JPH1192897A - Manufacture of heat resistant aluminum alloy lead wire - Google Patents

Manufacture of heat resistant aluminum alloy lead wire

Info

Publication number
JPH1192897A
JPH1192897A JP25834297A JP25834297A JPH1192897A JP H1192897 A JPH1192897 A JP H1192897A JP 25834297 A JP25834297 A JP 25834297A JP 25834297 A JP25834297 A JP 25834297A JP H1192897 A JPH1192897 A JP H1192897A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat
wire
resistant aluminum
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25834297A
Other languages
Japanese (ja)
Inventor
Satoshi Iwase
聡 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP25834297A priority Critical patent/JPH1192897A/en
Publication of JPH1192897A publication Critical patent/JPH1192897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a heat resistant aluminum alloy lead wire having heat resistance and electric conductivity equal to those of the conventional heat resistant aluminum alloy and also having strength improved to a value equal to or higher than that of a high strength aluminum alloy. SOLUTION: An aluminum alloy, having a composition consisting of, by weight, 0.29-1.0% Zr. 0.03-0.4% Si, 0.08-0.8% Fe, 0.005-0.05% Be, 0.001-0.1% Ti, and the balance Al with inevitable impurities, is melted and cast at >=5 deg.C/sec cooling rate. Working is applied, while performing cooling from 450-580 deg.C at >=5 deg.C/sec cooling rate, at >=70% reduction of area until <=200 deg.C finishing temp. is reached. Subsequently, heat treatment is performed at 300-500 deg.C for 6-250 hr and then cold working is applied at >=60% draft. By this method, the heat resistant aluminum alloy lead wire can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、導電性,耐熱性
及び機械的強度に優れた耐熱アルミニウム合金導線の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat-resistant aluminum alloy wire having excellent conductivity, heat resistance and mechanical strength.

【0002】[0002]

【従来の技術】電力需要の増大から、送電容量を高める
べく、電気用アルミニウム(Al)に微量のジルコニウ
ム(Zr)を添加した耐熱アルミニウム合金が実用化さ
れている。送電容量が増大すると電線温度が上昇するた
め、この様な耐熱アルミニウム合金導線が要求される。
2. Description of the Related Art A heat-resistant aluminum alloy obtained by adding a small amount of zirconium (Zr) to electric aluminum (Al) has been put to practical use in order to increase the power transmission capacity due to an increase in power demand. When the power transmission capacity increases, the temperature of the electric wire increases, and thus such a heat-resistant aluminum alloy conductor is required.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の耐熱ア
ルミニウム合金は、耐熱性を有するものの、引張強度は
通常の電気用アルミニウムと同等であり、山岳地のよう
に高強度電線が要求される場合には架線することができ
ない。これに対して本出願人は、先に、強度を高力アル
ミニウム合金と同等以上に向上させた耐熱アルミニウム
合金導線の製造方法を提案している(特開昭64−65
246号公報参照)。
However, the conventional heat-resistant aluminum alloy has heat resistance, but the tensile strength is equivalent to that of ordinary aluminum for electric use. Can not be overhead line. On the other hand, the present applicant has previously proposed a method for manufacturing a heat-resistant aluminum alloy wire whose strength has been improved to be equal to or higher than that of a high-strength aluminum alloy (Japanese Patent Laid-Open No. 64-65).
246).

【0004】この発明は、上記先願発明とは組成及び熱
処理条件を異ならせて、従来の耐熱アルミニウム合金と
同程度の耐熱性及び導電率を有し、強度を高力アルミニ
ウム合金と同等以上に向上させた耐熱アルミニウム合金
導線の製造方法を提供することを目的としている。
[0004] This invention has the same heat resistance and conductivity as conventional heat-resistant aluminum alloys, and has a strength equal to or higher than that of a high-strength aluminum alloy by changing the composition and heat treatment conditions from the prior invention. It is an object of the present invention to provide a method for manufacturing an improved heat-resistant aluminum alloy conductor.

