JPH06112031A - Soft magnetic member - Google Patents

Soft magnetic member

Info

Publication number
JPH06112031A
JPH06112031A JP4254394A JP25439492A JPH06112031A JP H06112031 A JPH06112031 A JP H06112031A JP 4254394 A JP4254394 A JP 4254394A JP 25439492 A JP25439492 A JP 25439492A JP H06112031 A JPH06112031 A JP H06112031A
Authority
JP
Japan
Prior art keywords
alloy
sheet
flakes
tape
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4254394A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4254394A priority Critical patent/JPH06112031A/en
Publication of JPH06112031A publication Critical patent/JPH06112031A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a soft magnetic member capable of minimizing the breakdown of material due to deformation under the least restriction in shape by composing said member of alloy particles or alloy flakes of fine nano crystalline particles amounting to at least a specific % of the structure and a resin. CONSTITUTION:Amorphous alloy flakes composed of Fe74Cu1Nb3Si15.5B6.5(at%) are heat-treated so as to form fine nano crystalline particles in particle diameter not exceeding 500nm amounting to at least 50% of the structure. These flakes are evenly arranged to be laminated on a polyester film and then another polyester film is laminated on the flakes. Next, said laminated layers are passed through heated rolls to be pressure fixed for manufacturing a sheet. Through these procedures, the breakdown of the material due to deformation can be minimized thereby enabling the sheet and tape composed of a nano crystalline alloy material and a resin under the least restriction in shape to be manufauctured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、磁気シ−ル
ド、盗難防止センサ、物品識別センサや磁心材料等に好
適なナノ結晶合金からなるシ−トおよびテ−プに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet and a tape made of a nanocrystalline alloy suitable for magnetic shields, anti-theft sensors, article identification sensors, magnetic core materials and the like.

【0002】[0002]

