JPS63305600A - Electromagnetic shield material - Google Patents

Electromagnetic shield material

Info

Publication number
JPS63305600A
JPS63305600A JP62141986A JP14198687A JPS63305600A JP S63305600 A JPS63305600 A JP S63305600A JP 62141986 A JP62141986 A JP 62141986A JP 14198687 A JP14198687 A JP 14198687A JP S63305600 A JPS63305600 A JP S63305600A
Authority
JP
Japan
Prior art keywords
amorphous alloy
alloy layers
magnetic
electromagnetic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62141986A
Other languages
Japanese (ja)
Other versions
JPH0632425B2 (en
Inventor
Hiroyoshi Ishii
石井 博義
Misao Kaneko
金子 美佐夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP62141986A priority Critical patent/JPH0632425B2/en
Publication of JPS63305600A publication Critical patent/JPS63305600A/en
Publication of JPH0632425B2 publication Critical patent/JPH0632425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the effective shielding of electromagnetic waves over a wide range of wavelength regions, by laminating soft magnetic amorphous alloy pieces of specific scale or flake shapes so as to compose first and second amorphous alloy layers and next laminating both the alloy layers at a specific interval in between. CONSTITUTION:Soft magnetic amorphous alloy pieces of scale or flake shapes, each of which is 5-100mum in its thickness end 10-15000 in its aspect ratio (a ratio of maximum length to maximum thickness), are laminated 100-500g/m<2> in weight per unit area so as to compose a plurality of amorphous alloy layers 2a, that is, first and second amorphous alloy layers 2a. Next the first and second amorphous alloy layers 2a are laminated at an interval of 5-500mum in between. Accordingly, electromagnetic shield performance can be obtained for electromagnetic waves ranging from magnetic field components on a low-frequency region to electric field components on a high-frequency region.

Description

【発明の詳細な説明】 イ6産業上の利用分野 本発明は電磁シールド材に関する。[Detailed description of the invention] B6 Industrial application fields The present invention relates to an electromagnetic shielding material.

口、従来技術 近年、電気、電子機器の普及に伴い、これらの軽量化、
低価格化のために材料にプラスチックが多用されるよう
になり、そのため、これら電気、電子機器からの漏洩電
磁波による電磁波障害が大きな問題となってきている。
In recent years, with the spread of electrical and electronic devices, the weight of these devices has been reduced,
In order to lower prices, plastics are increasingly used as materials, and as a result, electromagnetic interference due to leakage of electromagnetic waves from these electrical and electronic devices has become a major problem.

コンピュータや精密測定器のような精密な電気、電子機
器は、外部からの電磁波に曝されると、誤動作を起こし
たり測定値に誤差を生じたりすることが多々ある。その
ため、米国や西独では電磁波規制がなされており、我国
に於いても近く電磁波規制の制度が制定されることが予
定されている。
Precision electrical and electronic devices such as computers and precision measuring instruments often malfunction or produce errors in measured values when exposed to external electromagnetic waves. For this reason, electromagnetic wave regulations have been enacted in the United States and West Germany, and it is planned that an electromagnetic wave regulation system will soon be established in Japan as well.

ところが、電磁波を遮蔽する方法として種々の方法が検
討されているが、いずれも不十分である。
However, although various methods have been studied to shield electromagnetic waves, none of them are sufficient.

例えば、電気、電子機器のプラスチック製ケーシングの
表面をシールド材で覆う方法として、導電性塗料による
塗装、亜鉛溶射、めっき、蒸着及びスパッタリング等が
ある。これらの方法では、電界成分のシールドにはかな
りの効果があるが、低周波領域の磁界成分に対しては効
果が少なく、また、剥離の問題もあってトラブルを起こ
しかねず、十分な対策とは言い鉗い。
For example, methods for covering the surface of a plastic casing of electrical or electronic equipment with a shielding material include painting with conductive paint, zinc spraying, plating, vapor deposition, and sputtering. Although these methods are quite effective in shielding the electric field component, they are less effective against the magnetic field component in the low frequency range, and there is also the problem of peeling, which can cause trouble, so it is important to take adequate countermeasures. That's harsh.

