JPH1187989A - Shield - Google Patents

Shield

Info

Publication number
JPH1187989A
JPH1187989A JP24091097A JP24091097A JPH1187989A JP H1187989 A JPH1187989 A JP H1187989A JP 24091097 A JP24091097 A JP 24091097A JP 24091097 A JP24091097 A JP 24091097A JP H1187989 A JPH1187989 A JP H1187989A
Authority
JP
Japan
Prior art keywords
magnetic
amorphous
present
resin
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24091097A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Yoshio Bizen
嘉雄 備前
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24091097A priority Critical patent/JPH1187989A/en
Publication of JPH1187989A publication Critical patent/JPH1187989A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance shielding characteristics by arranging a plurality of thin magnetic bands made of an amorphous alloy or a nano-crystal alloy in parallel, while overlapping the end part thereof partially, and integrating them with resin and then arranging a conductor on one side. SOLUTION: A thin amorphous magnetic body is produced by liquid quenching method, e.g. single roll method, and heat treated at a temperature of crystallization point or above, thus microcrystallizing the thin amorphous magnetic body. In order to magnetically and electrically couple the thin magnetic band of amorphous alloy or nano-crystal alloy thus produced, a plurality of rows of thin magnetic bands are arranged in parallel, while overlapping the end part thereof partially and a resin sheet is bonded to one end thereof. Furthermore, a conductor of copper or aluminum is arranged on one side of the sheet. According to the arrangement, magnetic shielding and electromagnetic shielding characteristics can be exhibited sufficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器等に使用
される磁気シールドおよび電磁波シールドとして用いる
ことができるシールド部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shield member that can be used as a magnetic shield and an electromagnetic wave shield used in electronic equipment and the like.

【0002】[0002]

【従来の技術】近年電子機器が高度化し、かつ多数用い
られるようになったために、漏れ磁界や電磁雑音等によ
る機器の誤動作等が問題となっている。これを防止する
ためのシールド材としては、鉄箔あるいはパーマロイ等
が有効であることが知られている。これは軟磁性体の透
磁率を利用したものであり、その値が大きいものほど効
果が高い。これに対し、軟磁性体にアモルファス材料を
用いることで、より大きな磁気シールド効果が得られる
ことが、特開昭52−10660号、同55−2119
6号等で示されている。また特公平4−4393におい
ては、Fe−Cu−Nb−Si−B系に代表されるよう
なナノ結晶合金が優れた軟磁性を示し、経時変化も小さ
いためシールド材等に適することが示されている。
2. Description of the Related Art In recent years, as electronic devices have become more sophisticated and have been used in large numbers, malfunctions of the devices due to leakage magnetic fields, electromagnetic noise, and the like have become a problem. It is known that iron foil or permalloy is effective as a shielding material for preventing this. This utilizes the magnetic permeability of the soft magnetic material, and the larger the value, the higher the effect. On the other hand, a larger magnetic shielding effect can be obtained by using an amorphous material for the soft magnetic material, as disclosed in JP-A-52-10660 and JP-A-55-2119.
No. 6, etc. In Japanese Patent Publication No. 4-4393, a nanocrystalline alloy represented by Fe-Cu-Nb-Si-B system shows excellent soft magnetism and shows little change with time, so that it is suitable for a shielding material or the like. ing.

【0003】また登録特許公報第2591586号ある
いは第2591585号に記載されるように、お互いに
並行に配置したアモルファスリボンの端面を突き合わせ
平面積を確保し、さらに銅等の金属箔を積層して、シー
ルド材も提案されている。
As described in Japanese Patent Publication No. 2591586 or 2591585, the end faces of amorphous ribbons arranged in parallel with each other are secured to each other to secure a flat area, and a metal foil such as copper is laminated. Shielding materials have also been proposed.

【0004】[0004]

【発明が解決しようとする課題】アモルファス合金およ
びナノ結晶合金は、リボン状もしくは粉末に製造される
ため、そのままでは大面積のシールド部材を直接得るこ
とができない。面積を大きくする技術としては、上述し
たリボンを並行に配置する方法や粉末を樹脂で固めてシ
ート状に成形する方法がある。しかし、粉末と樹脂とで
成形する方法は、磁性材料を粒子化したことによって、
各粒子における反磁界の影響が高くなり、磁気シールド
特性は十分でない。
Since amorphous alloys and nanocrystalline alloys are manufactured in the form of ribbons or powders, a large-area shield member cannot be directly obtained as it is. As a technique for increasing the area, there are a method of arranging the ribbons in parallel and a method of solidifying the powder with a resin and forming the sheet into a sheet. However, the method of molding with powder and resin is based on the fact that the magnetic material is granulated,
The effect of the demagnetizing field on each particle increases, and the magnetic shielding properties are not sufficient.