【0005】[0005]

【課題を解決するための手段】この発明に係る耐熱アル
ミニウム合金導線の製造方法は、0.29〜1.0重量
%のZr、0.03〜0.4重量%のSi、0.08〜
0.8重量%のFe、0.005〜0.05重量%のB
e、0.001〜0.1重量%のTiを含有し、残部が
Al及び不可避的不純物からなるアルミニウム合金を溶
製した後、5℃/sec以上の冷却速度で冷却しながら
鋳造し、450〜580℃の温度から5℃/sec以上
の冷却速度で冷却しながら200℃以下の仕上がり温度
になるまで70%以上の減面率の加工を加え、次いで3
00〜500℃で6〜250時間熱処理した後、60%
以上の加工率で冷間加工を施すことを特徴とする。この
発明はまた、前記冷間加工を施した後更に、200〜4
50℃で1〜100時間の熱処理を施すことを特徴とす
る。
According to the present invention, there is provided a method for manufacturing a heat-resistant aluminum alloy wire, comprising: 0.29 to 1.0% by weight of Zr; 0.03 to 0.4% by weight of Si;
0.8 wt% Fe, 0.005-0.05 wt% B
e, an aluminum alloy containing 0.001 to 0.1% by weight of Ti and the balance being Al and unavoidable impurities is melted, and then cast while cooling at a cooling rate of 5 ° C./sec or more; While cooling at a cooling rate of 5 ° C./sec or more from a temperature of 580 ° C. or more, a process of reducing the area by 70% or more is performed until a finishing temperature of 200 ° C. or less is obtained.
After heat treatment at 00-500 ° C for 6-250 hours, 60%
It is characterized in that cold working is performed at the above working ratio. The present invention further provides a method for manufacturing a semiconductor device, comprising:
The heat treatment is performed at 50 ° C. for 1 to 100 hours.

【0006】この発明における各添加成分の添加理由及
び組成限定理由は、次の通りである。以下の説明におい
て、組成の重量%は、単に%で表す。Zr Zrは、Al合金の耐熱性を向上させる成分である。A
l−Zr合金におけるZrの固溶限は0.28%であ
り、この固溶限を越えるZrを添加してZrを強制固溶
させ、AlとZrの化合物をAl3Zrの形で微細析出
させることにより、耐熱性を高め同時に強度を向上させ
ることができる。Zr含有量が0.29%未満では後述
する熱処理を施しても、十分な強度と耐熱性を確保する
析出物が得られない。また、Zr含有量が1.0%を越
えると、溶湯の温度が高くなりすぎて、鋳造が困難にな
るのに加え、線材としたときの導電率が低下してしま
う。
The reasons for adding each component and the reasons for limiting the composition in the present invention are as follows. In the following description, the percentage by weight of the composition is simply expressed as%. Zr Zr is a component that improves the heat resistance of the Al alloy. A
The solid solubility limit of Zr in the l-Zr alloy is 0.28%, and Zr exceeding this solid solubility limit is added to forcibly form a solid solution of Zr, and a compound of Al and Zr is finely precipitated in the form of Al 3 Zr. By doing so, the heat resistance can be increased and the strength can be improved at the same time. If the Zr content is less than 0.29%, a precipitate that secures sufficient strength and heat resistance cannot be obtained even if the heat treatment described below is performed. On the other hand, if the Zr content exceeds 1.0%, the temperature of the molten metal becomes too high, which makes casting difficult, and also lowers the electrical conductivity of the wire.

【0007】Si Si(シリコン)は、Zrの析出の核となってZr析出
を促進させると共に、線材の強度を高める成分である。
Siの含有量が0.03%未満ではZr析出のための核
が不足してZr析出の効果が得られない。Si含有量が
0.4%を越えると脆化がおこって加工困難になり、ま
た線材の導電率も低下する。
Si Si (silicon) is a component that serves as a nucleus for the precipitation of Zr and promotes the precipitation of Zr and also increases the strength of the wire.
If the Si content is less than 0.03%, nuclei for Zr precipitation are insufficient, and the effect of Zr precipitation cannot be obtained. If the Si content exceeds 0.4%, embrittlement occurs and processing becomes difficult, and the conductivity of the wire also decreases.

