JPS63305599A - Electromagnetic shield material - Google Patents

Electromagnetic shield material

Info

Publication number
JPS63305599A
JPS63305599A JP14198887A JP14198887A JPS63305599A JP S63305599 A JPS63305599 A JP S63305599A JP 14198887 A JP14198887 A JP 14198887A JP 14198887 A JP14198887 A JP 14198887A JP S63305599 A JPS63305599 A JP S63305599A
Authority
JP
Japan
Prior art keywords
amorphous alloy
layers
thickness
layer
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14198887A
Other languages
Japanese (ja)
Other versions
JPH0571200B2 (en
Inventor
Hiroyoshi Ishii
石井 博義
Misao Kaneko
金子 美佐夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP14198887A priority Critical patent/JPS63305599A/en
Publication of JPS63305599A publication Critical patent/JPS63305599A/en
Publication of JPH0571200B2 publication Critical patent/JPH0571200B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the effective shielding of electromagnetic waves over a wide range of wavelength regions, by specifying soft magnetic amorphous alloy pieces of specific scale or flake shapes and laminating them to form amorphous alloy layers and next by laminating one of conductive metallic layers and one of said amorphous alloy layers at a specific interval in between. CONSTITUTION:Soft magnetic amorphous alloy pieces of scale or flake shapes, each of which is 5-100mum in its thickness and 10-15000 in its aspect ratio (a ratio of maximum length to maximum thickness), are laminated 100-500g/m<2> in weight per unit area so as to form amorphous alloy layers 2. Next one of conductive metallic layers 3 and one of said amorphous alloy layers 2 are laminated at an interval of 5-500mum in between. Electromagnetic waves, including magnetic field components on a low-frequency region and electric field components on a high-frequency region, over a wide range of wavelength regions, can be effectively shielded accordingly.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は電磁シールド材に関する。[Detailed description of the invention] B. Industrial application field The present invention relates to an electromagnetic shielding material.

口、従来技術 近年、電気、電子機器の普及に伴い、これらの軽量化、
低価格化のために材料にプラスチックが多用されるよう
になり、そのため、これら電気、電子機器からの漏洩電
磁波による電磁波障害が大きな問題となってきている。
In recent years, with the spread of electrical and electronic devices, the weight of these devices has been reduced,
In order to lower prices, plastics are increasingly used as materials, and as a result, electromagnetic interference due to leakage of electromagnetic waves from these electrical and electronic devices has become a major problem.

コンビ゛ユータや精密測定器のような精密な電気、電子
機器は、外部からの電磁波に曝されると、誤動作を起こ
したり測定値に誤差を生じたりすることが多々ある。そ
のため、米国や西独では電磁波規制がなされており、我
国に於いても近く電磁波規制の制度が制定されることが
予定されている。
Precision electrical and electronic devices such as computers and precision measuring instruments often malfunction or produce errors in measured values when exposed to external electromagnetic waves. For this reason, electromagnetic wave regulations have been enacted in the United States and West Germany, and it is planned that an electromagnetic wave regulation system will soon be established in Japan as well.

ところが、電磁波を遮蔽する方法として種々の方法が検
討されているが、いずれも不十分である。
However, although various methods have been studied to shield electromagnetic waves, none of them are sufficient.

例えば、電気、電子機器のプラスチック製ケーシングの
表面をシールド材で覆う方法として、導電性塗料による
塗装、亜鉛溶射、めっき、蒸着及びスパッタリング等が
ある。これらの方法では、電界成分のシールドにはかな
りの効果があるが、低周波領域の磁界成分に対しては効
果が少なく、また、剥離の問題もあってトラブルを起こ
しかねず、十分な対策とは言い難い。
For example, methods for covering the surface of a plastic casing of electrical or electronic equipment with a shielding material include painting with conductive paint, zinc spraying, plating, vapor deposition, and sputtering. Although these methods are quite effective in shielding the electric field component, they are less effective against the magnetic field component in the low frequency range, and there is also the problem of peeling, which can cause trouble, so it is important to take adequate countermeasures. It's hard to say.

また、電気、電子機器の上記プラスチック中へ金属のフ
ィラーを混入してシールドする方法としては、磁界成分
のシールドをも考慮してステンレス鋼繊維等を用いられ
ているが、これもシールド効果が十分ではない、即ち、
シールド効果を十分に持たせるためには、上記金属フィ
ラーをがなりのti加する必要があり、その結果、プラ
スチックの強度低下をきたし、また、表面に金属フィラ
ーが現れて更に塗装を施すためにコスト高となる。
In addition, as a method of shielding electric and electronic equipment by mixing metal fillers into the plastics mentioned above, stainless steel fibers are used, taking into consideration the shielding of magnetic field components, but this also has a sufficient shielding effect. not, i.e.
In order to have a sufficient shielding effect, it is necessary to add a large amount of titanium to the metal filler, which results in a decrease in the strength of the plastic, and also causes the metal filler to appear on the surface, making it difficult to apply further coating. The cost will be high.