【0005】また,リボンを並行につき合わせて配置す
る方法は、リボンの幅の寸法精度およびリボンの端面が
完全な垂直断面ではないことから、並行につき合わせた
リボン同士はほとんど接触しておらず、各リボンの磁気
的あるいは電気的なつながりが弱いため、十分なシール
ド効果が得られないという問題が生ある。本発明の目的
は、上述した問題点に鑑み、アモルファスおよびナノ結
晶合金のシールド特性を充分に発揮できる新しい構成の
シールド部材を提供することである。
In the method of arranging the ribbons in parallel, the ribbons aligned in parallel hardly contact each other because the dimensional accuracy of the width of the ribbon and the end face of the ribbon are not completely vertical. Since the magnetic or electrical connection between the ribbons is weak, there is a problem that a sufficient shielding effect cannot be obtained. SUMMARY OF THE INVENTION An object of the present invention is to provide a shield member having a new configuration capable of sufficiently exhibiting the shielding characteristics of amorphous and nanocrystalline alloys in view of the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明者は、並行に配し
たリボン状のアモルファスあるいはナノ結晶合金を、単
純につき合わせるのではなく、一部重ね合わせる構成と
し樹脂により一体化すれば、従来リボン間に存在した空
隙により発生した磁気的あるいは電気的なギャップのた
めに劣化したシールド特性を改善できることを見いだし
本発明に到達した。
SUMMARY OF THE INVENTION The present inventor has proposed that a ribbon-shaped amorphous or nanocrystalline alloy arranged in parallel should not be simply joined but partially overlapped, and then integrated with a resin. The present inventors have found that it is possible to improve the shield characteristics deteriorated due to a magnetic or electric gap generated by a gap existing therebetween, and reached the present invention.

【0007】すなわち本発明は、アモルファス合金もし
くはナノ結晶合金よりなる複数条の磁性薄帯同士が、端
部を部分的に重ね合わされ、かつ並行に配置され、樹脂
により一体化しており、その少なくとも一方に、導電体
を有することを特徴とするシールド部材である。
That is, according to the present invention, a plurality of magnetic ribbons made of an amorphous alloy or a nanocrystalline alloy are partially overlapped at their ends, arranged in parallel, and integrated with a resin, and at least one of them. A shield member comprising a conductor.

【0008】[0008]

【発明の実施の形態】上述したように、本発明において
重要な特徴の一つは、リボン同士を重ね合わせたことに
ある。重ねられたリボンは、磁気的および電気的に接触
している。したがって、磁気シールドおよび電磁シール
ドとして、とらえた磁束あるいは電磁波の漏洩部がなく
なるという利点がある。特に100μm以下の薄帯であ
るアモルファスおよびナノ結晶材は、磁気シールドの用
途では、薄いためにシールドとして磁束を通す有効断面
積を確保し難く、空間が有ると磁束が漏洩しやすいた
め,重ね合わせ部分の存在は必要である。なお重ね合わ
せ形態としては、図2に示すように、波状に重ね合わせ
ると、リボンを一方向から順に並べやすい。また、図3
に示すように千鳥状に重ね合わせても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, one of the important features of the present invention is that ribbons are overlapped. The stacked ribbons are in magnetic and electrical contact. Therefore, the magnetic shield and the electromagnetic shield have an advantage that the leaked portion of the captured magnetic flux or electromagnetic wave is eliminated. In particular, amorphous and nanocrystalline materials, which are thin ribbons of 100 μm or less, are difficult to secure an effective cross-sectional area through which magnetic flux can pass as a shield in magnetic shielding applications, and magnetic flux easily leaks when there is a space. The presence of the part is necessary. Note that, as a superposition form, as shown in FIG. 2, when superimposed in a wave shape, the ribbons are easily arranged in order from one direction. FIG.
As shown in FIG.