【従来の技術】従来、磁気シ−ルド、盗難防止センサ、
物品識別センサや磁心材料には珪素鋼、パ−マロイ、純
鉄、Fe-Al-Si合金やアモルファス合金等の板、薄帯や粉
末等が用いられている。しかし、珪素鋼や純鉄は、軟磁
気特性が十分でない問題点がある。Fe-Al-Si合金は飽和
磁束密度が11kG以下であり十分とは言えない問題があ
る。また、アモルファス合金は製造上の制約から大面積
の物ができない問題がある。これを解決した例としては
特公平3-67617に記載されている樹脂フィルムと一体化
したシ−トがある。しかし、Fe系のアモルファス材料は
磁歪が大きく変形により軟磁気特性が著しく劣化する問
題がある。Co系のアモルファス材料は飽和磁束密度が10
kG以下であり十分とは言えない問題がある。また、経時
変化が大きいことも実用上大きな問題である。最近にな
り、特公平4-4393に示されているようなFe-Cu-Nb-Si-B
系に代表される超微細な結晶粒からなるFe基のナノ結
晶軟磁性合金が優れた軟磁気特性を示し、磁歪が小さく
経時変化も小さいためこれらの用途に適することが報告
されている。
2. Description of the Related Art Conventionally, magnetic shields, anti-theft sensors,
Plates such as silicon steel, permalloy, pure iron, Fe-Al-Si alloys and amorphous alloys, thin strips and powders are used as the article identification sensor and the magnetic core material. However, silicon steel and pure iron have a problem that the soft magnetic characteristics are not sufficient. The Fe-Al-Si alloy has a saturation magnetic flux density of 11 kG or less, which is not sufficient. Further, the amorphous alloy has a problem that a large-area product cannot be formed due to manufacturing restrictions. An example of solving this is a sheet integrated with a resin film described in Japanese Patent Publication No. 3-67617. However, the Fe-based amorphous material has a large magnetostriction, and there is a problem that the soft magnetic characteristics are significantly deteriorated by the deformation. Co-based amorphous material has a saturation magnetic flux density of 10
There is a problem that it is less than kG and not sufficient. In addition, a large change with time is also a serious problem in practical use. Recently, Fe-Cu-Nb-Si-B as shown in Japanese Examined Patent Publication No. 4-4393.
It has been reported that Fe-based nanocrystalline soft magnetic alloys composed of ultrafine crystal grains, represented by the system, exhibit excellent soft magnetic properties, have a small magnetostriction, and have a small change over time, and are suitable for these applications.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記ナノ結晶
軟磁性合金は、優れた軟磁気特性を示すものの、合金が
脆く曲げなどにより破壊しやすい問題点がある。また、
通常これらの合金は薄帯の場合は単ロ−ル法、双ロ−ル
法等の液体急冷法、粉末やフレ−クの場合はアトマイズ
法、キャビテ−ション法等によりアモルファス合金を作
製後これを熱処理し結晶化させることにより粒径500⇔
以下の微細なナノ結晶粒が組織の少なくとも50%を占め
る合金粉末あるいは合金フレークや合金薄帯を作製す
る。ところが、これらの合金は熱処理後脆化してしまう
欠点があり、ある程度変形させると破壊する問題があ
る。また、形状的にも大面積の物を得ることは困難であ
る。このため、用途が限定してしまう問題点がある。
However, although the nanocrystalline soft magnetic alloy exhibits excellent soft magnetic properties, it has a problem that the alloy is brittle and easily broken by bending or the like. Also,
Usually, these alloys are formed by an amorphous alloy by a liquid quenching method such as a single roll method or a twin roll method in the case of a ribbon, an atomizing method in the case of powder or flakes, a cavitation method, etc. By heat treating and crystallizing
An alloy powder, an alloy flake, or an alloy ribbon in which the following fine nanocrystal grains occupy at least 50% of the structure is produced. However, these alloys have a drawback that they are embrittled after heat treatment, and if they are deformed to some extent, they are destroyed. Also, it is difficult to obtain a large area product in terms of shape. Therefore, there is a problem that the use is limited.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決するためになされたものであって、変形による材料の
破壊を低減するとともに形状的制約の少ないナノ結晶合
金材料と樹脂とから構成されたシ−トおよびテ−プ及び
その製造方法を提供することを目的としている。本発明
は、粒径500⇔以下の微細なナノ結晶粒が組織の少なく
とも50%を占める合金粉末あるいは合金フレ−クと樹脂
からなるシ−トおよびテ−プである。もうひとつの本発
明は厚さ3μmから100μmの粒径500⇔以下の微細な結晶
粒からなる少なくとも1層の合金薄帯と樹脂層が一体に
なっていることを特徴とするシ−トおよびテ−プであ
る。本発明のシ−トおよびテ−プは通常次のように製造
される。まず、薄帯を用いる場合は単ロ−ル法、双ロ−
ル法等の液体急冷法、粉末やフレ−クを用いる場合はア
トマイズ法、キャビテ−ション法等によりアモルファス
合金を作製後これを熱処理し結晶化させることにより粒
径500⇔以下の微細なナノ結晶粒が組織の少なくとも50%
を占める合金粉末あるいは合金フレークや合金薄帯を作
製する。次にこの合金粉末、合金フレ−クや合金薄帯と
エポキシ系、シリコン系等の樹脂と混ぜるあるいは、表
面に付着させる等によりシ−トあるいはテ−プを製造す
る。このほかに、樹脂テ−プと接着する方法によっても
製造できる。接着法は加熱圧着で行う方法や接着剤を用
いる方法等がある。合金フレ−クは厚さ5〜100μm、ア
スペクト比10〜15000であるものが扱いやすく望まし
い。この理由は、10未満では反磁界係数が大きくなり実
効透磁率が低下し好ましくなく、15000を超えると取扱
いが困難になるためである。合金粉末と樹脂を一体化し
たものはたとえばプラスチック製の磁気カ−ド等があ
り、これらの本発明に含まれる。また、他の材料たとえ
ばフェライト、珪素鋼、Fe-Al-Si合金、パ−マロイ、銅
等の粉末、フレ−ク、薄帯等と複合したものも本発明に
含まれる。粘着層がシートおよびテ−プの片面あるいは
両面に形成しているシ−トまたはテ−プは容易に接着が
可能であり装置の磁気シ−ルド対策を行う時に容易に実
装できるため便利である。厚さ3μmから100μmの粒径50
0⇔以下の微細な結晶粒からなる少なくとも1層の合金薄
帯と樹脂層が一体になっているシ−トあるいはテ−プは
磁気シ−ルドだけでなくたとえば盗難防止センサや物品
識別センサ等のタグに適している。これは、変形しても
破壊しにくくなり特性的にもパ−マロイを使用した場合
より優れているためである。樹脂が可塑性を有する場合
変形が容易となり平面以外にも接着や固定が可能であり
好ましい。本発明により形状的な制約はなくなりたとえ
ば、壁に取付ける等も容易に行うことができる。電磁波
もシ−ルドする必要がある場合は導電性の大きい金属薄
帯や粉末等と複合すれば大きな効果を得ることができ
る。ナノ結晶合金粉末、フレ−ク、薄帯表面を銅等のメ
ッキを施した後に本発明に使用することも可能である。
また、本発明シ−トと他の軟磁性材料の板や箔を接着し
一体化したものは、弱い磁界から大きな磁界まで優れた
シ−ルド効果を得ることも可能となる。また本発明シ−
トやテ−プは磁気的性質を利用しない用途にも当然のこ
とながら使用可能である。本発明に係わる合金粉末ある
