metal film such as W-Sc 2 O 3, hydrogen, inert gases or, 1400 ° C, which is higher than the HIP processing temperature in a vacuum atmosphere
By heating at a temperature of 1900 ° C. or less, W and the emitter agent react significantly, the densification of the impregnated cathode base material proceeds without excessively consuming the emitter agent, and the W powder as the base metal and the emitter Adhesion with the agent is increased, which makes it possible to obtain an impregnated cathode having good initial characteristics and long-life electron emission characteristics.

【0027】また、上記処理温度のHIP処理工程後
は、比較的含浸型陰極の母材の緻密化が進行しておら
ず、このためカソードのペレット化加工を容易に行うこ
とができる。
Further, after the HIP processing step at the above processing temperature, the densification of the base material of the impregnated type cathode has not progressed relatively, so that the pelletizing process of the cathode can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る含浸型陰極の製造工程の流れ
図。
FIG. 1 is a flow chart of a manufacturing process of an impregnated cathode according to the present invention.

【図2】 本発明のカプセル封入工程を説明するための
断面図。
FIG. 2 is a sectional view for explaining the encapsulation process of the present invention.

【図3】 本発明のHIP処理工程を説明するための断
面図。
FIG. 3 is a sectional view for explaining a HIP processing step of the present invention.

【図4】 本発明のHIP処理条件の一例を示すプログ
ラム。
FIG. 4 is a program showing an example of HIP processing conditions of the present invention.

【図5】 本発明の加熱処理条件の一例を示すプログラ
ム。
FIG. 5 is a program showing an example of heat treatment conditions of the present invention.

【符号の説明】[Explanation of symbols]

1 乾式混合工程 2 プレス成形工程 3 カプセル封入工程 4 HIP処理工程 5 機械加工工程 6 加熱処理工程 8 Irスパッタ膜形成工程 11 成形体 12 パイレックスガラス製容器 13 アルミナ粉末 14 真空にしたパイレックスガラス製容器 15 HIP処理炉 1 Dry Mixing Process 2 Press Molding Process 3 Encapsulation Process 4 HIP Treatment Process 5 Machining Process 6 Heat Treatment Process 8 Ir Sputter Film Forming Process 11 Molded Body 12 Pyrex Glass Container 13 Alumina Powder 14 Vacuum Pyrex Glass Container 15 HIP processing furnace

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】W粉とBaの化合物を含む電子放射物質と
を乾式混合する工程、混合粉をプレス成形し、成形体を
カプセルに封入する工程、カプセルをHIP処理により
混合粉を焼結する工程を含む含浸型陰極の製造方法にお
いて、 HIP処理により混合粉を焼結する工程の後に、HIP
処理温度より高い温度で加熱処理する工程を有すること
を特徴とする含浸型陰極の製造方法。
1. A step of dry-mixing W powder and an electron emitting substance containing a compound of Ba, a step of press-molding the mixed powder and encapsulating a molded body, and sintering the mixed powder by HIP treatment of the capsule. In a method for manufacturing an impregnated cathode including a step, after the step of sintering the mixed powder by HIP treatment,
A method for manufacturing an impregnated cathode, comprising a step of performing heat treatment at a temperature higher than the treatment temperature.
【請求項2】加熱処理する雰囲気が、水素、または不活
性ガス、または真空であることを特徴とする請求項1記
載の含浸型陰極の製造方法。
2. The method for producing an impregnated cathode according to claim 1, wherein the atmosphere for the heat treatment is hydrogen, an inert gas, or a vacuum.
【請求項3】HIP処理温度が800℃以上1350℃
以下であり、HIP処理後の加熱処理温度が1400℃
以上1900℃以下であることを特徴とする請求項1記
載の含浸型陰極の製造方法。
3. The HIP processing temperature is 800 ° C. or higher and 1350 ° C.
The heat treatment temperature after the HIP treatment is 1400 ° C.
The method for producing an impregnated cathode according to claim 1, wherein the temperature is 1900 ° C. or lower.
【請求項4】加熱処理する工程がIr,Os−Ru,W
−Sc23 などの金属被膜を形成する工程より前であ
ることを特徴とする請求項1記載の含浸型陰極の製造方
法。
4. The step of heat treatment is Ir, Os-Ru, W.
Method for producing impregnated cathode according to claim 1, characterized in that before the step of forming a metal film such as -sc 2 O 3.
JP3387893A 1992-09-29 1993-02-24 Manufacture of impregnation type cathode Pending JPH06168661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3387893A JPH06168661A (en) 1992-09-29 1993-02-24 Manufacture of impregnation type cathode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25951592 1992-09-29
JP4-259515 1992-09-29
JP3387893A JPH06168661A (en) 1992-09-29 1993-02-24 Manufacture of impregnation type cathode