【0009】さらに本発明においては、樹脂にて一体化
する。100μm以下の薄帯においては、重ね合わせ部
分があっても、ポリエチレンテレフタレート(PET)
や塩化ビニルなどの可塑性の樹脂で覆うことによって、
重ね合わせの段差を緩和して、十分な可撓性を有するこ
とができる。もちろん、磁性薄帯と樹脂の間に接着剤を
介しても良い。また、本発明で使用する樹脂の厚さは、
可撓性を確保するためには、500μm以下の厚さであ
ることが好ましく、重ね合わせの段差を吸収するには、
磁性薄帯の厚さより厚いことが望ましい。
Further, in the present invention, the resin is integrated. For thin ribbons of 100 μm or less, polyethylene terephthalate (PET)
By covering with a plastic resin such as
Steps of superposition can be reduced, and sufficient flexibility can be obtained. Of course, an adhesive may be interposed between the magnetic ribbon and the resin. Also, the thickness of the resin used in the present invention,
In order to ensure flexibility, it is preferable that the thickness is 500 μm or less.
It is desirable that the thickness be larger than the thickness of the magnetic ribbon.

【0010】本発明でいうナノ結晶材というのは、実質
的に100nm以下の微細結晶で構成される材料であ
る。具体的には、Fe−Cu−Nb−Si−B系に代表
されるbccFeの微細結晶でなる材料である。このよ
うなナノ結晶材は、熱処理により結晶化しているため、
アモルファス材より脆く、取り扱いが難しいという問題
がある。本発明のように、樹脂と一体化することによ
り、ナノ結晶材に可撓性を持たせることができ、シール
ド材としての曲げ加工等の取り扱いを改善することがで
きる。
[0010] The nanocrystalline material referred to in the present invention is a material substantially composed of fine crystals of 100 nm or less. Specifically, it is a material composed of fine crystals of bccFe represented by the Fe-Cu-Nb-Si-B system. Since such a nanocrystalline material is crystallized by heat treatment,
There is a problem that it is more brittle than an amorphous material and is difficult to handle. By integrating with a resin as in the present invention, flexibility can be given to the nanocrystalline material, and handling such as bending as a shielding material can be improved.

【0011】本発明のシールド部材は、次のような方法
で製造することができる。まず、単ロール法などの液体
急冷法によりアモルファス薄帯を作製する。次いでアモ
ルファス合金はこのままの状態で使用することができる
が、より優れた軟磁性を得るために、結晶化温度以下で
熱処理しても良い。一方、ナノ結晶材では、アモルファ
ス薄帯を作製した後、結晶化温度以上で熱処理し微結晶
化させる。このようにして得られたアモルファス合金も
しくはナノ結晶合金の磁性薄帯を磁気的および電気的に
結合できるように、端部を部分的に重ね合わせて、並列
に複数条ならべ、その少なくとも一方に樹脂製のシート
を接着する。 また、本発明において樹脂は一層である
必要はなく、接着剤となる樹脂と補強のための樹脂の組
み合わせのように、多層化しても良い。
The shield member of the present invention can be manufactured by the following method. First, an amorphous ribbon is produced by a liquid quenching method such as a single roll method. Next, the amorphous alloy can be used as it is, but it may be heat-treated at a temperature lower than the crystallization temperature to obtain better soft magnetism. On the other hand, in the case of a nanocrystalline material, after forming an amorphous ribbon, it is heat-treated at a crystallization temperature or higher to microcrystallize. In order to magnetically and electrically couple the magnetic ribbons of the amorphous alloy or the nanocrystalline alloy obtained in this way, the ends are partially overlapped, and a plurality of strips are arranged in parallel, and at least one of them is made of resin. Adhesive sheets. Further, in the present invention, the resin does not need to be a single layer, and the resin may be multi-layered such as a combination of a resin serving as an adhesive and a resin for reinforcement.