また、電気、電子機器の上記プラスチック中へ金属のフ
ィラーを混入してシールドする方法としては、磁界成分
のシールドをも考慮してステンレスm繊維等を用いられ
ているが、これもシールド効果が十分ではない。即ち、
シールド効果を十分に持たせるためには、上記金属フィ
ラーをかなりの量添加する必要があり、その結果、プラ
スチックの強度低下をきたし、また、表面に金属フィラ
ーが現れて更に塗装を施すためにコスト高となる。
In addition, as a method of shielding electric and electronic equipment by mixing metal fillers into the above-mentioned plastics, stainless steel m fibers, etc. are used, considering the shielding of magnetic field components, but this also has a sufficient shielding effect. isn't it. That is,
In order to have a sufficient shielding effect, it is necessary to add a considerable amount of the metal filler mentioned above, which results in a decrease in the strength of the plastic, and also increases the cost due to the appearance of the metal filler on the surface and further painting. Becomes high.

更に、磁界成分のシールドをも考慮して鉄箔もシールド
材として検討されているが、低周波領域での磁界成分に
は透磁率が低くて十分なシールド効果が得られず、高周
波領域での電界成分に対しては銅やアルミニウム等と較
べると電気抵抗が大きく、シールド特性が十分ではない
Furthermore, iron foil is also being considered as a shielding material with consideration given to shielding the magnetic field component, but it has low magnetic permeability for magnetic field components in the low frequency range and cannot provide a sufficient shielding effect. Compared to copper, aluminum, etc., it has a higher electrical resistance with respect to electric field components, and its shielding properties are not sufficient.

ハ1発明の目的 本発明は、上記の事情に鑑みて成されたものであって、
低周波領域に於ける磁界成分及び高周波領域に於ける電
界成分をも含めた広い周波数領域に亘る電磁波の効果的
な遮蔽を可能とする電磁シールド材を提供することを目
的としている。
C1 Purpose of the invention The present invention has been made in view of the above circumstances, and includes:
The object of the present invention is to provide an electromagnetic shielding material that can effectively shield electromagnetic waves over a wide frequency range, including magnetic field components in the low frequency range and electric field components in the high frequency range.

ニ6発明の構成 本発明は、第一の非晶質合金層と第二の非晶質合金層と
の複数の非晶質合金層が、夫々、厚さ5〜100μm、
アスペクト比(但し、アスペクト比は最大厚さに対する
最大長さの比である。) 10〜15000の鱗片状又
はフレーク状軟磁性非晶質合金片を単位面積当たりの重
量で100〜500g/イ積層してなる構造を有し、か
つ、前記第一の非晶質合金層と前記第二の非晶質合金層
とが、5〜500μmの間隔を隔てて積層されている電
磁シールド材に係る。
D6 Structure of the Invention The present invention provides that the plurality of amorphous alloy layers, the first amorphous alloy layer and the second amorphous alloy layer, each have a thickness of 5 to 100 μm,
Aspect ratio (However, aspect ratio is the ratio of maximum length to maximum thickness.) 10 to 15,000 scale-like or flake-like soft magnetic amorphous alloy pieces are laminated at a weight of 100 to 500 g/unit area. The present invention relates to an electromagnetic shielding material having a structure in which the first amorphous alloy layer and the second amorphous alloy layer are stacked at an interval of 5 to 500 μm.

ホ0発明の作用効果 非晶質合金は、化学的、機械的性質に於いて通常の結晶
質合金に見られない特異な特性を示すために、各種機能
材料として注目されている。中でも鉄基、コバルト基等
の非晶質合金は、結晶異方性を示さないため、保磁力が
非常に小さく、透磁率が高いという極めて良好な軟磁気
特性を示し、この性質を利用しての実用化が期待されて
いる。
Effects of the Invention Amorphous alloys are attracting attention as various functional materials because they exhibit unique chemical and mechanical properties that are not found in ordinary crystalline alloys. Among them, amorphous alloys such as iron-based and cobalt-based alloys do not exhibit crystal anisotropy, so they exhibit extremely good soft magnetic properties such as very small coercive force and high magnetic permeability. is expected to be put into practical use.