【0008】Fe Fe(鉄)は、Al合金の強度及び耐熱性向上のために
添加される。Fe含有量が0.08%未満では、所望の
強度及び耐熱性が得られず、また0.8%を越えると、
加熱後にAl合金の脆化が生じると共に、導電率も低下
してしまう。
[0008] Fe Fe (iron) is added to improve the strength and heat resistance of the Al alloy. If the Fe content is less than 0.08%, desired strength and heat resistance cannot be obtained.
After the heating, the Al alloy is embrittled and the electrical conductivity is lowered.

【0009】Be Be(ベリリウム)は、マトリクス中の種々の不可避的
不純物と化合して析出し、マトリクス内を清浄化にする
ことにより導電率を高める作用をする。Beの含有量が
0.005%未満の場合は導電率向上の効果が得られ
ず、また0.5%を越えて添加しても導電率向上の効果
は飽和するだけでなく、過剰に添加するとBeがマトリ
クス中に固溶してかえって導電率の低下をもたらす。
[0009] BeBe (beryllium) combines with various unavoidable impurities in the matrix and precipitates, and acts to increase the electrical conductivity by cleaning the inside of the matrix. When the content of Be is less than 0.005%, the effect of improving the conductivity cannot be obtained. When the content of Be exceeds 0.5%, the effect of improving the conductivity is not only saturated but also excessively added. Then, Be dissolves in the matrix to lower the conductivity.

【0010】Ti Ti(チタン)は、Al溶製中に添加すると、不可避的
不純物と化合して結晶の核となり、鋳造組織を微細化す
る効果がある。より具体的には、組織の均一性や鋳造時
の表面性を良好にし、表面欠陥等に起因する後工程の圧
延や伸線中の断線を低減する効果があり、これにより生
産性が向上する。しかし、Tiの含有量が0.001%
より少ない場合は上述の微細化効果が得られず、また
0.1%を越えるとマトリクスのAl中に固溶して導電
率を低下させる。
[0010] When Ti (titanium) is added during Al smelting, it combines with unavoidable impurities to become a crystal nucleus and has an effect of refining the cast structure. More specifically, it has the effect of improving the uniformity of the structure and the surface properties at the time of casting, and has the effect of reducing disconnection during rolling or wire drawing in a subsequent process due to surface defects and the like, thereby improving productivity. . However, the content of Ti is 0.001%
If the amount is smaller than the above, the above-mentioned effect of miniaturization cannot be obtained. If the amount exceeds 0.1%, the solid solution in the matrix Al decreases the electric conductivity.

【0011】次に、上述の組成を有するAl合金から導
線を製造する条件について説明する。先ず、鋳造時の冷
却速度を5℃/sec以上としたのは、固溶限を越えて
添加したZrを強制固溶させるためである。冷却速度が
これ未満では固溶限を越える部分のZrが鋳造中に析出
してしまう。
Next, conditions for producing a conductor from an Al alloy having the above-described composition will be described. First, the cooling rate during casting was set to 5 ° C./sec or more in order to forcibly dissolve Zr added beyond the solid solubility limit. If the cooling rate is less than this, Zr in a portion exceeding the solid solubility limit will precipitate during casting.

【0012】圧延時おいては、5℃/secの冷却速度
で冷却しながら、450〜580℃の温度から加工を開
始し、Al合金を200℃以下になるまで70%以上の
減面率で加工する。圧延開始温度が450℃未満では鋳
塊が硬くて加工が困難であり、割れが入ることもある。
圧延開始温度が580℃を越えると、高温割れをおこし
易い。圧延終了温度が200℃を越える場合には、冷却
による効果が弱いため、Zrの強制固溶が十分になされ
ない。また、圧延における減面率が70%未満では、最
終線材とした場合の強度が不足する。
At the time of rolling, while cooling at a cooling rate of 5 ° C./sec, processing is started from a temperature of 450 to 580 ° C., and the Al alloy is reduced at a rate of 70% or more until the temperature becomes 200 ° C. or less. Process. If the rolling start temperature is lower than 450 ° C., the ingot is hard and difficult to process, and cracks may occur.
If the rolling start temperature exceeds 580 ° C., hot cracking is likely to occur. When the rolling end temperature is higher than 200 ° C., the effect of cooling is weak, so that the forced solid solution of Zr is not sufficiently performed. On the other hand, if the reduction in area in rolling is less than 70%, the strength of the final wire rod will be insufficient.