【0012】本発明のもう一つの重要な特徴は、シート
の少なくとも一方の面に、銅またはアルミ等の導電体を
配置することである。これは、アモルファス合金もしく
はナノ結晶合金の電気抵抗は大きく、高周波数帯域での
電磁波に対し、上述した磁性薄帯だけでは十分なシール
ド効果が得られにくい場合がある。そのため本発明で
は、高周波数帯域での電磁シールド特性に優れた良導体
を複合化することで、磁気シールド特性と電磁シールド
特性をより高める構成としたものである。また、本発明
で使用する導電体の厚さは、可撓性を確保するために
は、200μm以下の厚さであることが好ましい。
Another important feature of the present invention is the placement of a conductor such as copper or aluminum on at least one side of the sheet. This is because the electric resistance of the amorphous alloy or the nanocrystalline alloy is large, and it may be difficult to obtain a sufficient shielding effect with respect to electromagnetic waves in a high frequency band using only the above-described magnetic ribbon. Therefore, in the present invention, the magnetic shield characteristics and the electromagnetic shield characteristics are further enhanced by combining a good conductor having excellent electromagnetic shield characteristics in a high frequency band. Further, the thickness of the conductor used in the present invention is preferably 200 μm or less in order to ensure flexibility.

【0013】[0013]

【実施例】【Example】

(実施例1)単ロール法により幅25mm、厚さ20μ
mのCu1−Nb3−Si15−B6(at%)、残部Fe
からなるアモルファスリボンを作製し、これを550℃
で1時間熱処理して、100nm以下のbccFeの微
細結晶でなるナノ結晶材リボンを得た。ついで、磁気
的、電気的に結合するように、図2に示すように重ね合
わせて複数条並列にならべ、接着剤を用いて、片面全体
に厚さ75μmの塩化ビニル製の樹脂シートを接着し、
もう一方の面全体を覆うように、広幅の厚さ35μmの
銅箔を接着し、300mm×300mmの大きさのシー
ルド部材となるシートを作製した。このシートの断面構
造の模式図を図1に示す。このシートから内径33m
m、外径45mmのリング試料を採取し、磁気シールド
材の主要な周波数帯域である50Hzから10kHzに
おける初透磁率を測定した。
(Example 1) Width 25mm, thickness 20μ by single roll method
m 1 of Cu 1 —Nb 3 —Si 15 —B 6 (at%), balance Fe
An amorphous ribbon consisting of 550 ° C.
For 1 hour to obtain a nanocrystalline ribbon made of fine crystals of bccFe of 100 nm or less. Then, as shown in FIG. 2, a plurality of layers are superposed and arranged in parallel so as to be magnetically and electrically connected, and a resin sheet made of vinyl chloride having a thickness of 75 μm is adhered to one entire surface using an adhesive. ,
A wide copper foil having a thickness of 35 μm was adhered so as to cover the entire other surface, thereby producing a sheet serving as a shield member having a size of 300 mm × 300 mm. FIG. 1 shows a schematic view of the cross-sectional structure of this sheet. 33m inside diameter from this sheet
m, a ring sample having an outer diameter of 45 mm was sampled, and the initial magnetic permeability in a main frequency band of 50 Hz to 10 kHz of the magnetic shield material was measured.

【0014】また比較例として、上述した実施例のナノ
結晶材リボンを用い、図4に示すようにつき合わせて複
数条並列にならべ、実施例と同様に接着剤を用いて、片
面全体に厚さ75μmの塩化ビニル製のシートを接着
し、もう一方の面全体を覆うように、広幅の厚さ35μ
mの銅箔を接着し、300mm×300mmの大きさの
シートを作製した。このシートから同様のリング試料を
採取し初透磁率を測定した。また、実施例、比較例とも
に、コイルによって上記300mm×300mmのシー
トに、1Gの直流磁界を印可した際、接合部に発生する
漏洩磁束をガウスメーターを用いて測定した。結果を表
1に付記する。さらに伝達インピーダンス法によって、
1MHzから1GHzまでの電磁波シールド効果を測定
した結果を図5に示す。
As a comparative example, the nanocrystalline material ribbons of the above-described embodiment were used, and a plurality of strips were arranged in parallel as shown in FIG. 4, and an adhesive was used in the same manner as in the embodiment. A 75 μm thick vinyl chloride sheet is adhered, and a wide thickness 35 μm is covered so as to cover the entire other surface.
m of copper foil was adhered to prepare a sheet having a size of 300 mm × 300 mm. A similar ring sample was taken from this sheet and the initial magnetic permeability was measured. In both the examples and the comparative examples, when a DC magnetic field of 1 G was applied to the 300 mm × 300 mm sheet using a coil, the leakage magnetic flux generated at the joint was measured using a Gauss meter. The results are shown in Table 1. Furthermore, by the transfer impedance method,
FIG. 5 shows the results of measuring the electromagnetic wave shielding effect from 1 MHz to 1 GHz.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように、本発明のシール
ド部材は、重ね合わせ部を形成することにより、比較例
よりも高い透磁率と低い漏洩磁束を有しており、磁気シ
ールド材として優れたものとなった。加えて、図5から
本発明品は比較例に比べ、電磁波シールド材としても優
れたものとなった。また、本発明のシールド部材は、重
ね合わせ部により、電気的に結合した一体のシートとな
っていることを確認した。本発明に係るシールド部材
は、曲げや切断が可能である。必要に応じて粘着層を表
面に設けると、容易に装置等に電子機器等の必要箇所に
貼り付けることが可能である。
As is apparent from Table 1, the shield member of the present invention has a higher magnetic permeability and a lower leakage magnetic flux than the comparative example by forming the overlapping portion, and is excellent as a magnetic shield material. It became something. In addition, FIG. 5 shows that the product of the present invention was also excellent as an electromagnetic wave shielding material as compared with the comparative example. In addition, it was confirmed that the shield member of the present invention was an integrated sheet electrically connected by the overlapping portion. The shield member according to the present invention can be bent or cut. If an adhesive layer is provided on the surface as needed, it can be easily attached to a device or the like at a necessary place such as an electronic device.