更に、磁界成分のシールドをも考慮して鉄箔もシールド
材として検討されているが、低周波領域での磁界成分に
は透磁率が低くて十分なシールド効果が得られず、高周
波領域での電界成分に対しては銅やアルミニウム等と較
べると電気抵抗が大きく、シールド特性が十分ではない
Furthermore, iron foil is also being considered as a shielding material with consideration given to shielding the magnetic field component, but it has low magnetic permeability for magnetic field components in the low frequency range and cannot provide a sufficient shielding effect. Compared to copper, aluminum, etc., it has a higher electrical resistance with respect to electric field components, and its shielding properties are not sufficient.

ハ0発明の目的 本発明は、上記の事情に鑑みて成されたものであって、
低周波領域に於ける磁界成分及び高周波領域に於ける電
界成分をも含めた広い周波数領域に亘る電磁波の効果的
な遮蔽を可能とする電磁シールド材を提供することを目
的としている。
C0 Purpose of the Invention The present invention has been made in view of the above circumstances, and includes:
The object of the present invention is to provide an electromagnetic shielding material that can effectively shield electromagnetic waves over a wide frequency range, including magnetic field components in the low frequency range and electric field components in the high frequency range.

二1発明の構成 本発明は、少なくとも1層の非晶質合金層と少なくとも
1層層の導電性金属層とを具備し、前記非晶質合金1の
1層と前記導電性金属層の1層とが5〜500μmの間
隔を隔てて積層され、がっ、前記非晶質合金層が、厚さ
5〜100μm、アスペクト比(但し、アスペクト比は
最大厚さに対する最大長さの比である。)10〜150
00の鱗片状又はフレーク状軟磁性非晶質合金片を単位
面積当たりの重量で100〜500g/rr?積層して
なる構造を有する電磁シールド材に係る。
21 Structure of the Invention The present invention comprises at least one amorphous alloy layer and at least one conductive metal layer, one layer of the amorphous alloy 1 and one layer of the conductive metal layer. The layers are laminated with an interval of 5 to 500 μm, and the amorphous alloy layer has a thickness of 5 to 100 μm and an aspect ratio (however, the aspect ratio is the ratio of the maximum length to the maximum thickness). .) 10-150
00 scale-like or flake-like soft magnetic amorphous alloy pieces with a weight per unit area of 100 to 500 g/rr? The present invention relates to an electromagnetic shielding material having a laminated structure.

ホ1発明の作用効果 非晶質合金は、化学的、機械的性質に於いて通常の結晶
質合金に見られない特異な特性を示すために、各種機能
材料として注目されている。中でも鉄基、コバルト基等
の非晶質合金は、結晶異方性を示さないため、保磁力が
非常に小さく、透磁率が高いという極めて良好な軟磁気
特性を示し、この性質を利用しての実用化が期待されて
いる。
E1 Functions and Effects of the Invention Amorphous alloys are attracting attention as various functional materials because they exhibit unique chemical and mechanical properties that are not found in ordinary crystalline alloys. Among them, amorphous alloys such as iron-based and cobalt-based alloys do not exhibit crystal anisotropy, so they exhibit extremely good soft magnetic properties such as very small coercive force and high magnetic permeability. is expected to be put into practical use.

ところが、非晶質合金は通常厚さ数十μm、幅100f
l程度のリボン状のものとして供給されており、所定の
寸法の板材とするには切断による破損や重ね合わせに際
しての接着に問題があり、取扱いが非常に難しい、その
上、所定の厚さにするには幾層にも積層せねばならず、
多くの工数を要して生産性の点で難がある。
However, amorphous alloys usually have a thickness of several tens of μm and a width of 100 f.
It is supplied in the form of a ribbon of about 1.5 lbs., and it is very difficult to handle it because it is difficult to cut into sheets of the specified size and has problems with adhesion when stacking them together. In order to do this, it is necessary to stack many layers,
It requires a lot of man-hours and is problematic in terms of productivity.

