JPH1194647A - Measuring method and device for temperature of high-temperature steel - Google Patents

Measuring method and device for temperature of high-temperature steel

Info

Publication number
JPH1194647A
JPH1194647A JP27335897A JP27335897A JPH1194647A JP H1194647 A JPH1194647 A JP H1194647A JP 27335897 A JP27335897 A JP 27335897A JP 27335897 A JP27335897 A JP 27335897A JP H1194647 A JPH1194647 A JP H1194647A
Authority
JP
Japan
Prior art keywords
temperature
cooling
cooling water
steel material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27335897A
Other languages
Japanese (ja)
Inventor
Satoshi Kamioka
悟史 上岡
Hiroshi Kibe
洋 木部
Teruo Fujibayashi
晃夫 藤林
Masato Uchio
政人 内尾
Kazuya Fukuoka
和也 福岡
Takayuki Nakanishi
孝之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27335897A priority Critical patent/JPH1194647A/en
Publication of JPH1194647A publication Critical patent/JPH1194647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the mean temperature of a high-temperature steel,even if the surface temperature of the steel plate immediately after cooling greatly differs from the true temperature of the steel or if cooling water or water vapor remains on the steel, and to reduce the facility cost. SOLUTION: Steel plate temperature and cooling water temperature are measured prior to insertion of a steel plate 1 into a cooling device. During cooling, changes in cooling water temperature with time are measured by thermometers 11, 12 for cooling, and the cooling water flow rate is measured, so that the radiation quantity of the steel plate 1 is measured from the temperatures of the cooling water before and after cooling and the cooling water flow rate. From the radiation quantity and the temperature of the steel plate 1 before cooling, the temperature of the steel plate 1 during or after cooling is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高温鋼材の温度計測
方法および装置に関するもので、特に冷却中の鋼材温度
を計測する方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the temperature of a high-temperature steel material, and more particularly to a method and an apparatus for measuring the temperature of a steel material during cooling.

【0002】[0002]

【従来の技術】一般的に、熱間圧延された高温鋼板は、
仕上げ圧延機を出た直後に冷却装置を通過することによ
って冷却される。熱延鋼板や厚鋼板などの冷却装置は、
上面と下面とに分かれた複数のバンクにより構成されて
おり、上面ではスリットラミナー又はスプレー、下面で
はジェットやスプレーなどによる冷却が行われている。
2. Description of the Related Art Generally, hot-rolled high-temperature steel sheets are:
It is cooled by passing through a cooling device immediately after leaving the finishing mill. Cooling equipment for hot rolled steel plates and steel plates
It is composed of a plurality of banks divided into an upper surface and a lower surface, and the upper surface is cooled by slit laminar or spray, and the lower surface is cooled by jet or spray.

【0003】このとき、冷却中および冷却後の鋼板温度
を計測することができれば、鋼板の冷却速度および冷却
停止温度を予測して通板速度、冷却水量に対してフィー
ドバック制御を行うことにより、材質のバラツキを少な
くし、かつ歩留りを高くすることが可能である。また、
冷却中の高温鋼板の上面および下面の温度を一致させる
ことにより、鋼板の上下面の温度差に起因するいわゆる
C反りの発生を減少させることができる。
[0003] At this time, if the steel sheet temperature during and after cooling can be measured, the cooling speed and the cooling stop temperature of the steel sheet are predicted, and the sheet passing speed and the cooling water amount are subjected to feedback control. Can be reduced and the yield can be increased. Also,
By making the temperatures of the upper surface and the lower surface of the high-temperature steel sheet coincide with each other during cooling, it is possible to reduce the occurrence of so-called C warpage caused by the temperature difference between the upper and lower surfaces of the steel sheet.

【0004】形鋼に関しては圧延機および冷却装置の構
成が異なっているものの、冷却中および冷却後の鋼材温
度を計測することができれば、熱延鋼板や厚鋼板と同様
に通板速度および冷却水量に対してフィードバック制御
を行うことができ、材質のバラツキを少なくし、歩留り
を高くし、さらに歪の発生を押さえることができる。
[0004] Although the configuration of the rolling mill and the cooling device are different for the section steel, if the temperature of the steel material during and after cooling can be measured, the passing speed and the amount of cooling water are the same as for the hot rolled steel plate and the thick steel plate. , It is possible to reduce the variation in material, increase the yield, and suppress the occurrence of distortion.

【0005】従来から、高温鋼材温度は表面温度計によ
り計測されているが、鋼材と表面温度計との間に冷却水
や水蒸気などが介在すると、放射エネルギーが吸収され
て真温度を得ることができない。そこで、鋼材と表面温
度計との間に介在する冷却水や水蒸気を除去するために
様々な工夫がなされている。また、冷却水や水蒸気のな
い場所で鋼材の温度を測定することも行われている。
Conventionally, the temperature of a high-temperature steel material has been measured by a surface thermometer. However, if cooling water or water vapor is interposed between the steel material and the surface thermometer, the radiant energy is absorbed and the true temperature can be obtained. Can not. Therefore, various devices have been devised to remove cooling water and water vapor interposed between the steel material and the surface thermometer. Further, the temperature of a steel material is measured in a place where there is no cooling water or steam.

【0006】すなわち、これまでは、冷却帯の中に冷却
を行わない非冷却帯を設けて復熱後の鋼材温度を計測す
る方法、あるいは冷却後数秒から数十秒後の復熱温度を
計測する方法が行われていた。また、特公平2−163
73号公報に示されているように冷却水および水蒸気を
高圧ガスにより排除して表面温度計により鋼板の表面温
度を計測する方法が採用されていた。
In the past, a method of measuring a steel material temperature after reheating by providing a non-cooling zone in which no cooling is performed in a cooling zone, or measuring a reheating temperature several seconds to several tens of seconds after cooling. The way to be done. In addition, 2-163
As disclosed in Japanese Patent No. 73, a method of measuring the surface temperature of a steel sheet with a surface thermometer while removing cooling water and water vapor with a high-pressure gas has been adopted.

【0007】[0007]

【発明が解決しようとする課題】しかし、冷却装置の間
に非冷却帯を設け表面温度計により計測する方法では、
この非冷却領域で鋼材が急激に復熱するため過渡的な表
面温度を測定することができるのみであり、測定温度か
ら鋼材の真温度(平均温度)を予測することが困難であ
るという問題点があった。また、非冷却帯を設けること
で鋼材の冷却速度の低下を招いていた。
However, in a method of providing a non-cooling zone between cooling devices and measuring with a surface thermometer,
Since the steel material rapidly recovers heat in this uncooled region, only the transient surface temperature can be measured, and it is difficult to predict the true temperature (average temperature) of the steel material from the measured temperature. was there. In addition, the provision of the non-cooling zone causes a decrease in the cooling rate of the steel material.

【0008】冷却後数秒から数十秒後の復熱温度を計測
する方法は、冷却装置の後面に表面温度計を設置し、冷
却が終わって復熱が行われた後の温度を測定しようとす
るものである。しかし、実際に復熱が完了する時間は、
鋼材厚や冷却条件によって異なっており、鋼材が表面温
度計の設置位置を通過するときには、復熱の途中であっ
たり復熱が完了して鋼材の温度が低下する途中であった
りする。よって、この方法においても、鋼板表面温度か
ら鋼材の真温度(平均温度)を予測することは困難であっ
た。
A method of measuring the reheating temperature several seconds to several tens of seconds after cooling is to install a surface thermometer on the rear surface of the cooling device, and measure the temperature after cooling is completed and reheating is performed. Is what you do. However, the time to actually complete recuperation is
It differs depending on the thickness of the steel material and the cooling conditions. When the steel material passes through the installation position of the surface thermometer, the steel material may be in the middle of recuperation or in the middle of the completion of the recuperation and the temperature of the steel material may be decreasing. Therefore, even in this method, it was difficult to predict the true temperature (average temperature) of the steel material from the steel sheet surface temperature.

【0009】また、これらの方法においては、鋼材の冷
却中の温度履歴が不明であり、冷却過不足の判断が遅れ
るため、フィードバックによる鋼材の温度制御が困難と
なるという問題点もあった。
Further, in these methods, there is also a problem that the temperature history during cooling of the steel material is unknown, and it is difficult to control the temperature of the steel material by feedback because the determination of the excess or deficiency of the cooling is delayed.

【0010】冷却水および水蒸気を高圧ガスにより排除
して表面温度計で計測する方法では、大量の冷却水が存
在する場合には排除が困難となり、たとえ排除できたと
しても鋼材の表面温度を正確に測定するのは困難であっ
た。また、冷却中に計測可能である鋼材の表面温度は、
操業上の管理項目であり品質管理上意味を持つ鋼材の平
均温度と比較して低い値となっている。そのため、冷却
速度および冷却停止温度に関する情報を直接得ることが
できなかった。さらに、冷却装置が複数バンクある場
合、各冷却バンクにおける鋼材温度を計測するためには
高価な表面温度計を多数設置する必要があり、設備コス
トの増大を招いていた。
In the method in which cooling water and water vapor are removed by a high-pressure gas and measured by a surface thermometer, it is difficult to remove the cooling water when a large amount of cooling water is present. Was difficult to measure. The surface temperature of steel that can be measured during cooling is
It is a lower value than the average temperature of steel material, which is a management item in operation and has a meaning in quality control. Therefore, information on the cooling rate and the cooling stop temperature cannot be obtained directly. Further, when there are a plurality of cooling devices, it is necessary to install a large number of expensive surface thermometers in order to measure the temperature of the steel material in each cooling bank, resulting in an increase in equipment costs.