いは合金粉末としてはFeを主体としCu,Auから選ばれる
少なくとも1種の元素及びTi,V,Zr,Nb,Mo,Hf,Ta,Wを必須
成分として含むものが適している。基本的には特公平4-
4393等に記載の合金系であり、具体的にはFe-A-M-Si-B
系(A:Cu,Au、M:Ti,V,Zr,Nb,Mo,Hf,Ta,W)が挙げられる。
この他に必要に応じて耐蝕性等を改善する目的でCrやAl
を含んでも良い。
The present invention has been made to solve the above-mentioned problems, and is composed of a nanocrystalline alloy material and a resin which reduce the destruction of the material due to deformation and have few shape restrictions. It is an object of the present invention to provide a prepared sheet and tape and a manufacturing method thereof. The present invention is a sheet and tape comprising a resin and an alloy powder or alloy flakes in which fine nano-crystal grains having a grain size of 500 or less occupy at least 50% of the structure. Another aspect of the present invention is a sheet and a sheet which are characterized in that at least one layer of an alloy ribbon composed of fine crystal grains having a grain size of 500 to 100 μm and a thickness of 3 μm to 100 μm is integrated with a resin layer. -It is. The sheet and tape of the present invention are usually manufactured as follows. First, when using a ribbon, the single roll method and the double roll method are used.
Liquid quenching method such as the method of chilling, when using powder or flakes, an amorphous alloy is prepared by an atomizing method, cavitation method, etc., and then heat treated to crystallize it to form fine nanocrystals with a grain size of 500 or less. Grains are at least 50% of the tissue
Alloy powder or alloy flakes or alloy ribbons occupying Next, a sheet or tape is manufactured by mixing the alloy powder, the alloy flakes or the alloy ribbon with an epoxy resin, a silicon resin, or the like, or by adhering them to the surface. Besides, it can be manufactured by a method of adhering to a resin tape. Examples of the bonding method include a method of performing thermocompression bonding and a method of using an adhesive. The alloy flakes having a thickness of 5 to 100 μm and an aspect ratio of 10 to 15000 are desirable because they are easy to handle. The reason for this is that if it is less than 10, the demagnetizing factor becomes large and the effective magnetic permeability is lowered, which is not preferable, and if it exceeds 15,000, handling becomes difficult. The one obtained by integrating the alloy powder and the resin is, for example, a plastic magnetic card or the like, and these are included in the present invention. The present invention also includes other materials such as ferrite, silicon steel, Fe-Al-Si alloys, permalloy, powders of copper and the like, flakes, ribbons and the like. A sheet or tape in which an adhesive layer is formed on one or both sides of the sheet and tape can be easily adhered and is convenient because it can be easily mounted when the magnetic shield of the device is taken. . Particle size 50 with a thickness of 3 μm to 100 μm
A sheet or tape in which at least one alloy ribbon consisting of fine crystal grains of 0 or less and a resin layer are integrated is not only a magnetic shield but also an anti-theft sensor or an article identification sensor, for example. Suitable for tags. This is because even if it is deformed, it is less likely to be broken, and the characteristics are superior to the case of using permalloy. It is preferable that the resin has plasticity because it can be easily deformed and can be bonded or fixed to a surface other than a flat surface. According to the present invention, there is no restriction in shape, and for example, it can be easily attached to a wall. When electromagnetic waves need to be shielded, a great effect can be obtained by combining with a metal ribbon or powder having high conductivity. It is also possible to use the present invention after plating the surface of the nanocrystalline alloy powder, flakes and ribbon with copper or the like.
Further, the sheet of the present invention and a plate or foil of another soft magnetic material adhered and integrated together can obtain an excellent shield effect from a weak magnetic field to a large magnetic field. In addition, the present invention
As a matter of course, the belt and the tape can be used for applications that do not utilize magnetic properties. As the alloy powder or alloy powder according to the present invention, it is suitable to use Fe as a main component and at least one element selected from Cu and Au and Ti, V, Zr, Nb, Mo, Hf, Ta and W as essential components. ing. Basically, it is 4-
4393 etc., specifically Fe-AM-Si-B.
The systems (A: Cu, Au, M: Ti, V, Zr, Nb, Mo, Hf, Ta, W) can be mentioned.
In addition to these, Cr and Al may be added for the purpose of improving corrosion resistance etc.
May be included.