ところが、非晶質合金は通常厚さ数十μm、幅100鰭
程度のリボン状のものとして供給されており、所定の寸
法の板材とするには切断による破損や重ね合わせに際し
ての接着に問題があり、取扱いが非常に難しい、その上
、所定の厚さにするには幾層にも積層せねばならず、多
くの工数を要して生産性の点で難がある。
However, amorphous alloys are usually supplied in the form of ribbons with a thickness of several tens of micrometers and a width of about 100 fins, and there are problems with damage due to cutting and adhesion when stacking them together to make them into plates of the specified dimensions. However, it is very difficult to handle, and in addition, it is necessary to laminate many layers to obtain a predetermined thickness, which requires a large number of man-hours and is problematic in terms of productivity.

本発明者は、鋭意研究の結果、磁性非晶質合金を鱗片状
とし、これを積層することによって、磁性非晶質合金の
上記の優れた特性をその侭保有し、而も生産性にも優れ
た磁気シールド材が得られることを見出した。本発明は
上記の知見によってなされたものである。
As a result of intensive research, the present inventor has found that by forming a magnetic amorphous alloy into scales and laminating them, the above-mentioned excellent properties of the magnetic amorphous alloy can be retained, and productivity can also be improved. It has been discovered that an excellent magnetic shielding material can be obtained. The present invention has been made based on the above findings.

軟磁性非晶質合金片(以下、単に非晶質合金片と呼ぶ、
)の厚さを5μm未満にすると非晶質合金片の製造が困
難であり、これが100μmを越えて厚くなると非晶質
化が難しくなるので、この厚さは5〜100μmとする
。特に好ましい厚さは20〜60μmである。
Soft magnetic amorphous alloy flakes (hereinafter simply referred to as amorphous alloy flakes)
) If the thickness is less than 5 μm, it will be difficult to produce an amorphous alloy piece, and if it becomes thicker than 100 μm, it will be difficult to make it amorphous, so the thickness should be 5 to 100 μm. A particularly preferred thickness is 20 to 60 μm.

非晶質合金片のアスペクト比が10未満では、非晶質合
金片の透磁率が低下し、非晶質合金片の磁気特性が変化
するためと、積層が難しくなり、磁気シールド性が劣化
するようになる。他方、上記アスペクト比が15000
を越えると、非晶質合金片の取扱いが面倒になり、生産
性が低下するようになる。アスペクト比の特に好ましい
範囲は50〜10000である。
If the aspect ratio of the amorphous alloy flakes is less than 10, the magnetic permeability of the amorphous alloy flakes decreases, the magnetic properties of the amorphous alloy flakes change, and lamination becomes difficult, resulting in deterioration of magnetic shielding properties. It becomes like this. On the other hand, if the aspect ratio is 15000
If it exceeds this, handling of the amorphous alloy pieces becomes troublesome and productivity decreases. A particularly preferred range of aspect ratio is 50 to 10,000.

上記の非晶質合金片を単位面積当たりの重量で100〜
500g/m2となるように積層して非晶質合金層とす
るのであるが、非晶質合金片の量が100g1rd未満
であると、非晶質合金片の積層及びこれらの間の接触(
導通)が龍しくなって磁気シールド性が劣化する。これ
が500g/m2を越えると、非晶質合金片を積層して
密着させることが難しくなって非晶質合金層中に空隙が
できるため、単位面積当たりの非晶質合金片の量が増大
するにも拘わらず、磁気シールド性が悪くなる。非晶質
合金片の上記量の特に好ましい範囲は200〜350g
/イである。
The weight of the above amorphous alloy piece per unit area is 100~
The amorphous alloy layer is formed by stacking the amorphous alloy flakes at a density of 500 g/m2, but if the amount of the amorphous alloy flakes is less than 100 g/m2, the stacking of the amorphous alloy flakes and the contact between them (
(conductivity) becomes strong and the magnetic shielding performance deteriorates. If this exceeds 500 g/m2, it becomes difficult to stack and adhere the amorphous alloy pieces, creating voids in the amorphous alloy layer, resulting in an increase in the amount of amorphous alloy pieces per unit area. Despite this, magnetic shielding properties deteriorate. A particularly preferable range of the above amount of amorphous alloy flakes is 200 to 350 g.
/I am.