【0011】このように、従来技術においては、冷却中
の鋼材の平均温度の計測は困難であった。
As described above, in the prior art, it was difficult to measure the average temperature of the steel material during cooling.

【0012】本発明は、このような問題点を解決するた
めになされたもので、高温鋼材を冷却水により冷却する
に際し、特に厚鋼板の冷却のように冷却直後の表面温度
と鋼材の真温度(鋼板中心温度や平均温度)とが大きくか
け離れている場合においても、さらに鋼材上に冷却水や
水蒸気が滞在している場合においても、高温鋼材の平均
温度を正確に計測でき、しかも設備費が安価である高温
鋼材の温度計測方法および装置を提供することを課題と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. In cooling a high-temperature steel material with cooling water, particularly, the surface temperature immediately after cooling such as the cooling of a thick steel plate and the true temperature of the steel material. The average temperature of high-temperature steel can be measured accurately, even when the temperature is significantly different from (steel center temperature or average temperature), and even when cooling water or steam stays on the steel. An object of the present invention is to provide an inexpensive high-temperature steel material temperature measuring method and apparatus.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、高温鋼材の温度計測方法において、鋼
材に流体を噴射し、流体を噴射する前の鋼材温度と、鋼
材に噴射した流体の流量と温度変化から、鋼材の温度を
求めることを特徴とする高温鋼材の温度計測方法(請求
項1)である。
According to a first aspect of the present invention, there is provided a method for measuring the temperature of a high-temperature steel material, comprising: injecting a fluid into the steel material; A method for measuring a temperature of a high-temperature steel material, wherein a temperature of the steel material is obtained from a flow rate of the fluid and a change in temperature.

【0014】鋼材に噴射した流体の流量と温度変化を計
測すれば、鋼材から流体に移った熱量を測定することが
できる。そして、この熱量と、流体を噴射する前の鋼材
温度から、鋼材の温度(平均温度)を求めることができ
る。
By measuring the flow rate and temperature change of the fluid injected into the steel material, the amount of heat transferred from the steel material to the fluid can be measured. Then, the temperature (average temperature) of the steel material can be obtained from the calorific value and the steel material temperature before the fluid is injected.

【0015】前記課題を解決するための第2の手段は、
冷却装置に搬送される前の高温鋼材の温度を計測する工
程と、冷却装置に供給する前の冷却水温度と鋼材を冷却
した後の冷却水温度を計測して冷却水の温度上昇を求め
る工程と、冷却水の流量を求める工程を有し、前記冷却
水の流量と温度上昇から鋼材の抜熱量を求めて、この抜
熱量と冷却装置に搬送される前の高温鋼材の温度から鋼
材温度を算出することにより、冷却中または冷却後の高
温鋼材の平均温度を求めることを特徴とする高温鋼材の
温度計測方法であって、高温鋼材の測温中の冷却水の温
度が80℃以下であり、高温鋼材の冷却開始時の温度が
1000℃以下である高温鋼材の温度計測方法(請求項
2)である。
[0015] A second means for solving the above-mentioned problems is as follows.
A step of measuring the temperature of the high-temperature steel material before being conveyed to the cooling device, and a step of measuring the temperature of the cooling water before being supplied to the cooling device and the temperature of the cooling water after cooling the steel material to obtain a rise in the temperature of the cooling water And the step of determining the flow rate of the cooling water, determining the heat removal amount of the steel material from the flow rate of the cooling water and the temperature rise, and calculating the steel material temperature from the heat removal amount and the temperature of the high-temperature steel material before being conveyed to the cooling device. A method for measuring the temperature of a high-temperature steel material, comprising calculating an average temperature of the high-temperature steel material during or after cooling, wherein the temperature of the cooling water during the temperature measurement of the high-temperature steel material is 80 ° C or less. A method for measuring the temperature of a high-temperature steel material, wherein the temperature at the start of cooling of the high-temperature steel material is 1000 ° C. or less (Claim 2).

【0016】冷却水の流量と温度上昇を求めれば、鋼材
から流体に移った熱量を求めることができる。そして、
この熱量と、冷却装置に搬送される前の高温鋼材の温度
から、鋼材の温度(平均温度)を求めることができる。
If the flow rate and temperature rise of the cooling water are determined, the amount of heat transferred from the steel material to the fluid can be determined. And
The temperature (average temperature) of the steel material can be determined from the heat quantity and the temperature of the high-temperature steel material before being conveyed to the cooling device.

【0017】この際、高温鋼材の測温中の冷却水の温度
が80℃を超えると、多量の蒸気が発生し、蒸発熱の影
響により本方法での温度測定精度が悪化するので、本方
法の適用範囲を、高温鋼材の測温中の冷却水の温度が8
0℃以下である場合に限定する。また、高温鋼材の冷却
開始時の温度が1000℃を超える場合にも同様の問題
が発生するので、本方法の適用範囲を、高温鋼材の冷却
開始時の温度が1000℃以下である場合に限定する。
At this time, if the temperature of the cooling water during the temperature measurement of the high-temperature steel material exceeds 80 ° C., a large amount of steam is generated, and the accuracy of the temperature measurement by the present method deteriorates due to the influence of the heat of evaporation. The application range of the cooling water during the temperature measurement of high-temperature steel
It is limited to the case where the temperature is 0 ° C. or lower. In addition, since the same problem occurs when the temperature at the start of cooling the high-temperature steel exceeds 1000 ° C., the applicable range of the present method is limited to the case where the temperature at the start of cooling the high-temperature steel is 1000 ° C. or lower. I do.

【0018】前記課題を解決するための第3の手段は、
高温鋼材をオンラインで冷却する際に高温鋼材の温度を
計測する装置であって、冷却する前の鋼材の温度を計測
する手段と、冷却中の冷却水流量を計測する手段と、冷
却前の冷却水温度を計測する手段と、冷却後の冷却水温
度を計測する手段と、前記冷却中の冷却水流量、冷却前
の冷却水温度および冷却後の冷却水温度から鋼材より奪
われた熱量を計算する演算手段と、冷却前の鋼材温度と
鋼材から奪われた熱量から、冷却中または冷却後の鋼材
の温度を求める演算手段とを有してなることを特徴とす
る高温鋼材の温度計測装置(請求項3)である。
A third means for solving the above-mentioned problem is as follows.
A device for measuring the temperature of a high-temperature steel material when cooling the high-temperature steel material online, means for measuring the temperature of the steel material before cooling, means for measuring the flow rate of cooling water during cooling, and cooling before cooling. Means for measuring the water temperature, means for measuring the cooling water temperature after cooling, and calculating the amount of heat deprived from the steel material from the cooling water flow rate during cooling, the cooling water temperature before cooling and the cooling water temperature after cooling. A temperature measuring device for a high-temperature steel material, comprising: calculating means for calculating the temperature of the steel material during or after cooling from the temperature of the steel material before cooling and the amount of heat taken from the steel material. Claim 3).

【0019】この装置によれば、請求項2に記載した発
明を実施することができるので、冷却後あるいは冷却中
の鋼材の温度(平均温度)を正確に求めることができ
る。なお、各演算手段としてはマイクロコンピュータを
用いればよく、具体的な演算式としては、例えば後に発
明の実施の形態や実施例の欄で説明するような演算式を
用いればよい。温度計測手段、流量計測手段としては、
公知のものを適宜選択して使用できる。
According to this apparatus, since the invention described in claim 2 can be carried out, the temperature (average temperature) of the steel material after or during cooling can be accurately obtained. It is to be noted that a microcomputer may be used as each calculation means, and a specific calculation expression may be, for example, a calculation expression which will be described later in the embodiments and examples of the invention. As temperature measurement means and flow rate measurement means,
Known ones can be appropriately selected and used.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を、図
を参照しながら説明する。図1は、この発明を厚鋼板の
冷却装置に適応した実施の形態の例を示す概略図であ
る。図1に示すように、高温鋼板1を挟んでその上下に
1対の拘束ロール2、3が1000mmピッチで10組み設けら
れ、拘束ロール2、3の各組相互間が冷却バンクになっ
ている。鋼板上面は上面スリットノズル4により、鋼板
下面は下面導管付き円管ラミナーノズル5により冷却さ
れる。冷却装置入側に設けられた入側表面温度計6によ
り高温鋼板1の鋼板表面温度を計測しておき、表面温度
から高温鋼板1の平均温度を求めておく。また、冷却水
の平均温度もあらかじめ計測しておく。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of an embodiment in which the present invention is applied to a cooling device for a thick steel plate. As shown in FIG. 1, ten pairs of restraining rolls 2, 3 are provided above and below the high-temperature steel plate 1 at a pitch of 1000 mm, and a cooling bank is provided between each pair of restraining rolls 2, 3. . The steel plate upper surface is cooled by the upper surface slit nozzle 4 and the steel plate lower surface is cooled by the circular tube laminar nozzle 5 with the lower surface conduit. The steel sheet surface temperature of the high-temperature steel sheet 1 is measured by an entrance-side surface thermometer 6 provided on the cooling-device entrance side, and the average temperature of the high-temperature steel sheet 1 is determined from the surface temperature. The average temperature of the cooling water is also measured in advance.