【0005】[0005]

【実施例】以下本発明を実施例にしたがって説明するが
本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0006】(実施例1)キャビテ−ション法によりFe
74Cu1Nb3Si15.5B6.5(at%)アモルファス合金フレ−クを
作製した。次にこの合金フレ−クをArガス雰囲気中550゜
Cで1時間熱処理を行った。熱処理後の合金は組織観察の
結果、組織のほとんどが粒径130⇔の微細なナノ結晶粒
が形成していた。この合金の磁歪はほぼ零、飽和磁束密
度は12.3kG、透磁率は反磁界補正を行うと約40000であ
る。次にこのフレ−クを幅500mm、厚さ20μmのポリエス
テルフィルム上に260g/m2の量で均一に配置積層し更に
20μmのポリエステルフィルムをのせた。これを110゜Cに
加熱したロ−ル間を通過させ圧着し厚さ130μmの本発明
シ−トを作製した。図1に本発明に係わるシ−トの平面
図、図2に拡大断面図を示す。本発明シ−トは切断や曲
げが可能であり、磁気カ−ドケ−スの磁気シ−ルド用に
用いたり磁気シ−ルドル−ムの壁に取付け磁気シールド
を行う目的に用いたりすることが可能である。
(Example 1) Fe by a cavitation method
74 Cu 1 Nb 3 Si 15.5 B 6.5 (at%) amorphous alloy flakes were prepared. Next, the alloy flakes were placed in an Ar gas atmosphere at 550 °.
Heat treatment was performed at C for 1 hour. As a result of microstructure observation of the alloy after the heat treatment, most of the microstructure was formed of fine nanocrystal grains with a grain size of 130⇔. The magnetostriction of this alloy is almost zero, the saturation magnetic flux density is 12.3 kG, and the magnetic permeability is about 40,000 when diamagnetic field correction is performed. Next, the flakes were uniformly arranged and laminated at a quantity of 260 g / m 2 on a polyester film having a width of 500 mm and a thickness of 20 μm, and further laminated.
A 20 μm polyester film was placed. This was passed through a roll heated to 110 ° C. and pressure-bonded to produce a sheet of the present invention having a thickness of 130 μm. FIG. 1 is a plan view of a sheet according to the present invention, and FIG. 2 is an enlarged sectional view. The sheet of the present invention can be cut and bent, and can be used for a magnetic shield of a magnetic card case or for the purpose of attaching a magnetic shield to the wall of a magnetic shield and providing a magnetic shield. It is possible.