Publications (1)

Publication Number Publication Date
JPH06168661A true JPH06168661A (en) 1994-06-14

Family

ID=26372658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3387893A Pending JPH06168661A (en) 1992-09-29 1993-02-24 Manufacture of impregnation type cathode

Country Status (1)

Country Link
JP (1) JPH06168661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637567A (en) * 2012-03-30 2012-08-15 安徽华东光电技术研究所 Cathode salt, preparation method of cathode salt, barium tungsten cathode comprising cathode salt and preparation method of barium tungsten cathode
CN106041069A (en) * 2016-05-27 2016-10-26 北京工业大学 Preparation method of pressing type scandium containing dispenser cathode based on microwave sintering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637567A (en) * 2012-03-30 2012-08-15 安徽华东光电技术研究所 Cathode salt, preparation method of cathode salt, barium tungsten cathode comprising cathode salt and preparation method of barium tungsten cathode
CN106041069A (en) * 2016-05-27 2016-10-26 北京工业大学 Preparation method of pressing type scandium containing dispenser cathode based on microwave sintering
CN106041069B (en) * 2016-05-27 2018-06-12 北京工业大学 A kind of compacting scandium containing dispenser cathode preparation method based on microwave sintering

Similar Documents

Publication Publication Date Title
JPH0558207B2 (en)
JP2635415B2 (en) Manufacturing method of impregnated cathode
KR100189035B1 (en) Scandate cathode and method of making it
EP0390269B1 (en) Scandate cathode
EP0525646B1 (en) Preparation of cathode structures for impregnated cathodes
JPH06168661A (en) Manufacture of impregnation type cathode
US5306189A (en) Cathode impregnated by an electron emissive substance comprising (PBAO.QCAO).NBAA1204, where P>1, Q>0, N>1
GB2226694A (en) Dispenser cathode and manufacturing method therefor
JPH0765694A (en) Cathode for electron tube
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
JP2001006521A (en) Cathode body structure and color picture tube
JP2625610B2 (en) Manufacturing method of impregnated cathode
KR920001333B1 (en) Dispenser cathode
JP3402191B2 (en) Method of manufacturing cathode for discharge lamp
JPH07169383A (en) Impregnated cathode and electron tube or electron beam applying apparatus using same
JPH05250981A (en) Impregnation type cathode and its manufacturing thereof
JPH05282994A (en) Impregnation type cathode and manufacture thereof
JPH05314895A (en) Manufacture of oxide impregnated cathode
EP0248470B1 (en) Method of manufacturing a dispenser cathode
KR920004896B1 (en) Impregnated type cathode and manufacturing method the same
KR100228170B1 (en) Method for manufacturing cathode of cathode ray tube
JP2003173732A (en) Manufacturing method of electron cathode tube
JPH04126333A (en) Manufacture of immersion type cathode
JPH06196089A (en) Impregnated type cathode pellet and it manufacture
JPS5839796B2 (en) Method for producing electron radioactive material for impregnated cathode