【0021】冷却装置の詳細を図2に示す。拘束ロール
2、3の各組相互間の鋼板上面側には、鋼板搬送方向の
上流側ロールから下流側ロールに向けた上面スリットノ
ズル4が設けられており、鋼板下面側には冷却水が収容
された下面タンク8が配置されている。下部冷却ノズル
として下面タンク8の水中に、板幅方向に100mmピッチ
で、鋼板搬送方向に5列設けられた円管ノズル9と、円
管の各々の上部に鋼板の下面に向けて設けられていた導
管10とからなる下面導管付き円管ラミナーノズル5が
設置されている。このような冷却装置内を連続的に移送
される高温鋼板1に対し、鋼板上面側に設けられた上面
スリットノズル4から所定量の冷却水を噴射することに
より鋼板上面を冷却し、鋼板下面側に設けられた下面導
管付き円管ラミナーノズル5から水を噴射することによ
り、その随伴流で生じた液流によって下面を冷却してい
る。下面では冷却水は下面タンク8に戻り再び随伴され
る。
FIG. 2 shows details of the cooling device. An upper surface slit nozzle 4 is provided on the upper surface side of the steel sheet between each pair of the constraint rolls 2 and 3 from the upstream roll to the downstream roll in the steel sheet transport direction, and cooling water is stored on the lower surface side of the steel plate. Bottom tank 8 is arranged. As a lower cooling nozzle, five rows of circular pipe nozzles 9 are provided in the water in the lower tank 8 at a pitch of 100 mm in the width direction of the steel sheet in the conveying direction of the steel sheet, and are provided above each circular pipe toward the lower surface of the steel sheet. A tube laminar nozzle 5 with a lower surface conduit comprising a conduit 10 is provided. The upper surface of the steel plate is cooled by injecting a predetermined amount of cooling water from an upper surface slit nozzle 4 provided on the upper surface side of the steel plate to the high temperature steel plate 1 continuously transferred in such a cooling device, and By jetting water from a circular tube laminar nozzle 5 with a lower surface conduit provided at the lower surface, the lower surface is cooled by a liquid flow generated by the accompanying flow. On the lower surface, the cooling water returns to the lower surface tank 8 and is accompanied again.

【0022】上部および下部ノズルから噴射された冷却
水は鋼板と冷却水の間で熱交換され、鋼板が失った熱量
分だけ冷却水温度が上昇する。そこで、図2に示すよう
に上面側では上面スリットノズル4の下流側に1または
複数の温度計11を上面冷却水中に水没する位置に設置
することにより、下面側では冷却水が収容される下面タ
ンク8中に1または複数の温度計12を設置することに
より、あらかじめ計測された冷却水の初期温度から上昇
した冷却水温度を求める。
The cooling water injected from the upper and lower nozzles exchanges heat between the steel plate and the cooling water, and the cooling water temperature rises by the amount of heat lost by the steel plate. Therefore, as shown in FIG. 2, one or a plurality of thermometers 11 are disposed downstream of the upper surface slit nozzle 4 on the upper surface side so as to be submerged in the upper surface cooling water, and the lower surface side on which the cooling water is stored is provided on the lower surface side. By installing one or more thermometers 12 in the tank 8, the temperature of the cooling water that has risen from the previously measured initial temperature of the cooling water is determined.

【0023】ここで、冷却水が鋼板と熱交換した熱量は
上面および下面のそれぞれにおいて Qupper=ρw・Cw・W1・w・L・τ・ΔTw1 … (1) Qlower=ρw・Cw・W2・w・L・τ・ΔTw2 … (2) ここに、 Qupper:上面からの抜熱量 [J] Qlower:下面からの抜熱量 [J] ρw:冷却水密度 [kg/m3] Cw:冷却水比熱 [J/kgK] W1:上面冷却水水量密度 [m3/m2sec] W2:下面冷却水水量密度 [m3/m2sec] w:鋼板の板幅 [m] L:冷却バンク長 [m] τ:冷却時間 [sec] ΔTw1:上面冷却水温度上昇 [K] ΔTw2:下面冷却水温度上昇 [K]
Here, the amount of heat exchanged between the cooling water and the steel plate is Qupper = ρw · Cw · W1 · w · L · τ · ΔTw1 (1) Qlower = ρw · Cw · W2 · w・ L ・ τ ・ ΔTw2 ... (2) where, Qupper: Heat removal from upper surface [J] Qlower: Heat removal from lower surface [J] ρw: Cooling water density [kg / m 3 ] Cw: Cooling water specific heat [ J / kgK] W1: Upper surface cooling water volume density [m 3 / m 2 sec] W2: Lower surface cooling water volume density [m 3 / m 2 sec] w: Steel plate width [m] L: Cooling bank length [m ] τ: Cooling time [sec] ΔTw1: Upper surface cooling water temperature rise [K] ΔTw2: Lower surface cooling water temperature rise [K]

【0024】また、鋼板からの抜熱量は Qout=ρs・Cs・ΔTs・w・L・d … (3) ここに、 Qout:鋼板からの抜熱量 [J] ρs:鋼板の密度 [kg/m3] Cs:鋼板の比熱 [J/kgK] ΔTs:鋼板の温度低下量(=Ts−Ts’) [K] d:板厚 [m] となり、式(1)、(2)、(3)の釣り合い関係は以下の式の
ようによる。 Qout=Qupper+Qlower … (4)
The amount of heat removed from the steel sheet is as follows: Qout = ρs · Cs · ΔTs · w · L · d (3) where, Qout: heat removal amount from the steel sheet [J] ρs: density of the steel sheet [kg / m 3 ] Cs: Specific heat of the steel sheet [J / kgK] ΔTs: Temperature drop amount of the steel sheet (= Ts−Ts') [K] d: Sheet thickness [m], which is given by the formulas (1), (2), and (3) Is based on the following equation. Qout = Qupper + Qlower… (4)

【0025】この関係から以下の式が導出できる。 Ts’=Ts−ρw・Cw・(W1・ΔTw1+W2・ΔTw2)・τ/(ρs・Cs・d) … (5) Ts’:バンク出側の鋼板平均温度 [K] Ts :バンク入り側の鋼板平均温度 [K]The following equation can be derived from this relationship. Ts ′ = Ts−ρw · Cw · (W1 · ΔTw1 + W2 · ΔTw2) · τ / (ρs · Cs · d) (5) Ts ′: Average temperature of the steel sheet at the bank exit side [K] Ts: Steel sheet at the bank entry side Average temperature [K]

【0026】よって、(5)式を用いることにより、冷却
装置入側の入側表面温度計6により計測された高温鋼板
の平均温度から、バンク出側での鋼板平均温度を求める
ことができる。バンクが多数ある時は前段バンクの鋼板
平均温度を後段バンク入側の平均温度として、前段バン
クから逐次計測を行うことにより各バンク出側の鋼板平
均温度を求めることができる。
Therefore, by using the expression (5), the average temperature of the steel sheet at the bank exit side can be obtained from the average temperature of the high-temperature steel sheet measured by the entrance-side surface thermometer 6 on the entrance side of the cooling device. When there are a large number of banks, the average temperature of the steel sheets on the exit side of each bank can be obtained by sequentially measuring the average temperature of the steel sheets of the preceding bank as the average temperature on the entrance side of the subsequent bank from the preceding bank.

【0027】上記より導出した式(5)を定量的に評価す
るために、図1の冷却装置の通板方向に対して最上流側
のバンクのみに、上面冷却水量0.033m3/m2sec、下面
冷却水量0.02m3/m2secを噴射して、板幅1000mm、板長
5m、850℃の鋼板を、板厚と冷却バンク通過時間を変
えて実際に通過させた。このとき、冷却装置内の1バン
ク下流側に表面温度計13を設置して、冷却直後の鋼板
表面温度を計測している。さらに、冷却された鋼板を、
冷却装置後面に設置されている出側表面温度計7の直下
まで搬送を行い、十分鋼板温度が復熱するまで待機した
後、鋼板表面温度の計測を行った。
In order to quantitatively evaluate the equation (5) derived from the above, only the uppermost bank with respect to the passing direction of the cooling device shown in FIG. 1 has an upper surface cooling water amount of 0.033 m 3 / m 2 sec. Then, a lower surface cooling water amount of 0.02 m 3 / m 2 sec was injected, and a steel plate having a width of 1000 mm, a length of 5 m, and 850 ° C. was actually passed while changing the thickness and passing time of the cooling bank. At this time, the surface thermometer 13 is installed on the downstream side of one bank in the cooling device to measure the surface temperature of the steel sheet immediately after cooling. In addition, the cooled steel plate
The sheet was conveyed to a position directly below the outlet-side surface thermometer 7 installed on the rear surface of the cooling device, and after waiting until the steel sheet temperature was sufficiently recovered, the steel sheet surface temperature was measured.