【0007】(実施例2)単ロ−ル法により幅1mm厚さ1
8μmのFe74Cu1Zr3Si15.5B6.5(at%)アモルファス合金薄
帯を作製した。次にこの合金薄帯をArガス雰囲気中580゜
Cで1時間熱処理を行った。熱処理後の合金は組織観察の
結果、組織のほとんどが粒径120⇔の微細なナノ結晶粒
が形成していた。この合金の磁歪はほぼ零、飽和磁束密
度は12.2kG、透磁率は約80000である。次にこの薄帯を
幅4mm、厚さ20μmのポリエステルフィルム上に配置積層
し更に接着剤の塗布されている20μmのポリエステルフ
ィルムをのせた。これを110゜Cに加熱したロ−ル間を通
過させ圧着し厚さ120μmの本発明テ−プを作製した。図
3に本発明に係わるテ−プの平面図、図4に拡大断面図
を示す。本発明テ−プは切断や曲げが可能であり、盗難
防止センサ等に用いることが可能である。また必要に応
じて粘着層が表面についていると容易に物品に貼り付け
ることが可能である。
(Embodiment 2) Width 1 mm Thickness 1 by the single roll method
An 8 μm Fe 74 Cu 1 Zr 3 Si 15.5 B 6.5 (at%) amorphous alloy ribbon was prepared. Next, this alloy ribbon was 580 ° in Ar gas atmosphere.
Heat treatment was performed at C for 1 hour. As a result of microstructure observation, the alloy after heat treatment showed that most of the microstructure was formed of fine nanocrystal grains with a grain size of 120⇔. The magnetostriction of this alloy is almost zero, the saturation magnetic flux density is 12.2kG, and the magnetic permeability is about 80,000. Next, this thin strip was placed and laminated on a polyester film having a width of 4 mm and a thickness of 20 μm, and further a polyester film of 20 μm coated with an adhesive was placed thereon. This was passed through a roll heated to 110 ° C and pressure-bonded to produce a tape of the present invention having a thickness of 120 µm. FIG. 3 shows a plan view of the tape according to the present invention, and FIG. 4 shows an enlarged sectional view. The tape of the present invention can be cut or bent, and can be used as an antitheft sensor or the like. If necessary, the adhesive layer can be easily attached to the article if it is attached to the surface.

【0008】(実施例3)高圧水アトマイズ法によりFe
74Cu1Ta3Si15.5B6.5(at%)アモルファス合金粉末を作製
した。次にこの合金粉末を窒素ガス雰囲気中570゜Cで1時
間熱処理を行った。熱処理後の合金は組織観察の結果、
組織のほとんどが粒径120⇔の微細なナノ結晶粒が形成
していた。次にこの粉末を記録用磁性層が形成されたプ
ラスチック製の板状に樹脂ともに塗布し更に表面に保護
層を設けて本発明シ−トを作製した。このシ−トは軟磁
気特性に優れシ−ルド効果の良好なナノ結晶合金粉末を
用いておりかつ、変形させても特性劣化や破壊しにくい
ため情報を磁気的に遮断しカ−ドの偽造や改ざんを防止
する必要がある磁気カ−ドに利用した場合に大きな効果
を発揮する。
(Example 3) Fe by high pressure water atomizing method
74 Cu 1 Ta 3 Si 15.5 B 6.5 (at%) Amorphous alloy powder was prepared. Next, this alloy powder was heat-treated at 570 ° C for 1 hour in a nitrogen gas atmosphere. After heat treatment, the alloy was
Most of the texture was formed of fine nanocrystal grains with a grain size of 120⇔. Next, this powder was applied together with a resin on a plastic plate having a recording magnetic layer formed thereon, and a protective layer was further provided on the surface to prepare a sheet of the present invention. This sheet uses nanocrystalline alloy powder with excellent soft magnetic properties and good shielding effect, and because it is difficult to deteriorate or destroy the characteristics even if it is deformed, it magnetically blocks information and forges the card. It is very effective when used in a magnetic card that needs to be protected from tampering.