【0013】その後、圧延線材を300〜500℃の温
度で6〜250時間熱処理することにより、Zrは微細
なAl3Zrとして分散析出し、これによりAl合金の
強度,耐熱性及び導電率が向上する。熱処理温度が30
0℃未満では、Zrの析出が十分ではなく、所望の強
度,導電率及び耐熱性が得られず、熱処理温度が500
℃を越えると、再結晶化が始まり析出物が粗大となって
強度が低下すると共に、高価なZrの浪費となる。上記
熱処理温度範囲でも、熱処理時間が6時間未満ではZr
の析出が十分行われず、また250時間を越えると強度
低下が大きくなる。この熱処理のより好ましい条件は、
400〜500℃の温度で30〜50時間である。この
熱処理の後、60%以上の減面率の冷間加工を加える
が、これはAl合金の強度を上昇させるためであり、減
面率が60%未満では加工硬化が不足し、十分な強度が
得られない。
Thereafter, the rolled wire is heat-treated at a temperature of 300 to 500 ° C. for 6 to 250 hours, whereby Zr is dispersed and precipitated as fine Al 3 Zr, thereby improving the strength, heat resistance and conductivity of the Al alloy. I do. Heat treatment temperature is 30
If the temperature is lower than 0 ° C., the precipitation of Zr is not sufficient, and the desired strength, electrical conductivity and heat resistance cannot be obtained.
When the temperature exceeds ℃, recrystallization starts and the precipitate becomes coarse, the strength is reduced, and expensive Zr is wasted. Even in the above heat treatment temperature range, if the heat treatment time is less than 6 hours, Zr
Is not sufficiently carried out, and when the time exceeds 250 hours, the strength is greatly reduced. More preferred conditions for this heat treatment are:
30-50 hours at a temperature of 400-500 ° C. After this heat treatment, cold working with a surface reduction of 60% or more is performed. This is to increase the strength of the Al alloy. If the surface reduction is less than 60%, work hardening is insufficient and sufficient strength is obtained. Can not be obtained.

【0014】以上の冷間伸線処理により、仕上がり線と
して所望の性能を満足する特性が得られるが、更に冷間
伸線後、200〜450℃で1〜100時間の熱処理を
線材に加えると、導電率及び耐熱性が一層改善された導
電線が得られる。この場合、熱処理温度が200℃未満
では特性改善は認められない。また熱処理温度が450
℃を越えると、軟化が著しくなるという不都合が生じ
る。上記温度範囲でも、処理時間1時間未満では十分な
特性改善は認められず、また100時間を越えると軟化
が無視できなくなる。この熱処理のより好ましい条件
は、350〜400℃の温度で5〜10時間である。
By the above cold drawing, characteristics satisfying the desired performance can be obtained as a finished wire. However, after the cold drawing, a heat treatment at 200 to 450 ° C. for 1 to 100 hours is applied to the wire. Thus, a conductive wire having further improved conductivity and heat resistance can be obtained. In this case, if the heat treatment temperature is lower than 200 ° C., no improvement in characteristics is observed. Heat treatment temperature is 450
When the temperature exceeds ℃, there is a disadvantage that the softening becomes remarkable. Even in the above temperature range, if the treatment time is less than 1 hour, no sufficient improvement in properties is observed, and if it exceeds 100 hours, softening cannot be ignored. More preferable conditions of this heat treatment are a temperature of 350 to 400 ° C. for 5 to 10 hours.