【0028】測定結果を表1および図3に示す。図3に
おいて、横軸は、十分鋼板温度が復熱するまで待機した
後、出側表面温度計7で測定した温度、縦軸は、本発明
である冷却水温度の上昇から求めた温度と、表面温度計
13により求めた温度を示す。表1および図3より表面
温度計13により計測された冷却直後の鋼板表面温度と
出側表面温度計7により十分復熱させてから鋼板の表面
温度は大きくかけ離れており、冷却直後には表面温度計
での計測では、鋼板の平均温度は予測することができな
いことが分かる。さらに、本発明である冷却水温度の上
昇から求めた鋼板平均温度(表1における「計算値」)
は出側表面温度計7により計測された温度とほぼ一致し
ている。
The measurement results are shown in Table 1 and FIG. In FIG. 3, the horizontal axis represents the temperature measured by the outlet-side surface thermometer 7 after waiting until the steel plate temperature has sufficiently recovered, and the vertical axis represents the temperature obtained from the increase in the cooling water temperature according to the present invention. The temperature obtained by the surface thermometer 13 is shown. According to Table 1 and FIG. 3, the steel sheet surface temperature immediately after cooling measured by the surface thermometer 13 and the surface temperature of the steel sheet after sufficiently recuperating by the outlet-side surface thermometer 7 are greatly different from each other. It can be seen that the average temperature of the steel sheet cannot be predicted by the measurement with the meter. Further, the average temperature of the steel sheet obtained from the rise of the cooling water temperature according to the present invention (“calculated value” in Table 1)
Is almost the same as the temperature measured by the outlet-side surface thermometer 7.

【0029】[0029]

【表1】 [Table 1]

【0030】このように、本発明では冷却直後の鋼板表
面温度が下がっている状態でも鋼板の平均温度を計測す
ることができる。即ち、高温鋼板を冷却する際に、上面
および下面の冷却水温度の上昇からの高温鋼板の抜熱量
を求めることにより、(5)式を用いて各冷却バンク毎の
鋼板平均温度を計測することができる。
As described above, according to the present invention, the average temperature of the steel sheet can be measured even when the surface temperature of the steel sheet immediately after cooling is lowered. That is, when cooling the high-temperature steel sheet, by calculating the heat removal amount of the high-temperature steel sheet from the rise of the cooling water temperature on the upper surface and the lower surface, the average temperature of the steel sheet for each cooling bank is measured using the equation (5). Can be.

【0031】[0031]

【実施例】【Example】

(実施例1)次に、この発明を厚鋼板に適応した実施例
を説明する。
(Embodiment 1) Next, an embodiment in which the present invention is applied to a thick steel plate will be described.

【0032】図1および図2に示した冷却装置に板幅2.
8m、板長20m、板厚30mm、初期温度850℃の熱間圧
延後の厚鋼板を40mpmで通過させ、上部スリットノ
ズル4から0.033m3/m2secの量の冷却水を鋼板上面に
流し、下面導管付き円管ラミナーノズル5から0.02m3/
2secの量の冷却水を鋼板の下面に向けて噴射すること
により冷却を行った。同時に、表面温度計6、7によ
り、高温鋼板が冷却装置に搬送される前と冷却装置から
出た後の温度計測を行った。
The cooling device shown in FIG. 1 and FIG.
8m, length of 20m, thickness of 30mm, hot rolled steel plate with initial temperature of 850 ℃ passed through 40mpm, and 0.033m 3 / m 2 sec of cooling water flowed from the upper slit nozzle 4 to the upper surface of the steel plate. , 0.02m 3 /
Cooling was performed by injecting m 2 sec of cooling water toward the lower surface of the steel sheet. At the same time, the temperature was measured by the surface thermometers 6 and 7 before the high-temperature steel sheet was conveyed to the cooling device and after the high-temperature steel plate came out of the cooling device.

【0033】このときの各冷却バンクにおける冷却水温
度上昇と鋼板平均温度(冷却水温度の上昇から求めた計
算値)の関係を表2に示す。出側表面温度計7により冷
却装置を出た直後の鋼板温度の計測を行ったところ、23
0℃と低い値を示したが、徐々に復熱して約30sec後に
ピーク温度である452℃を示し、さらにその後は放冷し
て徐々に温度が下がっていった。冷却水温度の上昇から
求められた鋼板平均温度は表2に示されるように463℃
であり、ピーク温度である452℃とほぼ一致している。
Table 2 shows the relationship between the rise in cooling water temperature in each cooling bank and the average temperature of the steel sheets (calculated from the rise in cooling water temperature). When the temperature of the steel sheet immediately after leaving the cooling device was measured by the exit side surface thermometer 7, 23
Although the temperature was as low as 0 ° C., the temperature gradually recovered and showed a peak temperature of 452 ° C. after about 30 seconds, and then the temperature was gradually lowered after cooling. The average temperature of the steel sheet obtained from the rise in the cooling water temperature was 463 ° C as shown in Table 2.
And almost coincides with the peak temperature of 452 ° C.

【0034】[0034]

【表2】 [Table 2]

【0035】ピーク温度は、復熱が完了し鋼板全体が均
一な温度になったときの温度と考えられるので、冷却後
の鋼板温度の平均値と考えてよい。よって、これとほぼ
一致した温度が得られたことは、本発明の方法により、
高い精度で鋼板温度を計測することができたことを示し
ている。また、冷却後の鋼板の硬度と表2の温度履歴に
基づいて実験室で冷却を行った試験片の硬度を比較した
ところほぼ一致し、冷却水の温度上昇から求められた鋼
板の温度履歴が正しいことが分かり、各バンクでの鋼板
平均温度がオンラインで計測可能となった。
Since the peak temperature is considered to be the temperature when the recuperation is completed and the entire steel plate becomes a uniform temperature, the peak temperature may be considered to be the average value of the steel plate temperature after cooling. Therefore, it was confirmed that a temperature almost consistent with this was obtained by the method of the present invention.
This shows that the steel plate temperature could be measured with high accuracy. Further, when the hardness of the steel sheet after cooling and the hardness of the test piece cooled in the laboratory based on the temperature history in Table 2 were compared, they almost agreed, and the temperature history of the steel sheet obtained from the temperature rise of the cooling water was It turned out to be correct, and the average steel sheet temperature in each bank could be measured online.

【0036】なお、本実施例では冷却方法として上面で
はスリットノズル、下面では下部導管付き円管ラミナー
ノズルを用いた冷却装置について説明したが、本発明の
方法はその他の冷却方法、たとえばスプレー冷却、円管
ラミナー冷却、フラットラミナー冷却、スリットジェッ
ト冷却等についても適応可能であることは言うまでもな
い。また、本実施例では厚鋼板に適応した例を示した
が、薄鋼板に対しても同様に適用可能である。
In the present embodiment, a cooling apparatus using a slit nozzle on the upper surface and a circular laminar nozzle with a lower conduit on the lower surface has been described as a cooling method. However, the method of the present invention can be applied to other cooling methods such as spray cooling, Needless to say, the present invention can be applied to a laminar tube cooling, a flat laminar cooling, a slit jet cooling, and the like. Further, in the present embodiment, an example in which the present invention is applied to a thick steel plate is shown, but the present invention is similarly applicable to a thin steel plate.

【0037】冷却後の冷却水の温度を計測するためには
特に下面冷却については冷却後の冷却水を逃がさないよ
うにして測定する必要がある。例えば図4に示すよう
に、スプレーノズル14によるスプレー冷却を下面冷却
に採用した場合には、落下する冷却水を受けるトレー又
は水槽15を設け、その中の冷却水の温度を冷却水用温
度計12で測定するようにしておくとよい。
In order to measure the temperature of the cooling water after cooling, it is particularly necessary to measure the cooling of the lower surface so that the cooling water after cooling does not escape. For example, as shown in FIG. 4, when spray cooling by the spray nozzle 14 is employed for lower surface cooling, a tray or a water tank 15 for receiving falling cooling water is provided, and the temperature of the cooling water therein is measured by a cooling water thermometer. It is better to measure at 12.