本発明者は、鋭意研究の結果、磁性非晶質合金を鱗片状
とし、これを積層することによって、磁性非晶質合金の
上記の優れた特性をその侭保有し、而も生産性にも優れ
た磁気シールド材が得られることを見出した0本発明は
上記の知見によってなされたものである。
As a result of intensive research, the present inventor has found that by forming a magnetic amorphous alloy into scales and laminating them, the above-mentioned excellent properties of the magnetic amorphous alloy can be retained, and productivity can also be improved. The present invention, which has found that an excellent magnetic shielding material can be obtained, was made based on the above findings.

軟磁性非晶質合金片(以下、単に非晶質合金片と呼ぶ、
)の厚さを5μm未満にすると非晶質合金片の製造が困
難であり、これが100μmを越えて厚くなると非晶質
化が難しくなるので、この厚さは5〜100 μmとす
る。特に好ましい厚さは20〜60μmである。
Soft magnetic amorphous alloy flakes (hereinafter simply referred to as amorphous alloy flakes)
) If the thickness is less than 5 μm, it will be difficult to produce an amorphous alloy piece, and if it becomes thicker than 100 μm, it will be difficult to make it amorphous, so the thickness should be 5 to 100 μm. A particularly preferred thickness is 20 to 60 μm.

非晶質合金片のアスペクト比が10未満では、非晶質合
金片の透磁率が低下し、非晶質合金片の磁気特性が変化
するためと、積層が難しくなり、磁気シールド性が劣化
するようになる。他方、上記アスペクト比が15000
を越えると、非晶質合金片の取扱いが面倒になり、生産
性が低下するようになる。アスペクト比の特に好ましい
範囲は50〜10000である。
If the aspect ratio of the amorphous alloy flakes is less than 10, the magnetic permeability of the amorphous alloy flakes decreases, the magnetic properties of the amorphous alloy flakes change, and lamination becomes difficult, resulting in deterioration of magnetic shielding properties. It becomes like this. On the other hand, if the aspect ratio is 15000
If it exceeds this, handling of the amorphous alloy pieces becomes troublesome and productivity decreases. A particularly preferred range of aspect ratio is 50 to 10,000.

上記の非晶質合金片を単位面積当たりの重量で100〜
500g/n(となるように積層して非晶質合金層とす
るのであるが、非晶質合金片の量が100g/nr未満
であると、非晶質合金片の積層及びこれらの間の接触(
導通)が難しくなって磁気シールド性が劣化する。これ
が500g/rrrを越えると、非晶質合金片を積層し
て密着させることが難しくなって非晶質合金層中に空隙
ができるため、単位面積当たりの非晶質合金片の量が増
大するにも拘わらず、磁気シールド性が悪くなる。非晶
質合金片の上記量の特に好ましい範囲は200〜350
g/dである。
The weight of the above amorphous alloy piece per unit area is 100~
However, if the amount of amorphous alloy flakes is less than 100 g/nr, the lamination of amorphous alloy flakes and the space between them will be reduced. contact(
conduction) becomes difficult and magnetic shielding performance deteriorates. If this exceeds 500 g/rrr, it becomes difficult to stack and adhere the amorphous alloy pieces, creating voids in the amorphous alloy layer, and the amount of amorphous alloy pieces per unit area increases. Despite this, magnetic shielding properties deteriorate. A particularly preferable range of the above amount of amorphous alloy flakes is 200 to 350
g/d.

以上のような構造とした非晶質合金層は、良好な軟磁性
を示す非晶質合金片からなっているので・低周波領域に
於ける磁界成分のシールドに有効であるが、高周波領域
に於ける電磁波に対しては電界成分が主体となるため、
銅やアルミニウムのような電気抵抗の小さい導電性材料
に較べると電気抵抗が高い(100〜150μΩ・co
+)ため、厚さを大きくせねばならず、不利である。
The amorphous alloy layer with the above structure is made of amorphous alloy pieces that exhibit good soft magnetism, so it is effective in shielding magnetic field components in the low frequency range, but it is effective in shielding magnetic field components in the high frequency range. Since the electric field component is the main component of electromagnetic waves,
It has a high electrical resistance (100 to 150 μΩ・co
+), the thickness must be increased, which is disadvantageous.

他方、高周波領域で使用される電磁シールド材には、電
気抵抗の低い導電性材料が用いられるが、これらは非磁
性材料又は透磁率の低い磁性材料であるため、低周波領
域での磁界成分に対しては、殆ど無力である。
On the other hand, conductive materials with low electrical resistance are used for electromagnetic shielding materials used in high frequency regions, but since these are non-magnetic materials or magnetic materials with low magnetic permeability, they are susceptible to magnetic field components in low frequency regions. Against them, they are almost powerless.