【0017】(実施例2)単ロール法により幅25m
m、厚さ25μmのFe2−Mn2−Cr3−Si13−B9
(at%)、残部Coからなるアモルファスリボンを作
製し、450℃で1時間熱処理した。これを図2に示す
ように、磁気的、電気的に結合するように複数条並列に
ならべ、その片面に上記ポリエチレンテレフタレートを
接着し、もう片方の面全体を覆うように、広幅の厚さ3
5μmのアルミ箔を接着し、400mm×800mmの
大きさのシールド部材となるシートを作製した。このシ
ートから内径33mm、外径45mmのリング試料を採
取し、周波数50Hzから10kHzにおける初透磁率
を測定した。
(Example 2) Width 25m by single roll method
m, 25 μm thick Fe 2 —Mn 2 —Cr 3 —Si 13 —B 9
(At%), an amorphous ribbon consisting of the balance Co was prepared and heat-treated at 450 ° C. for 1 hour. As shown in FIG. 2, a plurality of layers are arranged in parallel so as to be magnetically and electrically coupled, the above-mentioned polyethylene terephthalate is adhered to one surface thereof, and a wide thickness 3 is applied so as to cover the entire other surface.
An aluminum foil of 5 μm was adhered to prepare a sheet serving as a shield member having a size of 400 mm × 800 mm. A ring sample having an inner diameter of 33 mm and an outer diameter of 45 mm was collected from this sheet, and the initial permeability at a frequency of 50 Hz to 10 kHz was measured.

【0018】また比較例として、上述した実施例のアモ
ルファスリボンを用い、図4に示すようにつき合わせて
複数条並列にならべ、上述の実施例と同様接着剤を用
い、片面にポリエチレンテレフタレート、もう一方の面
全体を覆うように、広幅の厚さ35μmのアルミ箔を張
り合わせ、400mm×800mmの大きさのシートを
作製し、同様のリング試料を採取し、50Hzから10
kHzにおける初透磁率を測定した。また、実施例、比
較例ともに、コイルによって発生直流磁界を印可した場
合の接合部に発生する漏洩磁束を測定した。結果を表2
に付記する。さらに伝達インピーダンス法によって、1
MHzから1GHzまでの電磁波シールド効果を測定し
た結果を図6に示す。
As a comparative example, the amorphous ribbon of the above-described embodiment was used, a plurality of strips were arranged in parallel as shown in FIG. 4, an adhesive was used in the same manner as in the above-described embodiment, polyethylene terephthalate was used on one side, and A wide aluminum foil having a thickness of 35 μm is stuck so as to cover the entire surface of the sheet, a sheet having a size of 400 mm × 800 mm is prepared, and a similar ring sample is collected.
The initial permeability at kHz was measured. In each of the examples and comparative examples, the leakage magnetic flux generated at the joint when the DC magnetic field generated by the coil was applied was measured. Table 2 shows the results
It appends to. Further, by the transfer impedance method, 1
FIG. 6 shows the results of measuring the electromagnetic wave shielding effect from MHz to 1 GHz.