【0038】上面冷却については、冷却後の冷却水温度
の計測は、例えば図5に示すように鋼板上に滞留してい
る冷却水あるいは鋼板から落下する冷却水を捕らえるト
レーまたは水槽15を設置して、その温度を冷却水用温
度計11で計測すればよい。水切りロールで拘束しなが
ら連続的に冷却を施す場合には、図6に示すように、こ
の水切りロール(上面拘束ロール)2に冷却水用温度計
11を取りつけ水切りロールにせき止められた冷却水温
度を計測することが効果的である。
As for the cooling of the upper surface, the temperature of the cooling water after cooling is measured, for example, by installing a tray or a water tank 15 for catching the cooling water staying on the steel plate or the cooling water falling from the steel plate as shown in FIG. Then, the temperature may be measured by the thermometer 11 for cooling water. In the case where cooling is continuously performed while constrained by a draining roll, as shown in FIG. 6, a cooling water thermometer 11 is attached to the draining roll (top-restricted roll) 2, and the temperature of the cooling water blocked by the draining roll is measured. It is effective to measure

【0039】(実施例2)第2の実施例は本発明の温度
計測方法を鋼板の浸漬冷却装置に応用したものである。
この実施例を図7を参照して説明する。
(Embodiment 2) In a second embodiment, the temperature measuring method of the present invention is applied to a steel plate immersion cooling apparatus.
This embodiment will be described with reference to FIG.

【0040】本実施例は、連続的に冷却水を供給した水
槽16に圧延後の高温鋼板1を昇降装置で水没させ、ジ
ェット流によって強制攪拌しながら冷却を行う浸漬冷却
装置において冷却中の鋼板温度をモニターすることを可
能とするものである。冷却水は冷却水供給ポンプによっ
て連続的に水槽内のジェットノズル17へ送られ、高温
鋼板1近傍に噴射されている。なお、供給する冷却水温
度と流量はあらかじめ水槽に供給される前に計測されて
いる。高温鋼板は圧延後搬送テーブルから鋼板の昇降装
置によって水槽内に浸漬される。冷却水は、連続的に鋼
板の上下面から熱を奪って、水槽上部からオーバーフロ
ーし、排水管18から流出する。この時、流出する冷却
水の温度は冷却水用温度計19によって連続的に計測さ
れている。なお、本実施例では流出する冷却水の温度変
化は、鋼板を水槽内に浸漬した時点からある時間遅れを
もって現れる。
In the present embodiment, the hot steel sheet 1 after rolling is submerged in a water tank 16 to which cooling water is continuously supplied by an elevating device, and is cooled by a submerged cooling device that performs cooling while forcibly stirring with a jet flow. It is possible to monitor the temperature. The cooling water is continuously sent to the jet nozzle 17 in the water tank by the cooling water supply pump, and is jetted near the high temperature steel plate 1. The temperature and flow rate of the supplied cooling water are measured before being supplied to the water tank. After rolling, the hot steel sheet is immersed in a water tank by a steel sheet elevating device from a transfer table. The cooling water continuously draws heat from the upper and lower surfaces of the steel plate, overflows from the upper portion of the water tank, and flows out from the drain pipe 18. At this time, the temperature of the cooling water flowing out is continuously measured by the cooling water thermometer 19. In this embodiment, the temperature change of the cooling water flowing out appears with a certain time delay from the time when the steel sheet is immersed in the water tank.

【0041】冷却開始前水槽温度をT0、冷却中定常状
態の水槽温度T1とすると、水槽水温Tの時間変化は、
水槽内の冷却水が瞬時に完全混合したと仮定して次式で
表される。 T=(T1−T0)(1−exp(−W’τ/S))+T0 … (6) ここに、 S:水槽内容積 [m3] W’:供給冷却水の流量 [m3/s]
Assuming that the temperature of the water tank before the start of cooling is T 0 and the temperature of the water tank T 1 in the steady state during cooling is a time change of the water temperature T of the water tank.
Assuming that the cooling water in the water tank is completely mixed instantaneously, it is expressed by the following equation. T = (T 1 −T 0 ) (1−exp (−W′τ / S)) + T 0 (6) where, S: internal volume of water tank [m 3 ] W ′: flow rate of supply cooling water [ m 3 / s]

【0042】また、ΔT=T1−T0が冷却水の水温上昇
であり、次式から鋼板から単位時間に奪われた熱量Qが
求まる。 Q=ρ・Cw・W’・ΔT … (7) ここで、 Q:鋼板から奪われた熱量 [J/s] Cw:水の比熱 [J/kgK] ρ:水の密度 [kg/m3]
ΔT = T 1 −T 0 is the temperature rise of the cooling water, and the heat quantity Q deprived of the steel sheet per unit time is obtained from the following equation. Q = ρ · Cw · W ′ · ΔT (7) where, Q: heat amount deprived from the steel sheet [J / s] Cw: specific heat of water [J / kgK] ρ: density of water [kg / m 3] ]

【0043】よって、(7)式から鋼板の温度降下量を見
積もることが可能となり、時々刻々変化する鋼板温度を
精度よく知ることが可能である。なお、鋼板を水槽に水
没させた直後は(6)式より明らかなように冷却水温度の
変化にはある時間遅れが現れるが、水槽の内容積、流量
が分かっているので経時変化を予測可能である。
Accordingly, it is possible to estimate the temperature drop amount of the steel sheet from the equation (7), and it is possible to accurately know the steel sheet temperature that changes every moment. Immediately after the steel sheet is submerged in the water tank, a certain time delay appears in the change in cooling water temperature as is clear from equation (6), but the change over time can be predicted because the internal volume and flow rate of the water tank are known. It is.

【0044】図7に示した冷却装置を用い、圧延直後の
鋼板で、板幅2.0m、板長10m、板厚240mm、鋼板温度
1020℃のものを、水温20℃、内容積30m3の水槽に
水没させて冷却を施した。なお、冷却水流量は2.0m3/
s、水温は水槽温度と同じく20℃であった。
Using the cooling device shown in FIG. 7, the steel plate immediately after rolling was 2.0 m in width, 10 m in length, 240 mm in thickness, and the temperature of the steel plate.
The material having a temperature of 1020 ° C. was immersed in a water tank having a water temperature of 20 ° C. and an internal volume of 30 m 3 to perform cooling. The cooling water flow rate is 2.0 m 3 /
s, the water temperature was 20 ° C. as the water tank temperature.

【0045】このとき、冷却水温度はおよそ50secで
ピーク値である42℃に達した。このことから、鋼板よ
り奪われる熱量は、(7)式を当てはめて186480KJ/sと見
積もることが可能である。その結果、平均温度の降下曲
線は図9のように予想される。
At this time, the cooling water temperature reached the peak value of 42 ° C. in about 50 seconds. From this, the amount of heat deprived from the steel sheet can be estimated to be 186480 KJ / s by applying equation (7). As a result, the average temperature drop curve is expected as shown in FIG.

【0046】図8は、横軸に時間、縦軸に冷却水の温度
変化をとり、冷却水温度の経時変化の実績値と、(6)式
により予測した予測値とを示した図である。図8を見る
と、実績値と予測値はよく一致しており、(6)式が正し
いことがわかる。冷却開始から水温変化がなくなる時刻
での水温上昇を用いて、鋼板から奪われる熱量を求める
ことができる。
FIG. 8 is a diagram showing the actual value of the temporal change in the cooling water temperature and the predicted value predicted by the equation (6), with the horizontal axis representing time and the vertical axis representing the temperature change of the cooling water. . Referring to FIG. 8, it can be seen that the actual value and the predicted value are in good agreement, and that equation (6) is correct. The amount of heat deprived from the steel sheet can be obtained using the water temperature rise at the time when the water temperature change stops from the start of cooling.

【0047】前記鋼板の目標冷却停止温度は550℃であ
るので、図9から冷却時間を65secと求めることがで
き、この時刻に鋼板を水槽から取り出した。表面温度が
十分に復熱した後に鋼板の温度を表面温度計で計測した
ところ545℃であった。このことから、本発明の鋼板温
度計測方法は精度がよく、その有効性が明らかである。
Since the target cooling stop temperature of the steel sheet is 550 ° C., the cooling time can be determined to be 65 seconds from FIG. 9, and the steel sheet was taken out of the water tank at this time. After the surface temperature was sufficiently recovered, the temperature of the steel sheet was measured by a surface thermometer and found to be 545 ° C. From this, the steel sheet temperature measuring method of the present invention is accurate and its effectiveness is clear.

【0048】(実施例3)本実施例は薄鋼板の連続焼鈍装
置の水中浸漬噴流型の冷却装置において温度計測を実施
した例である。
(Embodiment 3) This embodiment is an example in which the temperature is measured in a submerged immersion jet type cooling apparatus of a continuous annealing apparatus for thin steel sheets.