【0009】[0009]

【発明の効果】本発明によれば、変形による材料の破壊
を低減するとともに形状的制約の少ないナノ結晶合金材
料と樹脂とから構成されたシ−トおよびテ−プ及びその
製造方法を提供することができるためその効果は著しい
ものがある。
According to the present invention, there are provided a sheet and a tape which are composed of a nanocrystalline alloy material and a resin, which are capable of reducing the breakage of the material due to deformation and having less shape restrictions, and a manufacturing method thereof. Therefore, the effect is remarkable.

【0010】[0010]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるシ−トの平面図を示した図であ
る。
FIG. 1 is a diagram showing a plan view of a sheet according to the present invention.

【図2】本発明に係わるシ−トの拡大断面図を示した図
である。
FIG. 2 is an enlarged sectional view of a sheet according to the present invention.

【図3】本発明に係わるテ−プの平面図を示した図であ
る。
FIG. 3 is a diagram showing a plan view of a tape according to the present invention.

【図4】本発明に係わるテ−プの拡大断面図を示した図
である。
FIG. 4 is an enlarged sectional view of a tape according to the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒径500⇔以下の微細なナノ結晶粒が組
織の少なくとも50%を占める合金粉末あるいは合金フレ
−クと樹脂からなるシ−トおよびテ−プ。
1. A sheet and tape comprising an alloy powder or alloy flakes and a resin, in which fine nano-crystal grains having a grain size of 500 or less occupy at least 50% of the structure.
【請求項2】 前記合金粉末あるいは合金フレ−クから
なる層と樹脂フィルムが加熱圧着により一体になってい
ることを特徴とする請求項1に記載のシ−トおよびテ−
プ。
2. The sheet and tape according to claim 1, wherein the layer made of the alloy powder or the alloy flakes and the resin film are integrated by thermocompression bonding.
Pu.
【請求項3】 前記合金粉末あるいは合金フレ−クから
なる層と樹脂フィルムが接着材により一体になっている
ことを特徴とする請求項1に記載のシ−トおよびテ−
プ。
3. The sheet and tape according to claim 1, wherein the layer made of the alloy powder or the alloy flakes and the resin film are integrated by an adhesive.
Pu.
【請求項4】 合金フレ−クから構成され合金フレ−ク
が厚さ5〜100μm、アスペクト比10〜15000であることを
特徴とする請求項1乃至請求項2に記載のシ−トおよび
テ−プ。
4. A sheet and a sheet according to claim 1, wherein the alloy flakes are composed of alloy flakes and have a thickness of 5 to 100 μm and an aspect ratio of 10 to 15000. -P.
【請求項5】 厚さ3μmから100μmの粒径500⇔以下の
微細な結晶粒からなる少なくとも1層の合金薄帯と樹脂
層が一体になっていることを特徴とするシ−トおよびテ
−プ
5. A sheet and a tape which are characterized in that at least one layer of an alloy ribbon composed of fine crystal grains having a grain size of 500 to 100 μm and a thickness of 3 μm to 100 μm is integrated with a resin layer. The
【請求項6】 粘着層がシートおよびテ−プの片面ある
いは両面に形成していることを特徴とする請求項1乃至
請求項5に記載のシ−トおよびテ−プ。
6. The sheet and tape according to claim 1, wherein the adhesive layer is formed on one side or both sides of the sheet and the tape.
【請求項7】 樹脂が可塑性を有することを特徴とする
請求項1乃至請求項6に記載のシ−トおよびテ−プ。
7. The sheet and tape according to claim 1, wherein the resin has plasticity.
【請求項8】 合金粉末あるいは合金粉末がFeを主体と
しCu,Auから選ばれる少なくとも1種の元素及びTi,V,Zr,
Nb,Mo,Hf,Ta,Wを必須成分として含むことを特徴とする
請求項1乃至請求項7に記載のシ−トおよびテ−プ。
8. The alloy powder or the alloy powder is mainly Fe and at least one element selected from Cu and Au and Ti, V, Zr,
The sheet and tape according to any one of claims 1 to 7, which contains Nb, Mo, Hf, Ta and W as essential components.
JP4254394A 1992-09-24 1992-09-24 Soft magnetic member Pending JPH06112031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254394A JPH06112031A (en) 1992-09-24 1992-09-24 Soft magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254394A JPH06112031A (en) 1992-09-24 1992-09-24 Soft magnetic member