以上のような構造とした非晶質合金層は、良好な軟磁性
を示す非晶質合金片からなっているので、低周波領域に
於ける磁界成分のシールドに有効であるが、高周波領域
に於ける電磁波に対しては電界成分が主体となるため、
銅やアルミニウムのような電気抵抗の小さい導電性材料
に較べると電気抵抗が高い(100〜150μΩ・CI
I+)ため、厚さを大きくせねばならず、不利である。
The amorphous alloy layer with the above structure is made of amorphous alloy pieces that exhibit good soft magnetic properties, so it is effective in shielding magnetic field components in the low frequency range, but it is effective in shielding magnetic field components in the high frequency range. Since the electric field component is the main component of electromagnetic waves,
Electrical resistance is high compared to conductive materials with low electrical resistance such as copper and aluminum (100 to 150 μΩ・CI
I+), the thickness must be increased, which is disadvantageous.

そこで、広範囲に亘る周波数領域で磁界、電界成分のシ
ールドを有効ならしめるため、上記の非晶質合金層を複
数層とし、各層を間隔を隔てて積層する。非晶質合金層
間の間隔が5μm未満では、非晶質合金層とこれらの間
に位置する中間層との間の密着が難しく、これが500
μmを越えると、シールド材が厚くなって取扱いが不便
になり、工業的にも不利となる。従って上記間隔は5〜
500μmの範囲内とするのが良い、上記間隔形成のた
めの中間層としては、プラスチックフィルム(例えばポ
リエステルフィルム等)の誘電体か望ましく、この誘電
体による誘電損失によって高周波領域での電界シールド
性が向上するのである。
Therefore, in order to effectively shield the magnetic field and electric field components over a wide frequency range, a plurality of the above-mentioned amorphous alloy layers are formed and each layer is laminated at intervals. When the distance between the amorphous alloy layers is less than 5 μm, it is difficult to make close contact between the amorphous alloy layers and the intermediate layer located between them, and this
If it exceeds .mu.m, the shielding material becomes thick, making handling inconvenient and industrially disadvantageous. Therefore, the above interval is 5~
The intermediate layer for forming the above-mentioned distance, which is preferably within the range of 500 μm, is preferably a dielectric material such as a plastic film (for example, a polyester film), and the dielectric loss caused by this dielectric material improves the electric field shielding property in the high frequency range. It will improve.

へ、実施例 以下、本発明の詳細な説明する。To, Example The present invention will be explained in detail below.

る。Ru.

この例は電磁シールド材を強固な板状とした例であり、
非晶質合金片2aが積層してなる非晶質合金層2がポリ
エステルフィルムの誘電体3を挾んで2層設けられ、こ
れらがガラス、アクリル樹脂、塩化ビニル、エポキシ樹
脂、フェノール樹脂等(この例ではエポキシ樹脂)の2
枚の板4の間に挟まれた積層体となって電磁シールド材
1が構成されている。但し、第1図では上記の板4は図
示省略しである。
This example is an example of a strong plate-shaped electromagnetic shielding material.
Two amorphous alloy layers 2 are formed by laminating amorphous alloy pieces 2a, sandwiching a polyester film dielectric 3, and these are made of glass, acrylic resin, vinyl chloride, epoxy resin, phenol resin, etc. In the example, epoxy resin) 2
The electromagnetic shielding material 1 is constituted by a laminate sandwiched between two plates 4. However, in FIG. 1, the above-mentioned plate 4 is not shown.