【0049】図10に示すように、高さ4.0mの水中浸漬
型の冷却装置に連続焼鈍炉から連続的に送られる板厚1.
2mm、板幅1200mmの薄鋼板20が速度600mpmで直上か
ら水冷装置21に導入され、水冷装置の中に設置されて
いるロール22で方向を変換し直上へ連続的に送られ、
冷工程の過時効処理帯に送られている。この水中浸漬型
の冷却装置では鋼板の両面に設けられた多孔板式の冷却
ヘッダーから冷却水が供給され、常に薄鋼板の両面に冷
却水が衝突している。この冷却装置において供給される
冷却水は流量調整弁を介して流量調整が行われ、電磁流
量計によって流量が計測されている。また、熱電対によ
って冷却水温度も連続的に計測されている。
As shown in FIG. 10, the sheet thickness continuously fed from the continuous annealing furnace to a 4.0 m high underwater immersion type cooling device was obtained.
A thin steel plate 20 having a thickness of 2 mm and a width of 1200 mm is introduced into the water-cooling device 21 from directly above at a speed of 600 mpm, the direction is changed by a roll 22 installed in the water-cooling device, and is continuously sent directly above.
It is sent to the overage treatment zone in the cooling process. In this underwater immersion type cooling device, cooling water is supplied from a perforated plate-type cooling header provided on both surfaces of a steel plate, and the cooling water constantly collides with both surfaces of the thin steel plate. The flow rate of the cooling water supplied in the cooling device is adjusted via a flow rate adjusting valve, and the flow rate is measured by an electromagnetic flow meter. The temperature of the cooling water is also continuously measured by a thermocouple.

【0050】鋼板冷却後の冷却水は多孔板の冷却ヘッダ
ーと鋼板の隙間から板端部へ流れた後、冷却排水管から
排水される。なお、この時に温度計により冷却水温度が
計測されている。
The cooling water after cooling the steel sheet flows from the gap between the cooling header of the perforated sheet and the steel sheet to the end of the sheet, and is then drained from the cooling drain pipe. At this time, the temperature of the cooling water is measured by a thermometer.

【0051】薄鋼板の冷却装置入口温度は表面温度計に
よって計測され780℃であった。冷却水の水量密度は0.0
2m3/m2sec、入口の冷却水温度は22.5℃、排水管での
冷却水温度は34.4℃であった。これらの数値より、本発
明の方法を用いて計算すると、冷却装置出側での薄鋼板
温度は602℃であった。実際、冷却装置後の上方5mの
位置にある表面温度計23で温度を計測したところ631
℃となった。
The inlet temperature of the cooling device for the thin steel plate was 780 ° C. as measured by a surface thermometer. Water volume density of cooling water is 0.0
2 m 3 / m 2 sec, the cooling water temperature at the inlet was 22.5 ° C., and the cooling water temperature at the drain pipe was 34.4 ° C. When calculated from these values using the method of the present invention, the temperature of the thin steel sheet at the outlet of the cooling device was 602 ° C. Actually, when the temperature was measured with the surface thermometer 23 at a position 5 m above the cooling device, 631
° C.

【0052】このように、本発明の方法を用いれば、特
に表面温度計などの温度計測手段を設けなくとも、鋼板
の温度を知ることが可能である。実際、冷却後の鋼板表
面は冷却水で濡れていたり、水蒸気に覆われていたりし
て温度計測はこれまで非常に難しく、冷却終了時の温度
を知ることが困難であったが、本発明によれば簡単にか
つ精度良く鋼板温度を知ることができる。
As described above, by using the method of the present invention, it is possible to know the temperature of the steel sheet without providing a temperature measuring means such as a surface thermometer. Actually, the steel sheet surface after cooling is wet with cooling water or covered with water vapor, so temperature measurement has been very difficult so far, and it has been difficult to know the temperature at the end of cooling. According to this, it is possible to easily and accurately know the steel plate temperature.

【0053】(実施例4)第4の実施例は、本発明の鋼
板温度計測方法をH形鋼のフランジ温度計測方法に応用
したものである。
(Embodiment 4) In a fourth embodiment, the steel sheet temperature measuring method of the present invention is applied to a flange temperature measuring method for an H-section steel.

【0054】粗圧延機の前後面に設けられたフランジサ
イドガイドには長さ10mの多孔方式の水冷装置が組み
込まれており、ユニバーサル圧延によって圧延機を前
進、後退するH形鋼のフランジ外面を冷却している。な
お、冷却水は冷却水ポンプによって送水され、流量と水
温を計測した後に、電磁弁を介して多孔方式の冷却ノズ
ルへ送られており、冷却水は圧延材が通過する時にのみ
供給噴射される。冷却後の冷却水はサイドガイド下方の
集水ピットで補水され温度を計測された後、排水され
る。
The flange side guides provided on the front and rear surfaces of the rough rolling mill incorporate a perforated water cooling device with a length of 10 m. Cooling. The cooling water is sent by a cooling water pump, and after measuring the flow rate and the water temperature, it is sent to a perforated cooling nozzle via an electromagnetic valve, and the cooling water is supplied and injected only when the rolled material passes. . After cooling, the cooling water is replenished in a water collection pit below the side guide, the temperature is measured, and then drained.

【0055】この冷却装置において、サイズ500mm×500
mmフランジ厚み80mmウェブ厚み60mm長さ20mmの
圧延直後のH形鋼を連続的に冷却した。なお、圧延速度
は120mpm、圧延直前のフランジ外面温度は1050℃で
あった。供給した冷却水温度は20℃、冷却水流量は、
H形鋼のフランジ外面単位面積当たり0.015m3/m2sec
である。集水ピットで計測した冷却水温度は39.5℃であ
った。
In this cooling device, a size of 500 mm × 500
The H-section steel immediately after rolling having a flange thickness of 80 mm, a web thickness of 60 mm and a length of 20 mm was continuously cooled. The rolling speed was 120 mpm, and the flange outer surface temperature immediately before rolling was 1050 ° C. The supplied cooling water temperature is 20 ° C, and the cooling water flow rate is
0.015m 3 / m 2 sec per unit area of H-section steel flange outer surface
It is. The cooling water temperature measured at the water collection pit was 39.5 ° C.

【0056】この時、圧延機前面10mと後面10mの
合計20mの冷却ゾーンを圧延材が120mpmで通過し
た際(即ち冷却時間10秒)、フランジ外面単位面積当たり
の奪われた熱量は次式から求めることが可能である。 q=ρw・Cw・W・ΔT … (8) ここに、 q:単位面積当たりから奪われる熱流量(熱流束) [J/m2s] ρw:冷却水密度 [kg/m3] W:単位面積当りに供給された冷却水流量(水量密度) [m3/m2s] Cw:冷却水の比熱 [J/kgK] ΔT:冷却水の温度上昇 [K]
At this time, when the rolled material passes through a cooling zone of 10 m in total of 10 m on the front surface and 10 m on the rear surface of the rolling mill at 120 mpm (that is, cooling time of 10 seconds), the amount of heat taken per unit area of the outer surface of the flange is given by the following equation. It is possible to ask. q = ρw · Cw · W · ΔT (8) where, q: heat flow (heat flux) deprived per unit area [J / m 2 s] ρw: cooling water density [kg / m 3 ] W: Flow rate of cooling water supplied per unit area (water density) [m 3 / m 2 s] Cw: Specific heat of cooling water [J / kgK] ΔT: Temperature rise of cooling water [K]

【0057】(8)式に前述の数字を当てはめて計算する
と、qは1229kJ/m2sとなる。これに応じてH形鋼のフ
ランジの平均温度は3.1℃/secで降下すると予想され
る。実際、この圧延機で11パス通過させ(圧延時間約5
分、冷却時間110秒)、その後、復熱させてフランジ温度
を表面温度計で計測したところ、711℃であって、本発
明によって求められた709℃とほぼ一致した。
When the above-mentioned numbers are applied to equation (8) and calculated, q is 1229 kJ / m 2 s. Correspondingly, the average temperature of the H-section flange is expected to drop at 3.1 ° C / sec. In fact, this mill passed through 11 passes (rolling time about 5
Minutes, cooling time 110 seconds), and then the temperature was recovered and the flange temperature was measured with a surface thermometer. As a result, the temperature was 711 ° C., which almost coincided with 709 ° C. determined by the present invention.

【0058】以上より、本発明の温度計測方法は、従来
の復熱後の鋼板表面温度から鋼板温度を知る方法に比べ
て、冷却中および冷却後の鋼材温度を短時間で精度よく
知ることができるため、温度計測方法として優れている
ことは明らかである。さらに本方法をオンラインの温度
計測方法として温度制御法に組合わせればダイナミック
で高精度の鋼材温度制御が可能である。
As described above, the temperature measuring method according to the present invention is capable of accurately knowing the steel material temperature during and after cooling in a short time, as compared with the conventional method of determining the steel sheet temperature from the steel sheet surface temperature after reheating. Obviously, it is an excellent temperature measurement method. Furthermore, if this method is combined with a temperature control method as an online temperature measurement method, dynamic and high-precision steel temperature control is possible.

【0059】(比較例)本発明の比較例として前記実施
例1と同じ冷却装置において、冷却水および水蒸気を高
圧ガスにより排除して表面温度計により鋼板表面温度を
計測する例を示す。
(Comparative Example) As a comparative example of the present invention, an example is shown in which, in the same cooling device as in the first embodiment, cooling water and water vapor are removed by high-pressure gas and the surface temperature of the steel sheet is measured by a surface thermometer.