【0019】[0019]

【表2】 [Table 2]

【0020】表2から明らかなように、本発明のアモル
ファス材を用いたシールド部材は、重ね合わせ部を形成
することにより、実施例1のナノ結晶材よりもやや劣る
ものの優れた初透磁率と少ない漏洩磁束を有しており、
磁気シールド材として優れたものとなった。さらに図6
から電磁波シールド材としても優れたものとなった。ま
た、本発明のシールド部材は、重ね合わせ部により、電
気的に結合した一体のシートとなっていることを確認し
た。
As is clear from Table 2, the shield member using the amorphous material of the present invention has an excellent initial magnetic permeability, although slightly inferior to the nanocrystalline material of Example 1, by forming the overlapping portion. Has low leakage magnetic flux,
It became an excellent magnetic shield material. Further FIG.
Therefore, it became an excellent electromagnetic shielding material. In addition, it was confirmed that the shield member of the present invention was an integrated sheet electrically connected by the overlapping portion.

【0021】上述したように、アモルファス材を用いた
本発明のシールド材は、上述したナノ結晶材を用いた場
合と同様に高い透磁率と漏洩磁束の少なさに加えて、電
気的に一体となっているため、比較例に比べて、磁気シ
ールドおよび電磁波シールド特性は優れたものとなる。
また本発明に係るシールド部材は、曲げや切断が可能で
ある。必要に応じて粘着層を表面に設けると、容易に装
置等に電子機器等の必要箇所に貼り付けることが可能で
ある。
As described above, the shielding material of the present invention using an amorphous material has a high magnetic permeability and a low leakage magnetic flux, as well as an electrically integrated structure, as in the case of using the above-described nanocrystalline material. Therefore, the magnetic shield and the electromagnetic wave shield characteristics are excellent as compared with the comparative example.
Further, the shield member according to the present invention can be bent or cut. If an adhesive layer is provided on the surface as needed, it can be easily attached to a device or the like at a necessary place such as an electronic device.

【0022】[0022]

【発明の効果】本発明によれば、重ね合わせ部を形成す
ることにより、アモルファスおよびナノ結晶材料のシー
ルド特性を充分に発揮できる新しい構成のシールド部材
を提供することができ、その工業的価値は大きい。
According to the present invention, it is possible to provide a shield member having a new structure capable of sufficiently exhibiting the shielding characteristics of amorphous and nanocrystalline materials by forming an overlapped portion. large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシールド部材の構成を説明するための
模式図である。
FIG. 1 is a schematic diagram for explaining a configuration of a shield member of the present invention.

【図2】本発明のシールド部材の重ね合わせ部の一例を
示す図である。
FIG. 2 is a view showing an example of an overlapping portion of the shield member of the present invention.

【図3】本発明のシールド部材の重ね合わせ部の別の例
を示す図である。
FIG. 3 is a view showing another example of the overlapping portion of the shield member of the present invention.

【図4】比較例のシールド部材の構成例を示す図であ
る。
FIG. 4 is a diagram illustrating a configuration example of a shield member of a comparative example.

【図5】本発明例および比較例の実施例を示す図であ
る。
FIG. 5 is a diagram showing examples of the present invention and comparative examples.

【図6】本発明例および比較例の実施例を示す図であ
る。
FIG. 6 is a diagram showing examples of the present invention and comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アモルファス合金もしくはナノ結晶合金
よりなる複数条の磁性薄帯同士が、端部を部分的に重ね
合わされ、かつ並行に配置され、樹脂により一体化して
おり、その少なくとも一方の面に導電体を配置したこと
を特徴とするシールド部材。
A plurality of magnetic ribbons made of an amorphous alloy or a nanocrystalline alloy are partially overlapped at their ends, arranged in parallel, integrated with a resin, and integrated with a resin. A shield member having a conductor disposed thereon.
JP24091097A 1997-09-05 1997-09-05 Shield Pending JPH1187989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24091097A JPH1187989A (en) 1997-09-05 1997-09-05 Shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24091097A JPH1187989A (en) 1997-09-05 1997-09-05 Shield

Publications (1)

Publication Number Publication Date
JPH1187989A true JPH1187989A (en) 1999-03-30

Family

ID=17066499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24091097A Pending JPH1187989A (en) 1997-09-05 1997-09-05 Shield

Country Status (1)