【0015】[0015]

【発明の実施の形態】以下、この発明の方法により種々
の条件で製造した実施例のAl合金導線の特性データを
比較例と共に説明する。下記実験データはいずれも、連
続鋳造圧延法によるものであるが、棹を圧延する方法に
よっても同様の特性を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, characteristic data of an Al alloy wire of an example manufactured under various conditions by the method of the present invention will be described together with a comparative example. The following experimental data are all based on the continuous casting and rolling method, but similar characteristics can be obtained by the method of rolling the rod.

【0016】各元素(Zr,Si,Fe,Be,Ti)
の添加量と特性との関係 下記表1に示す組成の合金を溶解し、15℃/secの
冷却速度で鋳造し、鋳塊の温度が520℃となった時か
ら、15℃/secの冷却速度で圧延を開始し、加工度
90%、仕上がり温度170℃の条件で9.5mm径の
荒引線を作製した。得られた荒引線を380℃,48時
間の条件で熱処理した後、連続伸線機により冷間加工し
て2.8mm径の線材とした。表1に各試料の線材の特
性を示す。
Each element (Zr, Si, Fe, Be, Ti)
Relationship between the Addition Amount and the Properties An alloy having the composition shown in Table 1 below was melted and cast at a cooling rate of 15 ° C./sec. When the temperature of the ingot reached 520 ° C., cooling was performed at 15 ° C./sec. Rolling was started at a speed, and a rough wire having a diameter of 9.5 mm was produced under the conditions of a working ratio of 90% and a finishing temperature of 170 ° C. After the obtained rough drawn wire was heat-treated at 380 ° C. for 48 hours, it was cold-worked by a continuous wire drawing machine to obtain a 2.8 mm diameter wire rod. Table 1 shows the characteristics of the wire rod of each sample.

【0017】[0017]

【表1】 [Table 1]

【0018】表1中、耐熱性は、得られた線材を420
℃で1時間加熱した後の引張強さを、加熱前のそれに対
する比(残存率%)で表したものである。実施例のAl
合金は、比較例のものに比べて、引張強さ、導電率及び
耐熱性のいずれにおいても優れている。比較例22〜2
4の合金は鋳造困難であり、鋳造を中止した。従って特
性は求めていない。比較例25の合金はかろうじて鋳造
できた。
In Table 1, the heat resistance of the obtained wire was 420
The tensile strength after heating at 1 ° C. for 1 hour is represented by a ratio (residual%) to that before heating. Example Al
The alloy is superior in all of the tensile strength, electrical conductivity and heat resistance as compared with those of the comparative example. Comparative Examples 22 to 2
Alloy No. 4 was difficult to cast and the casting was stopped. Therefore, no characteristics are required. The alloy of Comparative Example 25 was barely castable.

【0019】鋳造及び圧延時の冷却速度と特性の関係 表1のデータは、いずれの組成系においても鋳造時の冷
却速度を15℃/sec一定とした場合のものである
が、表1の試料No.16のAl合金を、いくつかの冷
却速度により鋳造及び圧延したときの特性を下記表2に
示す。
Relationship between Cooling Rate and Properties During Casting and Rolling The data in Table 1 are based on the case where the cooling rate during casting was fixed at 15 ° C./sec in any composition system. No. Table 2 below shows the properties when the 16 Al alloys were cast and rolled at various cooling rates.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すように、鋳造時及び圧延時の冷
却速度を5℃/sec未満とすると、強度及び耐熱性が
十分ではない。これは、強制固溶されるZrの量が少な
いためである。
As shown in Table 2, if the cooling rate during casting and rolling is less than 5 ° C./sec, the strength and heat resistance are not sufficient. This is because the amount of Zr forcibly dissolved is small.