【0060】冷却装置の各バンクに図11に示すよう
に、光ファイバー温度計24を鋼板の上下面に設置し
た。図12に示すように、光ファイバー温度計の先端部
は、光ファイバー受光部25の周りに設けられた空気供
給管25から高圧空気が噴射できるようになっており、
高圧空気により鋼板上に滞在する冷却水や水蒸気を除去
できる構造となっている。
As shown in FIG. 11, optical fiber thermometers 24 were installed on the upper and lower surfaces of a steel plate in each bank of the cooling device. As shown in FIG. 12, the distal end of the optical fiber thermometer is configured such that high-pressure air can be jetted from an air supply pipe 25 provided around the optical fiber light receiving unit 25.
The structure is such that cooling water and water vapor staying on the steel plate can be removed by high-pressure air.

【0061】この冷却装置に実施例1と同じく板幅2.8
m、板長20m、板厚30mm、初期温度850℃の熱間圧
延後の厚鋼板を40mpmで通過させ、上部スリットノ
ズル1から0.033m3/m2secの量の冷却水を鋼板上面に
流し、下部導管付き円管ラミナーノズル2から0.02m3/
2secの量の冷却水を鋼板の下面に向けて噴射すること
により冷却を行った。 同時に、表面温度計6、7で、
高温鋼板が冷却装置に搬送される前と冷却装置から出た
後の温度計測を行った。
This cooling device had a sheet width of 2.8 as in Example 1.
m, plate length 20m, plate thickness 30mm, hot rolled steel plate with initial temperature of 850 ° C passed through at 40 mpm, and 0.033m 3 / m 2 sec of cooling water flowed from the upper slit nozzle 1 to the upper surface of the steel plate. , 0.02m 3 /
Cooling was performed by injecting m 2 sec of cooling water toward the lower surface of the steel sheet. At the same time, with surface thermometers 6 and 7,
The temperature was measured before the high-temperature steel sheet was conveyed to the cooling device and after the high-temperature steel sheet came out of the cooling device.

【0062】表面温度計7により冷却装置を出た後の鋼
板温度を計測したところ246℃となった。この時の各バ
ンクにおける光ファイバー温度計の指示値を表2に、
「鋼板温度・比較例」として示す。また、図6には実施
例で求められた鋼板温度と比較例で実測した温度の各バ
ンクにおける温度を示す。比較例で計測することができ
るのは鋼板表面温度であり、操業上において実績温度と
して必要となる鋼板平均温度とは全く関係がない。ま
た、各バンクにおける温度指示値は鋼板上面に滞留して
いる冷却水を完全に排除できていないため、バラツキが
大きい。このため、鋼板表面温度を計測することから鋼
板の平均温度を予測することは非常に困難である。
The temperature of the steel sheet after leaving the cooling device was measured by the surface thermometer 7 to be 246 ° C. Table 2 shows the optical fiber thermometer readings in each bank at this time.
This is shown as “Steel sheet temperature / Comparative example”. FIG. 6 shows the temperature in each bank of the steel plate temperature obtained in the example and the temperature actually measured in the comparative example. In the comparative example, what can be measured is the surface temperature of the steel sheet, and has no relation to the average temperature of the steel sheet required as the actual temperature in operation. In addition, the temperature indication values in each bank vary greatly because the cooling water staying on the upper surface of the steel sheet cannot be completely eliminated. For this reason, it is very difficult to predict the average temperature of the steel sheet by measuring the surface temperature of the steel sheet.

【0063】[0063]

【発明の効果】以上説明したように、本発明において
は、高温鋼材の温度計測方法において、鋼材に流体を噴
射し、流体を噴射する前の鋼材温度と、鋼材に噴射した
流体の流量と温度変化から、鋼材の温度を求めているの
で、高温鋼材の平均温度を正確に計測することができ
る。
As described above, according to the present invention, in the method for measuring the temperature of a high-temperature steel material, a fluid is injected to the steel material, and the temperature of the steel material before the fluid is injected, and the flow rate and the temperature of the fluid injected to the steel material. Since the temperature of the steel is obtained from the change, the average temperature of the high-temperature steel can be accurately measured.

【0064】とくに、冷却装置に搬送される前の高温鋼
材の温度を計測する工程と、冷却装置に供給する前の冷
却水温度と鋼材を冷却した後の冷却水温度を計測して冷
却水の温度上昇を求める工程と、冷却水の流量を求める
工程を有し、前記冷却水の流量と温度上昇から鋼材の抜
熱量を求めて、この抜熱量と冷却装置に搬送される前の
高温鋼材の温度から鋼材温度を算出することにより、冷
却中または冷却後の高温鋼材の平均温度を求めることを
特徴とする高温鋼材の温度計測方法であって、高温鋼材
の測温中の冷却水の温度が80℃以下であり、高温鋼材
の冷却開始時の温度が1000℃以下である高温鋼材の
温度計測方法によれば、冷却中の高温鋼材の平均温度を
計測することができるので、冷却の過不足を瞬時に判断
可能となり、正確な冷却制御を行うことが可能となる。
その結果、鋼材の品質のばらつきが減少し、歩留りが向
上する。また、鋼板温度を迅速に測定することができる
ので、圧延能率が向上する。
In particular, the step of measuring the temperature of the high-temperature steel material before being conveyed to the cooling device, and measuring the temperature of the cooling water before supplying it to the cooling device and the temperature of the cooling water after cooling the steel material, and A step of obtaining a temperature rise, and a step of obtaining a flow rate of cooling water, obtaining a heat removal amount of the steel material from the flow rate and the temperature rise of the cooling water, and obtaining a heat removal amount of the high-temperature steel material before being transferred to the cooling device. A method for measuring the temperature of a high-temperature steel material, comprising calculating an average temperature of the high-temperature steel material during or after cooling by calculating a steel material temperature from the temperature, wherein a temperature of the cooling water during the temperature measurement of the high-temperature steel material is determined. According to the method for measuring the temperature of a high-temperature steel material at 80 ° C. or lower and the temperature at the start of cooling of the high-temperature steel material at 1000 ° C. or less, the average temperature of the high-temperature steel material during cooling can be measured. Can be judged instantaneously and accurate It is possible to perform the cooling control.
As a result, variation in the quality of the steel material is reduced, and the yield is improved. In addition, since the steel sheet temperature can be measured quickly, the rolling efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する冷却装置の例を示す概略図で
ある。
FIG. 1 is a schematic diagram showing an example of a cooling device to which the present invention is applied.

【図2】本発明の実施の形態の例を示す概略図である。FIG. 2 is a schematic diagram showing an example of an embodiment of the present invention.

【図3】実施例1において、冷却後の鋼板温度を冷却水
の温度変化から求めたものと十分復熱させた後に表面温
度計により計測した値との関係を示した図である。
FIG. 3 is a diagram showing a relationship between a temperature of a steel sheet after cooling obtained from a temperature change of cooling water and a value measured by a surface thermometer after sufficient heat recovery in Example 1.

【図4】本発明を高温鋼板の下面スプレー冷却に応用し
た例を示す概略図である。
FIG. 4 is a schematic view showing an example in which the present invention is applied to lower surface spray cooling of a high-temperature steel sheet.

【図5】本発明を高温鋼板の上面スプレー冷却に応用し
た例を示す概略図である。
FIG. 5 is a schematic view showing an example in which the present invention is applied to upper surface spray cooling of a high-temperature steel sheet.

【図6】高温鋼板を水切りロールで拘束した上面冷却設
備に、本発明を応用した例を示す概略図である。
FIG. 6 is a schematic diagram showing an example in which the present invention is applied to an upper surface cooling facility in which a high-temperature steel plate is constrained by a drain roll.

【図7】本発明の実施例2の浸漬冷却装置の概略図であ
る。
FIG. 7 is a schematic view of an immersion cooling device according to a second embodiment of the present invention.

【図8】実施例2における冷却水の温度上昇の経時変化
を示す図である。
FIG. 8 is a diagram showing a change over time in temperature rise of cooling water in Example 2.

【図9】実施例2において、冷却水温度上昇より求めた
鋼板温度の経時変化を示す図である。
FIG. 9 is a diagram showing a change with time of a steel sheet temperature obtained from a rise in cooling water temperature in Example 2.

【図10】本発明の実施例3における連続焼鈍装置の水
中浸漬噴流型冷却装置の概略図である。
FIG. 10 is a schematic diagram of a submerged immersion jet type cooling device of a continuous annealing device in Embodiment 3 of the present invention.

【図11】比較例に用いた表面温度計の設置状況を示す
図である。
FIG. 11 is a view showing a state of installation of a surface thermometer used in a comparative example.

【図12】比較例に用いた表面温度計の受光部の概略図
である。
FIG. 12 is a schematic diagram of a light receiving unit of the surface thermometer used in the comparative example.

【図13】実施例1および比較例で計測した鋼板の各バ
ンクにおける温度を示す図である。
FIG. 13 is a diagram showing the temperature in each bank of the steel sheet measured in Example 1 and Comparative Example.