そこで、本発明にあっては、低周波領域に於ける磁界成
分のシールドに有効な層として非晶質合金片を積層して
なる層と、高周波領域に於ける電界成分のシールドに有
効なシールド層として導電性材料の層とを積層し、広範
囲に亘る周波数領域の電磁波を有効に遮蔽するようにし
ている。
Therefore, in the present invention, a layer made of laminated amorphous alloy pieces is used as a layer effective in shielding magnetic field components in a low frequency region, and a shield is effective in shielding electric field components in a high frequency region. Layers of conductive materials are laminated to effectively shield electromagnetic waves in a wide frequency range.

非晶質合金層と導電性材料からなる層とを直接密着させ
た構造とすると、両層が互いに干渉して特性的に期待で
きないことと、接着剤による積層が工業的に有利である
ことから、プラスチックフィルム等の絶縁材で両層の間
に間隙を設ける。この間隔、即、ち絶縁層の厚さが5μ
m未満であると非晶質合金層と絶縁層との間の密着が難
しく、これが500μmを越えるとシールド材が厚くな
って取扱いが不便になり、工業的にも不利となる。従っ
て上記間隔(絶縁層の厚さ)は5〜500μmの範囲内
とするのが良い。
If the structure is such that the amorphous alloy layer and the conductive material layer are directly adhered to each other, the two layers will interfere with each other and the properties cannot be expected, and lamination using adhesive is industrially advantageous. , provide a gap between both layers using an insulating material such as plastic film. This interval, that is, the thickness of the insulating layer is 5μ
If it is less than 500 μm, it will be difficult to make close contact between the amorphous alloy layer and the insulating layer, and if it exceeds 500 μm, the shielding material will become thick and difficult to handle, which is also disadvantageous from an industrial perspective. Therefore, the above-mentioned interval (thickness of the insulating layer) is preferably within the range of 5 to 500 μm.

また、非晶質合金層と導電性材料の層とを夫々複数層設
ける場合は、両層を互いに間隔を隔てて(絶縁層を挟ん
で)交互に配置するのが望ましい。
Further, when a plurality of amorphous alloy layers and a plurality of conductive material layers are provided, it is desirable that the two layers be arranged alternately at intervals (with an insulating layer in between).

導電性材料としては、銅、アルミニウム、ニッケル及び
鉄等の金属の板を用いることができる。
As the conductive material, metal plates such as copper, aluminum, nickel, and iron can be used.

その板厚が5μmでは高周波領域での電界に対するシー
ルド効果が顕著ではなく、これが500μmを越えると
シールド材が重くなって取扱いが面倒になる。従ってこ
の導電性金属層の厚さは5〜500μmの範囲内とする
のが良い。
If the plate thickness is 5 μm, the shielding effect against electric fields in the high frequency range is not significant, and if it exceeds 500 μm, the shielding material becomes heavy and difficult to handle. Therefore, the thickness of this conductive metal layer is preferably within the range of 5 to 500 μm.

へ、実施例 以下、本発明の詳細な説明する。To, Example The present invention will be explained in detail below.

第1図は本発明に基づく電磁シールド材の平面図、第2
図は同じく構造を模式的に示す拡大断面図である。
Figure 1 is a plan view of the electromagnetic shielding material based on the present invention, Figure 2 is a plan view of the electromagnetic shielding material based on the present invention;
The figure is also an enlarged sectional view schematically showing the structure.

この例は、非晶質合金片2aが積層してなる非晶質合金
層2と銅等の導電性金属のN3とがポリエステルフィル
ム4を挾み、更に非晶質合金層2上に同じポリエステル
フィルム4が被着されて、4N積層構造として電磁シー
ルド材1を構成した例である。但し、第1図では最表層
のポリエステルフィルムは図示省略しである。
In this example, a polyester film 4 is sandwiched between an amorphous alloy layer 2 formed by laminating amorphous alloy pieces 2a and N3 made of a conductive metal such as copper, and the same polyester film This is an example in which the electromagnetic shielding material 1 is configured as a 4N laminated structure with the film 4 adhered thereto. However, in FIG. 1, the outermost polyester film is not shown.