第1図から解るように、各非晶質合金片2aは方向がラ
ンダムになって均一に分散、積層するので、自然に無方
向性となる。これに対して非晶質合金リボンや結晶質合
金薄帯を積層するには、切断と接着の繰返し、無方向性
にするためにクロス方向及び角度を変えた接着をしなけ
ればならず、その作業は甚だ煩わしい。なお、本発明に
あって分散時に所定の方向に沿った若干の磁場をかけれ
ば、非晶質合金片を長手方向に揃え、方向性を付与する
ことができる。
As can be seen from FIG. 1, the amorphous alloy pieces 2a are uniformly dispersed and stacked in random directions, so that they are naturally non-directional. On the other hand, laminating amorphous alloy ribbons and crystalline alloy ribbons requires repeated cutting and gluing, and gluing in different cross directions and angles to make them non-directional. The work is extremely troublesome. In the present invention, if a slight magnetic field along a predetermined direction is applied during dispersion, the amorphous alloy pieces can be aligned in the longitudinal direction and given directionality.

なお、樹脂等の板4に替えて樹脂フィルムを使用する(
第3図)と、磁気シールド材に可撓性が付与されて目的
によっては使用上便利になる。
Note that a resin film may be used instead of the resin plate 4 (
(Fig. 3), flexibility is imparted to the magnetic shielding material, making it convenient to use depending on the purpose.

非晶質合金片の組成は、軟磁性を示す組成であれば磁気
シールド性を示す。
If the composition of the amorphous alloy piece exhibits soft magnetism, it exhibits magnetic shielding properties.

非晶質合金片は、リボンからの切断や公知のメルト・エ
クストラクション法によって作ることができるが、生産
性の観点及び非晶質合金片の周縁を薄肉にして鱗片状と
することができることから、本出願人が先に特開昭58
−6907号公報で提示したキャビテーション法(熔融
金属に対して濡れ性の小さな表面層を有し、高速で回転
しているロール表面に熔融金属を供給し、この熔融金属
を微細な溶融金属滴に分断した後、引続いてこの溶融金
属滴を高速で回転する金属回転体に衝突させて急速凝固
させる方法。)を応用することが望ましい。
Amorphous alloy flakes can be made by cutting from a ribbon or by a known melt extraction method, but from the viewpoint of productivity and because the peripheral edge of the amorphous alloy flake can be made thinner and flake-like. , the present applicant first published JP-A-58
Cavitation method proposed in Publication No. 6907 (molten metal is supplied to the surface of a roll that has a surface layer with low wettability to the molten metal and is rotating at high speed, and the molten metal is turned into fine molten metal droplets) It is desirable to apply a method of rapidly solidifying the molten metal droplets by colliding them with a metal rotating body that rotates at high speed after dividing the molten metal droplets.

以下に本発明の具体的な実施例について説明する。Specific examples of the present invention will be described below.

直!LL 前記キャビテーション法によってCott、eFeqシ
S ity B 7(元素記号に付した数字は当該元素
成分の原子%を示す、以下同じ、)の非晶質合金片を作
製した。
straight! LL An amorphous alloy piece of Cott, eFeq Si ity B 7 (the number attached to the element symbol indicates the atomic % of the elemental component; the same shall apply hereinafter) was produced by the cavitation method described above.

この非晶質合金片の平均厚さは30μm、アスペクト比
は400〜600である。
This amorphous alloy piece has an average thickness of 30 μm and an aspect ratio of 400 to 600.