Country Link
JP (1) JPH1187989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038624A (en) * 2000-07-26 2002-02-06 Kowa Co Electromagnetic wave shielding member and method of manufacturing electromagnetic wave shielding member
JP2006144783A (en) * 2004-11-24 2006-06-08 Pfeiffer Vacuum Gmbh Damage preventing device connectable to flange of vacuum pump having high-speed rotor
JP2007019398A (en) * 2005-07-11 2007-01-25 Hitachi Metals Ltd Composite magnetic member
US20110272482A1 (en) * 2007-12-24 2011-11-10 Mullen Jeffrey D Cards and devices with multifunction magnetic emulators and methods for using same
WO2017209481A1 (en) * 2016-05-31 2017-12-07 주식회사 아모센스 Hybrid metal sheet for magnetic shielding and wireless power transmission module including same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038624A (en) * 2000-07-26 2002-02-06 Kowa Co Electromagnetic wave shielding member and method of manufacturing electromagnetic wave shielding member
JP2006144783A (en) * 2004-11-24 2006-06-08 Pfeiffer Vacuum Gmbh Damage preventing device connectable to flange of vacuum pump having high-speed rotor
JP2007019398A (en) * 2005-07-11 2007-01-25 Hitachi Metals Ltd Composite magnetic member
JP4618556B2 (en) * 2005-07-11 2011-01-26 日立金属株式会社 Composite magnetic member
US10032100B2 (en) 2007-12-24 2018-07-24 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US20110272482A1 (en) * 2007-12-24 2011-11-10 Mullen Jeffrey D Cards and devices with multifunction magnetic emulators and methods for using same
US10198687B2 (en) 2007-12-24 2019-02-05 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US10223631B2 (en) 2007-12-24 2019-03-05 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US10255545B2 (en) 2007-12-24 2019-04-09 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US10496918B2 (en) 2007-12-24 2019-12-03 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using the same
US10997489B2 (en) 2007-12-24 2021-05-04 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US11062195B2 (en) 2007-12-24 2021-07-13 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US11494606B2 (en) 2007-12-24 2022-11-08 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
WO2017209481A1 (en) * 2016-05-31 2017-12-07 주식회사 아모센스 Hybrid metal sheet for magnetic shielding and wireless power transmission module including same
US11005175B2 (en) 2016-05-31 2021-05-11 Amosense Co., Ltd. Hybrid metal sheet for magnetic shielding and wireless power transmission module including same

Similar Documents

Publication Publication Date Title
US11723182B2 (en) Shielding film and method for producing a shielding film
JP4265114B2 (en) Antenna coil for tags
JP3891448B2 (en) Thin antenna and card using the same
CN104011814B (en) Magnetic field shielding piece and its manufacture method and wireless charger reception device
TWI258710B (en) Antenna for reader/recorder and reader/recorder having the antenna
KR101451964B1 (en) Magnetic Shielding Sheet for Digitizer, Manufacturing Method thereof, and Portable Terminal Equipment Using the Same
JP3621655B2 (en) RFID tag structure and manufacturing method thereof
JP3772778B2 (en) Antenna coil, identification tag using the same, reader / writer device, reader device and writer device
CN105074838B (en) Magnetic piece, use the electronic equipment of the magnetic piece and the manufacture method of magnetic piece
EP0986037B1 (en) Theft preventive tag and method for attaching the same
KR101399021B1 (en) Magnetic Shielding Sheet for Digitizer, Manufacturing Method thereof, and Portable Terminal Equipment Using the Same
EP2811816A1 (en) Magnetic field shielding sheet for digitizer, manufacturing method thereof, and portable terminal device using same
JPWO2003021610A1 (en) Laminated soft magnetic member, soft magnetic sheet, and method of manufacturing laminated soft magnetic member
JP4117443B2 (en) Method of manufacturing antenna coil for RFID
JP7450607B2 (en) Coil and its manufacturing method
JPH1126981A (en) Shield member
JP2009055412A (en) Antenna with thin-film coil, antenna system and method of manufacturing the antenna
JPH1187989A (en) Shield
JP2002373319A (en) Non-contact data carrier package, and antenna magnetic core for non-contact data carrier used therefor
JPH06260869A (en) Noise filter
JPS61193499A (en) Electromagnetic wave shielding sheet
KR101813386B1 (en) Wireless communication antenna including magnetic substance
CN107591622B (en) Wireless communication antenna and method for manufacturing the same
JPS63305599A (en) Electromagnetic shield material
JPH06112031A (en) Soft magnetic member