第1図から解るように、各非晶質合金片2aは方向がラ
ンダムになって均一に分散、積層するので、自然に無方
向性となる。これに対して非晶質合金リボンや結晶質合
金薄帯を積層するには、切断と接着の繰返し、無方向性
にするためにクロス方向及び角度を変えた接着をしなけ
ればならず、分散時に所定の方向に沿った若干の磁場を
かければ、非晶質合金片を長手方向に揃え、方向性を付
与することができる。
As can be seen from FIG. 1, the amorphous alloy pieces 2a are uniformly dispersed and stacked in random directions, so that they are naturally non-directional. On the other hand, laminating amorphous alloy ribbons or crystalline alloy ribbons requires repeated cutting and gluing, bonding in cross directions and different angles to make them non-directional, and requires dispersion. Sometimes, by applying a slight magnetic field along a predetermined direction, the amorphous alloy pieces can be aligned in the longitudinal direction and given directionality.

非晶質合金片の組成は、軟磁性を示す組成であれば磁気
シールド性を示す。
If the composition of the amorphous alloy piece exhibits soft magnetism, it exhibits magnetic shielding properties.

非晶質合金片は、リボンからの切断や公知のメルト・エ
クストラクション法によって作ることができるが、生産
性の観点及び非晶質合金片の周縁を薄肉にして鱗片状と
することができることから、本出願人が先に特開昭58
−6907号公報で提示したキャビチーシラン法(熔融
金属に対して濡れ性の小さな表面層を有し、高速で回転
しているロール表面に熔融金属を供゛給し、この熔融金
属を微細な溶融金属滴に分断した後、引続いてこの溶融
金属滴を高速で回転する金属回転体に衝突させて急速凝
固させる方法、)を応用することが望ましい。
Amorphous alloy flakes can be made by cutting from a ribbon or by a known melt extraction method, but from the viewpoint of productivity and because the peripheral edge of the amorphous alloy flake can be made thinner and flake-like. , the present applicant first published JP-A-58
Cavity silane method proposed in Publication No. 6907 (molten metal is supplied to the surface of a roll rotating at high speed, which has a surface layer with low wettability to the molten metal, and the molten metal is pulverized into fine particles). It is desirable to apply a method in which the molten metal droplets are divided into molten metal droplets and then rapidly solidified by colliding with a metal rotating body rotating at high speed.

以下に本発明の具体的な実施例について説明する。Specific examples of the present invention will be described below.

次m 前記キャビチーシラン法によってCo(HFey、JS
lifB!(元素記号に付した数字は当該元素成分の原
子%を表す・以下同じ、)の非晶質合金片を作製した。
Co(HFey, JS
lifB! (The number attached to the element symbol represents the atomic percent of the elemental component; the same shall apply hereinafter.) An amorphous alloy piece was produced.

この非晶質合金片の平均厚さは40μm、アスペクト比
は200〜500である。
This amorphous alloy piece has an average thickness of 40 μm and an aspect ratio of 200 to 500.

この非晶質合金片を使用して第1図及び第2図に示すよ
うな非晶質合金層2と金属層3とを夫々1層ずつ有する
電磁シールド材1とした。即ち、厚さ100μmの銅板
3上に厚さ25μmのポリエステルフィルム4を載せ、
その上に非晶質合金片2aを250g/rrfとなるよ
うに積層し、更に最表層として厚さ25μmのポリエス
テルフィルム4を被せ、これらを接着剤(図示せず)で
接着して電磁シールド材1とした。
This amorphous alloy piece was used to prepare an electromagnetic shielding material 1 having one amorphous alloy layer 2 and one metal layer 3 as shown in FIGS. 1 and 2. That is, a polyester film 4 with a thickness of 25 μm is placed on a copper plate 3 with a thickness of 100 μm,
Amorphous alloy pieces 2a are laminated thereon at a rate of 250 g/rrf, and a polyester film 4 with a thickness of 25 μm is further covered as the outermost layer, and these are bonded with an adhesive (not shown) to form an electromagnetic shielding material. It was set to 1.