この非晶質合金片を使用して第1図及び第3図に示すよ
うな非晶質合金層2を2層有する電磁シールド材11と
した。即ち、非晶質合金片2aを250g/rdとなる
ようにして厚さ50μmのポリエステルフィルム3を挾
み、更にこれらを同じ厚さの2枚のポリエステルフィル
ム3で挟んで電磁シールド材11とした。非晶質合金層
とポリエステルフィルム3との間は図示しない接着剤で
互いに固定しである。この第3図の電磁シールド材では
、第2図の電磁シールド材の外層の板4に替えて、中間
層3のポリエステルフィルムと同じフィルムを使用して
いる。
This amorphous alloy piece was used to prepare an electromagnetic shielding material 11 having two amorphous alloy layers 2 as shown in FIGS. 1 and 3. That is, the amorphous alloy piece 2a was sandwiched between a polyester film 3 having a thickness of 50 μm at a weight of 250 g/rd, and these were further sandwiched between two polyester films 3 having the same thickness to form an electromagnetic shielding material 11. . The amorphous alloy layer and the polyester film 3 are fixed to each other with an adhesive (not shown). In the electromagnetic shielding material shown in FIG. 3, the same polyester film as the intermediate layer 3 is used in place of the outer layer plate 4 of the electromagnetic shielding material shown in FIG.

この電磁シールド材11について、アトパンテスト社製
スペクトラムアナライザT R−4172を使用して電
磁シールド性を測定した。測定の要領を、磁界成分につ
いては第7図に、電界成分については第8図に夫々概要
を図解的に示す。200 nx200 mの電磁シール
ド材11y;(tllから一方の側の10鰭湘れた位置
に直径10龍の磁波送信用ループアンテナ5又は長さ1
0龍の電波送信用プローブアンテナ15を、他方の側の
10mm、lれた位置に直径10nの磁波受信用ループ
アンテナ6又は長さ10flの電波受信用プローブアン
テナ16を夫々配置し、これらをトラッキングジェネレ
ータ付きスペクトラムアナライザTR41727に接続
する。送信用アンテナ5又は15からの磁波又は電波の
電磁シールド材111fZ、Itによる減衰を受信用ア
ンテナ6又は16によって検知し、スペクトラムアナラ
イザTR41727で測定する。
The electromagnetic shielding properties of this electromagnetic shielding material 11 were measured using a spectrum analyzer TR-4172 manufactured by Atopan Test Co., Ltd. The measurement procedure is schematically shown in FIG. 7 for the magnetic field component and in FIG. 8 for the electric field component, respectively. 200 n x 200 m electromagnetic shielding material 11y; (a magnetic wave transmitting loop antenna 5 with a diameter of 10 mm or a length of 1 at a position 10 fins away from the tll on one side)
A magnetic wave receiving loop antenna 6 with a diameter of 10 nm or a radio wave receiving probe antenna 16 with a length of 10 fl is placed at a position 10 mm away from the other side of the zero dragon radio wave transmitting probe antenna 15, and these are tracked. Connect to spectrum analyzer TR41727 with generator. Attenuation of the magnetic waves or radio waves from the transmitting antenna 5 or 15 due to the electromagnetic shielding material 111fZ, It is detected by the receiving antenna 6 or 16, and measured by the spectrum analyzer TR41727.

測定結果は第5図及び第6図に示す通りである。The measurement results are shown in FIGS. 5 and 6.

なお、第5図及び第6図では、シールド効果はdBの絶
対値で表しである。第5図及び第6図には、比較のため
に厚さ100μmの銅板(893glrd、比較例)に
ついて同様の測定を行った結果が併記しである。
In addition, in FIG. 5 and FIG. 6, the shielding effect is expressed as an absolute value in dB. For comparison, FIGS. 5 and 6 also show the results of similar measurements on a 100 μm thick copper plate (893glrd, comparative example).

11例1 平均厚さ40μm、アスペクト比400〜600のCo
(y、IF e e、as itt B fの非晶質合
金片2aを250g/rrfとなるようにして非晶質合
金層2を4屓設けて第4図に示す電磁シールド材21と
した。
11 Example 1 Co with an average thickness of 40 μm and an aspect ratio of 400 to 600
(y, IF e e, as itt B f amorphous alloy pieces 2a were made to have a weight of 250 g/rrf, and four amorphous alloy layers 2 were provided to form an electromagnetic shielding material 21 shown in FIG. 4.