【0022】圧延終了温度と特性の関係 表1の試料No.16の組成のAl合金を冷却速度15
℃/secで鋳造及び圧延し、圧延終了温度を種々変化
させて直径9.5mmの荒引線を試作した。圧延終了温
度は冷却液の量により調整した。得られた荒引線を38
0℃で48時間熱処理した後、冷間伸線により直径3.
5mmの線材とした。得られた線材の特性を表3に示
す。
Relationship between Rolling End Temperature and Properties Sample No. 1 in Table 1 Cooling rate of Al alloy of composition 16
Casting and rolling were performed at a rate of ° C./sec, and a rough drawn wire having a diameter of 9.5 mm was prototyped by varying the rolling end temperature. The rolling end temperature was adjusted by the amount of the cooling liquid. 38
After a heat treatment at 0 ° C. for 48 hours, a diameter of 3.
A 5 mm wire was used. Table 3 shows the properties of the obtained wire.

【0023】[0023]

【表3】 [Table 3]

【0024】表3の結果から、圧延終了温度(仕上がり
温度)が200℃を越えると、強度及び耐熱性が十分で
なくなる。これはやはり、強制固溶されるZr量が少な
くなる結果である。
From the results shown in Table 3, when the rolling end temperature (finish temperature) exceeds 200 ° C., the strength and heat resistance become insufficient. This is also a result of the reduced amount of Zr forcibly forming a solid solution.

【0025】荒引線径に至るまでの圧延時の減面率と特
性の関係 表1の試料No.16のAl合金を、圧延時の減面率を
種々変化させて、15℃/secの冷却速度で鋳造及び
圧延し、圧延終了温度を170℃として、直径9.5m
mの荒引線を試作した。更にその荒引線を380℃で4
8時間熱処理した後、連続伸線機により冷間伸線し、直
径3.5mmの線材とした。その線材の特性を下記表4
に示す。
The reduction in area during rolling up to the rough drawn wire diameter and the characteristics
Sexual relationship Table 1 sample No. The Al alloy No. 16 was cast and rolled at a cooling rate of 15 ° C./sec while variously reducing the area reduction during rolling, and the rolling end temperature was 170 ° C., and the diameter was 9.5 m.
A prototype of a rough drawing line of m was produced. Further, the rough wire was drawn at 380 ° C for 4 hours.
After the heat treatment for 8 hours, the wire was cold drawn by a continuous wire drawing machine to obtain a wire rod having a diameter of 3.5 mm. The properties of the wire are shown in Table 4 below.
Shown in

【0026】[0026]

【表4】 [Table 4]

【0027】表4から、圧延時の減面率が70%未満で
は強度及び耐熱性が低い。これは、減面率が低いと圧延
時に転位が入りにくく、その結果Al3Zrを微細に分
散析出させることができないためである。
From Table 4, it can be seen that when the area reduction rate during rolling is less than 70%, the strength and heat resistance are low. This is because when the area reduction rate is low, dislocations are less likely to occur during rolling, and as a result, Al 3 Zr cannot be finely dispersed and precipitated.

【0028】荒引線の熱処理条件と特性の関係 表1の試料No.16のAl合金を、15℃/secの
冷却速度で鋳造及び圧延し、圧延終了温度を170℃と
して、直径9.5mmの荒引線を試作した。得られた荒
引線を、温度及び時間を種々異ならせて熱処理し、その
後連続伸線機により冷間伸線して、直径3.5mmの線
材とした。下記表5はその線材の特性である。
Relationship between heat treatment conditions and characteristics of rough drawn wire Sample No. 1 in Table 1 The Al alloy No. 16 was cast and rolled at a cooling rate of 15 ° C./sec, and a rolling finish temperature of 170 ° C. was used to produce a rough drawn wire having a diameter of 9.5 mm. The obtained rough drawn wire was heat-treated at various temperatures and times, and then cold drawn by a continuous drawing machine to obtain a wire having a diameter of 3.5 mm. Table 5 below shows the characteristics of the wire.