この電磁シールド材1について、アトパンテスト社製ス
ペクトラムアナライザT R−4172を使用して電磁
シールド性を測定した。測定の要領を、磁界成分につい
ては第9図に、電界成分については第10図に夫々概要
を図解的に示す。200mx200Bの電磁シールド材
11’;Ig)jl、、dll’から一方の側の10日
離れた位置に直径10鶴の磁波送信用ループアンテナ5
又は長さ10flの電波送信用プローブアンテナ15を
、他方の側の1(hm離れた位Rに直径10mの磁波受
信用ループアンテナ6又は長さ10■の電波受信用プロ
ーブアンテナ16を夫々配置し、これらをトラッキング
ジェネレータ付きスペクトラムアナライザTR4172
7に接続する。送信用アンテナ5又は15からの磁波又
は電波の電磁シールド材1tダメ/lによる減衰を受信
用アンテナ6又は16によって検知し、スペクトラムア
ナライザTR41727で測定する。
The electromagnetic shielding properties of this electromagnetic shielding material 1 were measured using a spectrum analyzer TR-4172 manufactured by Atopan Test Co., Ltd. The measurement procedure is schematically shown in FIG. 9 for the magnetic field component and in FIG. 10 for the electric field component. 200m x 200B electromagnetic shielding material 11'; Ig) jl,, 10 days away from one side from dll' is a loop antenna 5 for magnetic wave transmission with a diameter of 10 cranes.
Alternatively, a radio wave transmitting probe antenna 15 with a length of 10 fl is placed on the other side at a distance R of 1 (hm) from a magnetic wave receiving loop antenna 6 with a diameter of 10 m or a radio wave receiving probe antenna 16 with a length of 10 cm, respectively. , these are measured using spectrum analyzer TR4172 with tracking generator.
Connect to 7. Attenuation of the magnetic waves or radio waves from the transmitting antenna 5 or 15 due to the electromagnetic shielding material 1t/l is detected by the receiving antenna 6 or 16, and measured by the spectrum analyzer TR41727.

測定結果は第4図及び第5図に示す通りである。The measurement results are shown in FIGS. 4 and 5.

なお、第4図及び第5図では、シールド効果はdBの絶
対値で表しである。第4図及び第5図には、比較のため
に厚さ100μmの銅板(893g / m、比較例1
)及び上記実施例と同じ非晶質合金層を有し、金属層(
銅板)を有しない電磁シールド材(比較例2)について
同様の測定を行った結果が併記しであるl (第5図で
は比較例1のみ)。
In addition, in FIGS. 4 and 5, the shielding effect is expressed in absolute value in dB. Figures 4 and 5 show a copper plate with a thickness of 100 μm (893 g/m, Comparative Example 1) for comparison.
) and the same amorphous alloy layer as in the above example, and a metal layer (
The results of similar measurements on an electromagnetic shielding material (Comparative Example 2) that does not have a copper plate (copper plate) are also shown (Comparative Example 1 only in Fig. 5).

塞jI連l 前記実施例1の銅板3に替えてこれを厚さ15μmのア
ルミニウム箔とし、その他は前記実施例1に於けると同
じ条件として同様の測定を行った。
The same measurements were carried out under the same conditions as in Example 1 except that the copper plate 3 of Example 1 was replaced with an aluminum foil having a thickness of 15 μm.

測定結果は第5図及び第6図に示す通りである。The measurement results are shown in FIGS. 5 and 6.

実施例1.2共、磁界成分として低周波領域の10〜1
00kHzでは、15μm厚のアルミニウム箔(比較例
3)に較べてはもとより、非晶質合金層のシールド材(
比較例2)に較べても、非常に良好なシールド効果を示
している。電界成分として1〜100MHzの高周波領
域では、良好なシールド効果を示す比較の銅板に対して
同等又はそれ以上のシールド効果を示している。
In both Examples 1 and 2, the magnetic field component is 10 to 1 in the low frequency region.
At 00 kHz, the shielding material of the amorphous alloy layer (
Even compared to Comparative Example 2), it shows a very good shielding effect. In the high frequency range of 1 to 100 MHz as an electric field component, the shielding effect is equivalent to or higher than that of the comparative copper plate, which shows a good shielding effect.

以上のように、実施例1,2共に、低周波領域の磁界成
分から高周波領域の電界成分に至る迄良好な電磁シール
ド性を示し、これらの電磁シールド材は、従来にない優
れた電磁シールド材である。
As described above, both Examples 1 and 2 showed good electromagnetic shielding properties from the magnetic field component in the low frequency range to the electric field component in the high frequency range, and these electromagnetic shielding materials are excellent electromagnetic shielding materials that have never existed before. It is.

皇i皿1 この例は、第3図に示すように、非晶質合金層2を3層
、金属層3を2層とし、ポリエステルフィルム4を介し
て各非晶質合金層2の間に金属層3を挾むようにし、上
下表面層をポリエステルフィルム4として電磁シールド
材11を多層積層構造とした例である。
Imperial plate 1 As shown in FIG. 3, this example has three amorphous alloy layers 2 and two metal layers 3, with a polyester film 4 interposed between each amorphous alloy layer 2. This is an example in which the electromagnetic shielding material 11 has a multilayer laminated structure with the metal layer 3 sandwiched therebetween, and the upper and lower surface layers are polyester films 4.