各非晶質合金層2の間及び最表層には厚さ25μmのポ
リエステルフィルム3を配しである。その他は前記実施
例1に於けると同様である。
A polyester film 3 having a thickness of 25 μm is arranged between each amorphous alloy layer 2 and on the outermost layer. The rest is the same as in the first embodiment.

この電磁シールド材21について、前記実施例工に於け
ると同様にして電磁シールド性を測定した。測定結果は
第5図及び第6図に示しである。
The electromagnetic shielding properties of this electromagnetic shielding material 21 were measured in the same manner as in the above-mentioned Example. The measurement results are shown in FIGS. 5 and 6.

実施例1.2共、磁界成分として低周波領域の10〜1
00kHzで比較の銅板と較べると、非常に良好なシー
ルド効、果を示している。電界成分として1〜100 
MHzの高周波領域では、良好なシールド効果を示す比
較の銅板に対して同等又はそれ以上のシールド効果を示
している。
In both Examples 1 and 2, the magnetic field component is 10 to 1 in the low frequency region.
When compared with a comparative copper plate at 00kHz, it shows a very good shielding effect. 1 to 100 as electric field component
In the high frequency range of MHz, the shielding effect is equivalent to or better than that of the comparative copper plate, which shows a good shielding effect.

以上のように、実施例1.2共に、低周波領域の磁界成
分から高周波領域の電界成分に至る迄良好な電磁シール
ド性を示し、これらの電磁シールド材は、従来にない優
れた電磁シールド材である。
As described above, both Examples 1 and 2 exhibit good electromagnetic shielding properties from the magnetic field component in the low frequency range to the electric field component in the high frequency range, and these electromagnetic shielding materials are excellent electromagnetic shielding materials that have never existed before. It is.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明の実施例を示すものであって、 第1図は電磁シールド材の平面図、 第2図、第3図及び第4図は夫々電磁シールド材の構造
を模式的に示す拡大断面図、 第5図及び第6図は夫々周波数とシールド効果との関係
を示すグラフ、 第7図及び第8図は夫々シールド効果測定の要領を示す
概略図 である。 なお、図面に示された符号に於いて、 1.11.21・・・・・・・・・電磁シールド材2・
・・・・・・・・非晶質合金層 2a・・・・・・・・・軟磁性非晶質合金片3・・・・
・・・・・ポリエステルフィルム4・・・・・・・・・
エポキシ樹脂 5.15・・・・・・・・・送信用アンテナ6.16・
・・・旧・・受信用アンテナ7・・・・・・・・・測定
器(スペクトラムアナライザ)である。
The drawings all show examples of the present invention, and FIG. 1 is a plan view of the electromagnetic shielding material, and FIG. 2, FIG. 3, and FIG. 4 each schematically show the structure of the electromagnetic shielding material. An enlarged sectional view, FIGS. 5 and 6 are graphs showing the relationship between frequency and shielding effect, and FIGS. 7 and 8 are schematic diagrams showing the procedure for measuring the shielding effect, respectively. In addition, in the symbols shown in the drawings, 1.11.21...... Electromagnetic shielding material 2.
......Amorphous alloy layer 2a...Soft magnetic amorphous alloy piece 3...
・・・・・・Polyester film 4・・・・・・・・・
Epoxy resin 5.15...... Transmission antenna 6.16.
...Old...Receiving antenna 7...It is a measuring instrument (spectrum analyzer).

Claims (1)