【0029】[0029]

【表5】 [Table 5]

【0030】表5に示すように、熱処理温度が300℃
未満(260℃)では、Zrの析出が不十分であり、引
張強度、導電率及び耐熱性が低い。熱処理温度が500
℃を越えた場合(530℃)、再結晶化が始まり、強度
低下が見られる。300〜500℃の温度範囲であって
も、熱処理時間が6時間未満(3時間)では引張強度、
導電率及び耐熱性が十分ではなく、また250時間を越
えた場合(270時間)、やはり強度低下が認められ
る。特に熱処理温度が高い場合、粗大な析出物が多く認
められ、軟化が著しいことが確認された。
As shown in Table 5, the heat treatment temperature was 300 ° C.
If it is lower than 260 ° C., precipitation of Zr is insufficient, and tensile strength, electric conductivity and heat resistance are low. Heat treatment temperature is 500
If the temperature exceeds 530 ° C. (530 ° C.), recrystallization starts and a decrease in strength is observed. Even in the temperature range of 300 to 500 ° C., when the heat treatment time is less than 6 hours (3 hours), the tensile strength,
When the electric conductivity and the heat resistance are not sufficient, and when the time exceeds 250 hours (270 hours), a decrease in strength is also observed. In particular, when the heat treatment temperature was high, many coarse precipitates were observed, and it was confirmed that softening was remarkable.

【0031】素線段階での熱処理条件と特性の関係 表5において、直径9.5mmの荒引線段階で380
℃,12時間の熱処理を行った試料(表5に*印で示
す)に対し、冷間加工した直径2.8mmの素線段階で
更に種々の条件で熱処理を行った。その結果の特性を下
記表6に示す。
Table 5 shows the relationship between heat treatment conditions and characteristics in the wire drawing step.
The sample which was heat-treated at 12 ° C. for 12 hours (indicated by an asterisk in Table 5) was further heat-treated under various conditions in a cold-worked wire stage having a diameter of 2.8 mm. The properties obtained as a result are shown in Table 6 below.

【0032】[0032]

【表6】 [Table 6]

【0033】表6から、200〜450℃の熱処理温度
で導電率及び耐熱性向上等の効果が認められる。ただ
し、上記温度範囲でも、熱処理時間1時間未満では効果
が十分ではなく、また100時間を越えると、強度低下
が認められる。
From Table 6, it can be seen that effects such as improvement in conductivity and heat resistance are obtained at a heat treatment temperature of 200 to 450 ° C. However, even in the above temperature range, if the heat treatment time is less than 1 hour, the effect is not sufficient, and if it exceeds 100 hours, the strength is reduced.

【0034】[0034]

【発明の効果】以上述べたようにこの発明によれば、組
成、及び鋳造時や圧延時の条件を最適化することによ
り、高強度且つ高導電率で耐熱性に優れた高力耐熱Al
合金導線を得ることができる。この様な高力耐熱Al合
金導線を用いることにより、送電容量を高めることが可
能であり、この発明は電力需要の増大に応える上で実益
が大きい。
As described above, according to the present invention, by optimizing the composition and the conditions during casting and rolling, a high-strength heat-resistant aluminum having high strength, high conductivity and excellent heat resistance is obtained.
An alloy conductor can be obtained. By using such a high-strength heat-resistant Al alloy wire, it is possible to increase the power transmission capacity, and the present invention has great benefits in responding to an increase in power demand.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 681 C22F 1/00 681 683 683 685 685Z 686 686A 691 691B 691C 692 692A 694 694A 694B ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI C22F 1/00 681 C22F 1/00 681 683 683 685 685Z 686 686A 691 691B 691C 692 692A 694 694A 694B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.29〜1.0重量%のZr、0.0
3〜0.4重量%のSi、0.08〜0.8重量%のF
e、0.005〜0.05重量%のBe、0.001〜
0.1重量%のTiを含有し、残部がAl及び不可避的
不純物からなるアルミニウム合金を溶製した後、5℃/
sec以上の冷却速度で冷却しながら鋳造し、450〜
580℃の温度から5℃/sec以上の冷却速度で冷却
しながら200℃以下の仕上がり温度になるまで70%
以上の減面率の加工を加え、次いで300〜500℃で
6〜250時間熱処理した後、60%以上の加工率で冷
間加工を施すことを特徴とする耐熱アルミニウム合金導
線の製造方法。
1. A method according to claim 1, wherein said Zr is present in an amount of from 0.29 to 1.0% by weight.
3 to 0.4% by weight of Si, 0.08 to 0.8% by weight of F
e, 0.005 to 0.05% by weight of Be, 0.001 to
After melting an aluminum alloy containing 0.1% by weight of Ti and the balance being Al and inevitable impurities, 5 ° C /
casting while cooling at a cooling rate of at least
While cooling from a temperature of 580 ° C. at a cooling rate of 5 ° C./sec or more, 70% until a finished temperature of 200 ° C. or less is obtained.
A method for producing a heat-resistant aluminum alloy wire, comprising: applying a process of the above-described area reduction, heat-treating at 300 to 500 ° C. for 6 to 250 hours, and then performing cold working at a process rate of 60% or more.
【請求項2】 前記冷間加工を施した後更に、200〜
450℃で1〜100時間の熱処理を施すことを特徴と
する請求項1記載の耐熱アルミニウム合金導線の製造方
法。
2. After the cold working is performed, 200 to 200
The method for producing a heat-resistant aluminum alloy conductor according to claim 1, wherein heat treatment is performed at 450 ° C for 1 to 100 hours.
JP25834297A 1997-09-24 1997-09-24 Manufacture of heat resistant aluminum alloy lead wire Pending JPH1192897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25834297A JPH1192897A (en) 1997-09-24 1997-09-24 Manufacture of heat resistant aluminum alloy lead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25834297A JPH1192897A (en) 1997-09-24 1997-09-24 Manufacture of heat resistant aluminum alloy lead wire