Publications (1)

Publication Number Publication Date
JPH06112031A true JPH06112031A (en) 1994-04-22

Family

ID=17264372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254394A Pending JPH06112031A (en) 1992-09-24 1992-09-24 Soft magnetic member

Country Status (1)

Country Link
JP (1) JPH06112031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074631A (en) * 1996-06-25 1998-03-17 Hitachi Ferrite Denshi Kk Magnetic core and zero-phase reactor
WO2001018828A1 (en) * 1999-09-08 2001-03-15 Siemens Aktiengesellschaft Low-retentivity foil and method for producing same
JP2001126158A (en) * 1999-10-29 2001-05-11 Koojin:Kk Radio tag
EP1413632A2 (en) * 1999-01-19 2004-04-28 Imphy Ugine Precision Method for treating a brittle thin metal strip and magnetic parts made from a nanocrystalline alloy strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074631A (en) * 1996-06-25 1998-03-17 Hitachi Ferrite Denshi Kk Magnetic core and zero-phase reactor
EP1413632A2 (en) * 1999-01-19 2004-04-28 Imphy Ugine Precision Method for treating a brittle thin metal strip and magnetic parts made from a nanocrystalline alloy strip
WO2001018828A1 (en) * 1999-09-08 2001-03-15 Siemens Aktiengesellschaft Low-retentivity foil and method for producing same
JP2001126158A (en) * 1999-10-29 2001-05-11 Koojin:Kk Radio tag

Similar Documents

Publication Publication Date Title
JP2643312B2 (en) Magnetic device
KR101399022B1 (en) Sheet for absorbing electromagnetic wave, manufacturing method thereof and electronic equipment including the same
JPH0641636B2 (en) Method for forming amorphous coating
KR100216086B1 (en) Magnetic thin file and method of manufacturing the same and magnetic head
JPS62221199A (en) Magnetic shielding material
JP6839985B2 (en) Magnetic shield member, manufacturing method of magnetic shield member and magnetic shield panel
JP3068156B2 (en) Soft magnetic alloy
JPH06112031A (en) Soft magnetic member
Makino et al. Nanocrystalline soft magnetic Fe M B (M= Zr, Hf, Nb), Fe M O (M= Zr, Hf, rare earth) alloys and their applications
Boll et al. Magnetic material properties and applications of metallic glasses in electronic devices
JPH1126981A (en) Shield member
JPH1187989A (en) Shield
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPH0435937A (en) Magnetic composite parts
JP3627875B2 (en) Magnetic element and manufacturing method thereof
JP2712129B2 (en) Composite magnetic shielding material
JP2983012B2 (en) Bias material for magnetic marker, magnetic marker, and method of manufacturing bias material for magnetic marker
JP4636371B2 (en) Magnetic shield device manufacturing method and magnetic shield sheet
US20240153685A1 (en) Laminate and method for manufacturing the same
Andrews et al. The effects of substrate materials and powder type on the properties of plasma sprayed ferrite
JPH03161909A (en) Soft magnetic thin film and magnetic head
JP2696771B2 (en) Magnetic shield lattice
JP2003163486A (en) Composite magnetic thin band for press working, its manufacturing method and electromagnetic noise shielding member using the thin band
JP2000004094A (en) Magnetic shield plate
CN115206615A (en) Magnetostrictive composite material and preparation method and application thereof