【特許請求の範囲】[Claims] 1、第一の非晶質合金層と第二の非晶質合金層との複数
の非晶質合金層が、夫々、厚さ5〜100μm、アスペ
クト比(但し、アスペクト比は最大厚さに対する最大長
さの比である。)10〜15000の鱗片状又はフレー
ク状軟磁性非晶質合金片を単位面積当たりの重量で10
0〜500g/m^2積層してなる構造を有し、かつ、
前記第一の非晶質合金層と前記第二の非晶質合金層とが
、5〜500μmの間隔を隔てて積層されている電磁シ
ールド材。
1. The plurality of amorphous alloy layers, the first amorphous alloy layer and the second amorphous alloy layer, each have a thickness of 5 to 100 μm and an aspect ratio (however, the aspect ratio is (maximum length ratio) 10 to 15,000 scale-like or flake-like soft magnetic amorphous alloy pieces with a weight of 10 to 15,000 pieces per unit area.
It has a structure formed by laminating 0 to 500 g/m^2, and
An electromagnetic shielding material in which the first amorphous alloy layer and the second amorphous alloy layer are laminated with an interval of 5 to 500 μm.
JP62141986A 1987-06-05 1987-06-05 Electromagnetic shield material Expired - Lifetime JPH0632425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141986A JPH0632425B2 (en) 1987-06-05 1987-06-05 Electromagnetic shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141986A JPH0632425B2 (en) 1987-06-05 1987-06-05 Electromagnetic shield material

Publications (2)

Publication Number Publication Date
JPS63305600A true JPS63305600A (en) 1988-12-13
JPH0632425B2 JPH0632425B2 (en) 1994-04-27

Family

ID=15304736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141986A Expired - Lifetime JPH0632425B2 (en) 1987-06-05 1987-06-05 Electromagnetic shield material

Country Status (1)

Country Link
JP (1) JPH0632425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178485A (en) * 1988-12-29 1990-07-11 Riken Corp Window sash
JP2007019398A (en) * 2005-07-11 2007-01-25 Hitachi Metals Ltd Composite magnetic member
US9392735B2 (en) 2012-06-04 2016-07-12 Amosense Co., Ltd. Magnetic field shielding sheet for digitizer and method of manufacturing the same and portable terminal device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178485A (en) * 1988-12-29 1990-07-11 Riken Corp Window sash
JP2007019398A (en) * 2005-07-11 2007-01-25 Hitachi Metals Ltd Composite magnetic member
JP4618556B2 (en) * 2005-07-11 2011-01-26 日立金属株式会社 Composite magnetic member
US9392735B2 (en) 2012-06-04 2016-07-12 Amosense Co., Ltd. Magnetic field shielding sheet for digitizer and method of manufacturing the same and portable terminal device using the same

Also Published As

Publication number Publication date
JPH0632425B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US5260128A (en) Electromagnetic shielding sheet
EP0239052B1 (en) Magnetic-shielding material
KR101399022B1 (en) Sheet for absorbing electromagnetic wave, manufacturing method thereof and electronic equipment including the same
JP4685977B2 (en) Metal film with thin line-plastic composite film and manufacturing apparatus thereof
WO2018016522A1 (en) Electromagnetic absorber
EP2661167B1 (en) Near-field electromagnetic wave absorber
EP2680683B1 (en) Near-field-noise-suppressing sheet
US20080292891A1 (en) Electromagnetic wave shielding sheet
WO2011077834A1 (en) Composite electromagnetic wave absorption film
JPWO2003021610A1 (en) Laminated soft magnetic member, soft magnetic sheet, and method of manufacturing laminated soft magnetic member
JP5302287B2 (en) Electromagnetic wave absorber
WO2016157554A1 (en) Electromagnetic shielding material
WO2017100029A1 (en) Magnetic isolator, method of making the same, and device containing the same
JP2012033764A (en) Electromagnetic shield sheet and method of producing the same
JPS63305600A (en) Electromagnetic shield material
JPS63305599A (en) Electromagnetic shield material
JP7323692B1 (en) Near-field electromagnetic wave absorber
US20040185309A1 (en) Soft magnetic member, electromagnetic wave controlling sheet and method of manufacturing soft magnetic member
JPS63305598A (en) Electromagnetic shield material
Grimes EMI shielding characteristics of permalloy multilayer thin films
JP4843612B2 (en) Soft magnetic film, anti-electromagnetic wave component and electronic device using the same
JPH0227800A (en) Metal vapor-deposited film for shielding electromagnetic wave
JPH1187989A (en) Shield
US20090047507A1 (en) Multilayer printed circuit board
WO2023074619A1 (en) Electromagnetic wave shield material, electronic component, electronic device, and method of using electromagnetic wave shield material