非晶質合金層2は、平均厚さ40μm、アスペクト比2
00〜500のCotl、I F e #J S iσ
B tの非晶質合金片2. aを250g/rrfに積
層したものである。
The amorphous alloy layer 2 has an average thickness of 40 μm and an aspect ratio of 2.
00-500 Cotl, I Fe #J Siσ
Bt amorphous alloy piece 2. A is laminated at 250g/rrf.

また、金属N3は厚さ100μmの銅板、ポリエステル
フィルム4の厚さは25μmである。
Further, the metal N3 is a copper plate with a thickness of 100 μm, and the thickness of the polyester film 4 is 25 μm.

この電磁シールド材の低周波領域の磁界成分のシールド
性について、前記実施例1.2に於けると同様の測定を
行った。
Regarding the shielding properties of this electromagnetic shielding material against magnetic field components in the low frequency range, the same measurements as in Example 1.2 were performed.

測定結果は第8図に示す通りである。第8図には、比較
のために、前記と同じ2枚の銅板(比較例4)、及び銅
板の層−を設けずに3層の非晶質合金層の間に厚さ25
μmのポリエステルフィルムを挾み、上下表面層を同じ
ポリエステルフィルムとした電磁シールド材(比較例5
)について同様の測定を行った結果が併記しである。
The measurement results are shown in FIG. For comparison, FIG. 8 shows the same two copper plates as above (Comparative Example 4), and a layer of 2.5 mm thick between three amorphous alloy layers without any copper plate layer.
Electromagnetic shielding material sandwiching μm polyester films and using the same polyester film as the upper and lower surface layers (Comparative Example 5)
) The results of similar measurements are also shown.

第8図から解るように、この電磁シールド材は、比較例
4.5に較べて低周波領域でのシールド性が格段に改善
されていて、第4図、第6図の実施例1.2よりも一層
シールド性が向上している。
As can be seen from FIG. 8, this electromagnetic shielding material has significantly improved shielding performance in the low frequency range compared to Comparative Example 4.5, and Example 1.2 shown in FIGS. 4 and 6. The shielding properties are further improved.

なお、比較例iは低周波領域でのシールド性は良好であ
るが、全屈の層を有しないため、高周波領域でのシール
ド性は劣っていた。
In Comparative Example i, the shielding performance in the low frequency range was good, but the shielding performance in the high frequency range was poor because it did not have a fully bent layer.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明の実施例を示すものであって・ 第1図は電磁シールド材の平面図、 第2図及び第3図は夫々電磁シールド材の構造を模式的
に示す拡大断面図、 第4図、第5図、第6図、第7図及び第8図は夫々周波
数とシールド効果との関係を示すグラフ、 第9図及び第10図は夫々シールド効果測定の要領を示
す概略図 である。 なお、図面に示された符号に於いて、 1.11・・・・・・・・・電磁シールド材2・・・・
・・・・・非晶質合金層 2a・・・・・・・・・軟磁性非晶質合金片3・・・・
・・・・・銅又はアルミニウムの層4・・・・・・・・
・ポリエステルフィルム5.15・・・・・・・・・送
信用アンテナ6.16・・・・・・・・・受信用アンテ
ナ(7・・・・・−・・・測定器(スペクトラムアナラ
イザ)である。
The drawings all show embodiments of the present invention; FIG. 1 is a plan view of the electromagnetic shielding material, FIGS. 2 and 3 are enlarged cross-sectional views schematically showing the structure of the electromagnetic shielding material, respectively; Figures 4, 5, 6, 7, and 8 are graphs showing the relationship between frequency and shielding effect, respectively. Figures 9 and 10 are schematic diagrams showing how to measure shielding effect, respectively. It is. In addition, in the symbols shown in the drawings, 1.11...... Electromagnetic shielding material 2...
...Amorphous alloy layer 2a...Soft magnetic amorphous alloy piece 3...
・・・・・・Copper or aluminum layer 4・・・・・・・・・
・Polyester film 5.15...Transmission antenna 6.16...Reception antenna (7...Measuring instrument (spectrum analyzer) It is.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも1層の非晶質合金層と少なくとも1層の
導電性金属層とを具備し、前記非晶質合金層の1層と前
記導電性金属層の1層とが5〜500μmの間隔を隔て
て積層され、かつ、前記非晶質合金層が、厚さ5〜10
0μm、アスペクト比(但し、アスペクト比は最大厚さ
に対する最大長さの比である。)10〜15000の鱗
片状又はフレーク状軟磁性非晶質合金片を単位面積当た
りの重量で100〜500g/m^2積層してなる構造
を有する電磁シールド材。
1. Comprising at least one amorphous alloy layer and at least one conductive metal layer, the distance between one of the amorphous alloy layers and one of the conductive metal layers is 5 to 500 μm. and the amorphous alloy layer has a thickness of 5 to 10
0 μm, aspect ratio (however, the aspect ratio is the ratio of the maximum length to the maximum thickness) 10 to 15,000 scale-like or flaky soft magnetic amorphous alloy pieces with a weight per unit area of 100 to 500 g/ Electromagnetic shielding material with m^2 laminated structure.
JP14198887A 1987-06-05 1987-06-05 Electromagnetic shield material Granted JPS63305599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14198887A JPS63305599A (en) 1987-06-05 1987-06-05 Electromagnetic shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14198887A JPS63305599A (en) 1987-06-05 1987-06-05 Electromagnetic shield material