Publications (1)

Publication Number Publication Date
JPH1192897A true JPH1192897A (en) 1999-04-06

Family

ID=17318919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25834297A Pending JPH1192897A (en) 1997-09-24 1997-09-24 Manufacture of heat resistant aluminum alloy lead wire

Country Status (1)

Country Link
JP (1) JPH1192897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162023A1 (en) * 2016-03-25 2017-09-25 Giulio Properzi PROCEDURE FOR TRANSFORMING VERGELLA OF NON-FERROUS METALS AND THEIR ALLOYS IN HIGH-STRETCH WIRE AND IN THE RICOTTO STATE.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162023A1 (en) * 2016-03-25 2017-09-25 Giulio Properzi PROCEDURE FOR TRANSFORMING VERGELLA OF NON-FERROUS METALS AND THEIR ALLOYS IN HIGH-STRETCH WIRE AND IN THE RICOTTO STATE.
US11400500B2 (en) 2016-03-25 2022-08-02 Giulio Properzi Method for converting wire rod of nonferrous metals and alloys thereof to wire with high elongation and in the annealed state

Similar Documents

Publication Publication Date Title
JP4279203B2 (en) Aluminum alloy for conductive wire of automobile
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
JPH0125822B2 (en)
JP4144184B2 (en) Manufacturing method of heat-resistant Al alloy wire for electric conduction
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JP4144188B2 (en) Manufacturing method of heat-resistant aluminum alloy wire for electric conduction
JPS6123852B2 (en)
JPH1192897A (en) Manufacture of heat resistant aluminum alloy lead wire
JP2835041B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JPH1192896A (en) Manufacture of heat resistant aluminum alloy lead wire
JP2001131719A (en) HEAT RESISTANT Al ALLOY WIRE ROD FOR ELECTRICAL CONDUCTION AND PRODUCING METHOD THEREFOR
JP2001254132A (en) Method of producing electrically conductive heat resistant aluminum alloy and alloy wire
JP2835042B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JPH07207392A (en) Heat resistant conductive aluminum alloy and manufacture of wire made of the alloy
JPS6143424B2 (en)
JPH042664B2 (en)
JPH0152468B2 (en)
JP3227072B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
JPH11350093A (en) Manufacture of heat resistant aluminum alloy conducting wire
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP3403763B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP2869859B2 (en) High strength conductive Cr-containing copper alloy and method for producing the same
JPH11209856A (en) Manufacture of electrical conducting heat resistant aluminum alloy wire
JPS5931585B2 (en) Manufacturing method of conductive aluminum alloy
JP2932726B2 (en) Manufacturing method of copper alloy wire