【符号の説明】[Explanation of symbols]

1−高温鋼板 2−上面拘束ロール 3−下面拘束ロール 4−上面スリットノズル 5−下面導管付き円管ラミナーノズル 6−入側表面温度計 7−出側表面温度計 8−下面タンク 9−円管ノズル 10−導管 11−冷却水用温度計 12−冷却水用温度計 13−冷却帯表面温度計 14−スプレーノズル 15−集水槽 16−水槽 17−ジェットノズル 18−排水管 19−冷却水用温度計 20−薄鋼板 21−水冷装置 22−ロール 23−表面温度計 24−光ファイバー温度計 25−光ファイバー受光部 26−空気供給管 1-High temperature steel plate 2-Upper surface constraining roll 3-Lower surface constraining roll 4-Upper surface slit nozzle 5-Circular tube laminar nozzle with lower surface conduit 6-Incoming surface thermometer 7-Outer surface thermometer 8-Lower surface tank 9-Circular tube Nozzle 10-Conduit 11-Cooling water thermometer 12-Cooling water thermometer 13-Cooling zone surface thermometer 14-Spray nozzle 15-Water collecting tank 16-Water tank 17-Jet nozzle 18-Drain pipe 19-Cooling water temperature 20-Thin steel plate 21-Water cooling device 22-Roll 23-Surface thermometer 24-Optical fiber thermometer 25-Optical fiber light receiving part 26-Air supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内尾 政人 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 福岡 和也 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中西 孝之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Masato Uchio 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Kazuya Fukuoka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo No. Nippon Kokan Co., Ltd. (72) Inventor Takayuki Nakanishi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高温鋼材の温度計測方法において、鋼材
に流体を噴射し、流体を噴射する前の鋼材温度と、鋼材
に噴射した流体の流量と温度変化から、鋼材の温度を求
めることを特徴とする高温鋼材の温度計測方法。
1. A method for measuring a temperature of a high-temperature steel material, wherein a fluid is injected to the steel material, and the temperature of the steel material is obtained from a temperature of the steel material before the fluid is injected, a flow rate of the fluid injected to the steel material, and a temperature change. Temperature measurement method for high temperature steel.
【請求項2】 冷却装置に搬送される前の高温鋼材の温
度を計測する工程と、冷却装置に供給する前の冷却水温
度と鋼材を冷却した後の冷却水温度を計測して冷却水の
温度上昇を求める工程と、冷却水の流量を求める工程を
有し、前記冷却水の流量と温度上昇から鋼材の抜熱量を
求めて、この抜熱量と冷却装置に搬送される前の高温鋼
材の温度から鋼材温度を算出することにより、冷却中ま
たは冷却後の高温鋼材の平均温度を求めることを特徴と
する高温鋼材の温度計測方法であって、高温鋼材の測温
中の冷却水の温度が80℃以下であり、高温鋼材の冷却
開始時の温度が1000℃以下である高温鋼材の温度計
測方法。
2. A step of measuring the temperature of the high-temperature steel material before being conveyed to the cooling device, and measuring the temperature of the cooling water before supply to the cooling device and the temperature of the cooling water after cooling the steel material. A step of obtaining a temperature rise, and a step of obtaining a flow rate of cooling water, obtaining a heat removal amount of the steel material from the flow rate and the temperature rise of the cooling water, and obtaining a heat removal amount of the high-temperature steel material before being transferred to the cooling device. A method for measuring the temperature of a high-temperature steel material, comprising calculating an average temperature of the high-temperature steel material during or after cooling by calculating a steel material temperature from the temperature, wherein a temperature of the cooling water during the temperature measurement of the high-temperature steel material is determined. A temperature measuring method for a high-temperature steel material having a temperature of 80 ° C. or less and a temperature at the start of cooling of the high-temperature steel material of 1000 ° C. or less.
【請求項3】 高温鋼材をオンラインで冷却する際に高
温鋼材の温度を計測する装置であって、冷却する前の鋼
材の温度を計測する手段と、冷却中の冷却水流量を計測
する手段と、冷却前の冷却水温度を計測する手段と、冷
却後の冷却水温度を計測する手段と、前記冷却中の冷却
水流量、冷却前の冷却水温度および冷却後の冷却水温度
から鋼材より奪われた熱量を計算する演算手段と、冷却
前の鋼材温度と鋼材から奪われた熱量から、冷却中また
は冷却後の鋼材の温度を求める演算手段とを有してなる
ことを特徴とする高温鋼材の温度計測装置。
3. An apparatus for measuring the temperature of a high-temperature steel material when cooling the high-temperature steel material online, comprising: means for measuring the temperature of the steel material before cooling; and means for measuring the flow rate of cooling water during cooling. Means for measuring the temperature of the cooling water before cooling, means for measuring the temperature of the cooling water after cooling, and the flow rate of the cooling water during cooling, the temperature of the cooling water before cooling, and the temperature of the cooling water after cooling. A high-temperature steel material comprising: arithmetic means for calculating the heat quantity of the steel material; and arithmetic means for calculating the temperature of the steel material during or after cooling from the temperature of the steel material before cooling and the amount of heat deprived from the steel material. Temperature measuring device.
JP27335897A 1997-09-22 1997-09-22 Measuring method and device for temperature of high-temperature steel Pending JPH1194647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27335897A JPH1194647A (en) 1997-09-22 1997-09-22 Measuring method and device for temperature of high-temperature steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27335897A JPH1194647A (en) 1997-09-22 1997-09-22 Measuring method and device for temperature of high-temperature steel

Publications (1)

Publication Number Publication Date
JPH1194647A true JPH1194647A (en) 1999-04-09

Family

ID=17526795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27335897A Pending JPH1194647A (en) 1997-09-22 1997-09-22 Measuring method and device for temperature of high-temperature steel

Country Status (1)

Country Link
JP (1) JPH1194647A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027295B1 (en) 2008-12-12 2011-04-06 주식회사 포스코 Apparatus for Measuring Temperature of Cooled Materials and Method for Measuring Heat-Flux of Cooling Machine by using the Same
JP2012024721A (en) * 2010-07-26 2012-02-09 Sumitomo Metal Ind Ltd Method for recovering scale, and heat treatment furnace of steel using the same
KR101175781B1 (en) * 2009-10-29 2012-08-21 현대제철 주식회사 Apparatus for measuring temperature of rolling process and method for measuring temperature of rolling material at rolling process
JP2013076593A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Method for predicting temperature distribution in metal plate and method of manufacturing metal plate
KR101449019B1 (en) * 2007-12-27 2014-10-08 주식회사 포스코 Apparatus and method for measuring a strip surface temperature of an inner acceleration coolant equipment
KR101449388B1 (en) * 2014-08-25 2014-10-14 주식회사 포스코 Apparatus for measuring a strip surface temperature of an inner acceleration coolant equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449019B1 (en) * 2007-12-27 2014-10-08 주식회사 포스코 Apparatus and method for measuring a strip surface temperature of an inner acceleration coolant equipment
KR101027295B1 (en) 2008-12-12 2011-04-06 주식회사 포스코 Apparatus for Measuring Temperature of Cooled Materials and Method for Measuring Heat-Flux of Cooling Machine by using the Same
KR101175781B1 (en) * 2009-10-29 2012-08-21 현대제철 주식회사 Apparatus for measuring temperature of rolling process and method for measuring temperature of rolling material at rolling process
JP2012024721A (en) * 2010-07-26 2012-02-09 Sumitomo Metal Ind Ltd Method for recovering scale, and heat treatment furnace of steel using the same
JP2013076593A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Method for predicting temperature distribution in metal plate and method of manufacturing metal plate
KR101449388B1 (en) * 2014-08-25 2014-10-14 주식회사 포스코 Apparatus for measuring a strip surface temperature of an inner acceleration coolant equipment

Similar Documents

Publication Publication Date Title
JP4735784B1 (en) Hot rolled steel sheet manufacturing apparatus and hot rolled steel sheet manufacturing method
EP1634657B1 (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
EP0086265A1 (en) Method of controlled cooling for steel strip
US9308563B2 (en) Manufacturing method of hot-rolled steel sheet
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP5217516B2 (en) Cooling control method in hot rolling and manufacturing method of hot rolled metal strip
JP2008183608A (en) Continuous casting method of steel
EP1359230A1 (en) Production method for steel plate and equipment therefor
JP5811046B2 (en) Method for predicting temperature unevenness of hot-rolled steel sheet, method for controlling flatness, method for controlling temperature unevenness, and manufacturing method
JPH1194647A (en) Measuring method and device for temperature of high-temperature steel
JP4924952B2 (en) Hot-rolled steel sheet cooling method and cooling equipment
JP2009241113A (en) Method of manufacturing hot-rolled steel plate
CN103987469A (en) Device for cooling hot-rolled steel sheet
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP5983071B2 (en) Prediction method for steel slab extraction temperature
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP3783396B2 (en) Cooling method for high temperature steel sheet
JP3458758B2 (en) Method and apparatus for cooling steel sheet
TWI445581B (en) Manufacturing apparatus of hot-rolled steel sheet and manufacturing method of hot-rolled steel sheet
JP3206533B2 (en) Controlled cooling method and apparatus for thick steel plate
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP3855429B2 (en) Hot-rolled steel strip rolling method
WO2023042545A1 (en) Manufacturing method and manufacturing equipment for thick steel plate