Publications (2)

Publication Number Publication Date
JPS63305599A true JPS63305599A (en) 1988-12-13
JPH0571200B2 JPH0571200B2 (en) 1993-10-06

Family

ID=15304783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14198887A Granted JPS63305599A (en) 1987-06-05 1987-06-05 Electromagnetic shield material

Country Status (1)

Country Link
JP (1) JPS63305599A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178486A (en) * 1988-12-29 1990-07-11 Riken Corp Magnetic shield window
WO2012073305A1 (en) * 2010-11-29 2012-06-07 富士通株式会社 Portable device and power supply system
US20130202848A1 (en) * 2012-02-03 2013-08-08 Samsung Electronics Co., Ltd. Functional sheet
EP2927917A3 (en) * 2014-03-24 2015-10-14 Toyota Jidosha Kabushiki Kaisha Power receiving device, vehicle, and power transmission device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028940A (en) * 2019-08-09 2021-02-25 東洋インキScホールディングス株式会社 Noise suppression sheet and laminate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178486A (en) * 1988-12-29 1990-07-11 Riken Corp Magnetic shield window
WO2012073305A1 (en) * 2010-11-29 2012-06-07 富士通株式会社 Portable device and power supply system
JP5418694B2 (en) * 2010-11-29 2014-02-19 富士通株式会社 Portable device and power supply system
JPWO2012073305A1 (en) * 2010-11-29 2014-05-19 富士通株式会社 Portable device and power supply system
US9362985B2 (en) 2010-11-29 2016-06-07 Fujitsu Limited Portable apparatus and feed system
US20130202848A1 (en) * 2012-02-03 2013-08-08 Samsung Electronics Co., Ltd. Functional sheet
CN103249288A (en) * 2012-02-03 2013-08-14 三星电子株式会社 Functional sheet
EP2927917A3 (en) * 2014-03-24 2015-10-14 Toyota Jidosha Kabushiki Kaisha Power receiving device, vehicle, and power transmission device

Also Published As

Publication number Publication date
JPH0571200B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US5260128A (en) Electromagnetic shielding sheet
KR101399022B1 (en) Sheet for absorbing electromagnetic wave, manufacturing method thereof and electronic equipment including the same
EP0239052B1 (en) Magnetic-shielding material
EP2680683B1 (en) Near-field-noise-suppressing sheet
CN103959927B (en) Composite electromagnetic absorbing sheet
WO2018016522A1 (en) Electromagnetic absorber
JPWO2003021610A1 (en) Laminated soft magnetic member, soft magnetic sheet, and method of manufacturing laminated soft magnetic member
CN104134513A (en) Soft-magnetic composite film and manufacturing method and application of soft-magnetic composite film in electronic equipment
JP2007295558A (en) Antenna transmission improving sheet body and electronic apparatus
JPS63305599A (en) Electromagnetic shield material
WO2020105543A1 (en) Magnetic shield material
KR20110093771A (en) Body with magnetic film attached and manufacturing method therefor
JPS63305600A (en) Electromagnetic shield material
JPH1126981A (en) Shield member
JPS62256498A (en) Composite metal thin belt with excellent electromagnetic shielding effect
JPS63305598A (en) Electromagnetic shield material
Grimes EMI shielding characteristics of permalloy multilayer thin films
JPH1187989A (en) Shield
CN110519979A (en) A kind of flexible electromagnetic shielding band with wideband shield effectiveness
JP4843612B2 (en) Soft magnetic film, anti-electromagnetic wave component and electronic device using the same
JPS625699A (en) Electromagnetic wave shielding cu thin film
JPH0227800A (en) Metal vapor-deposited film for shielding electromagnetic wave
JPS59219998A (en) Electromagnetic shielding material
JPS61127197A (en) Plastic housing having electromagnetic wave shielding property
JP2004172909A (en) Portable communication device