JP4843612B2 - Soft magnetic film, anti-electromagnetic wave component and electronic device using the same - Google Patents

Soft magnetic film, anti-electromagnetic wave component and electronic device using the same Download PDF

Info

Publication number
JP4843612B2
JP4843612B2 JP2007535433A JP2007535433A JP4843612B2 JP 4843612 B2 JP4843612 B2 JP 4843612B2 JP 2007535433 A JP2007535433 A JP 2007535433A JP 2007535433 A JP2007535433 A JP 2007535433A JP 4843612 B2 JP4843612 B2 JP 4843612B2
Authority
JP
Japan
Prior art keywords
soft magnetic
film
magnetic film
thin film
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007535433A
Other languages
Japanese (ja)
Other versions
JPWO2007032252A1 (en
Inventor
哲夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2007535433A priority Critical patent/JP4843612B2/en
Publication of JPWO2007032252A1 publication Critical patent/JPWO2007032252A1/en
Application granted granted Critical
Publication of JP4843612B2 publication Critical patent/JP4843612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は軟磁性フィルムとそれを用いた電磁波対策部品および電子機器に関する。   The present invention relates to a soft magnetic film, an electromagnetic wave countermeasure component using the same, and an electronic device.

近年、携帯型通信機器の発展には目覚ましいものがあり、とりわけ携帯電話機の小型軽量化や薄型化が急速に進められている。これらに伴って、携帯電話機等におけるアンテナの設置位置は、より人体頭部や他のノイズに弱い電子機器に接近するようになってきている。このため、アンテナと人体頭部や他の電子機器との相互作用が問題となっている。   In recent years, there has been remarkable progress in the development of portable communication devices, and in particular, mobile phones have been rapidly reduced in size, weight and thickness. In connection with these, the installation position of the antenna in a mobile phone or the like has come closer to a human head or other electronic devices that are vulnerable to noise. For this reason, the interaction between the antenna and the human head or other electronic devices is a problem.

携帯電話機において、アンテナから放射された電波はその一部が最も近接する人体頭部に吸収され、残りが空間に放射される。人体頭部による電磁エネルギーの吸収に基づいて、アンテナの放射効率や通信特性が低下する。さらに、携帯電話機の使用時にはアンテナが頭部に近接するため、頭部が局所的に強い電磁界に曝されることになり、電力局所吸収量の増加による人体への影響が懸念されている。このため、携帯電話機を対象とした電波の局所吸収指針(単位体重当りの電力局所吸収量:SAR(Specific Absorption Rate))が米国、欧州、日本で相次いで設定されている。   In a mobile phone, a part of radio waves radiated from an antenna is absorbed by the closest human head and the rest is radiated into space. Based on the absorption of electromagnetic energy by the human head, the radiation efficiency and communication characteristics of the antenna are degraded. Furthermore, since the antenna is close to the head when the mobile phone is used, the head is locally exposed to a strong electromagnetic field, and there is a concern about the influence on the human body due to an increase in the amount of local power absorption. For this reason, a radio wave local absorption guideline (local power absorption amount per unit weight: SAR) for mobile phones has been set one after another in the United States, Europe, and Japan.

こうした背景から、携帯電話機に代表される携帯型通信機器においては、人体による電磁エネルギーの吸収量(例えば人体頭部の電磁エネルギー被爆量)を低減することが望まれている。さらに、携帯型通信機器の多機能化に伴って、送受信信号の複数周波数化や多方式化が進められている。このため、複数のアンテナで同時に送受信を行う場合が生じている。複数のアンテナを同時に使用する場合には、隣接するアンテナ間の干渉が問題となる。さらに、携帯型通信機器の分野に限らず、電磁波吸収体の必要性が各種の分野で高まっている(例えば特許文献1参照)。   From such a background, in a portable communication device represented by a mobile phone, it is desired to reduce the amount of electromagnetic energy absorbed by the human body (for example, the amount of electromagnetic energy exposed to the human head). Furthermore, with the increase in the number of functions of portable communication devices, the transmission / reception signal has been made into a plurality of frequencies and a multi-system. For this reason, there are cases in which transmission and reception are performed simultaneously with a plurality of antennas. When a plurality of antennas are used simultaneously, interference between adjacent antennas becomes a problem. Furthermore, the need for an electromagnetic wave absorber is increasing in various fields, not limited to the field of portable communication devices (see, for example, Patent Document 1).

アンテナ近傍で生じる電磁界レベルを低減する技術としては、携帯電話機のアンテナ基部等に軟磁性体粉末と有機結合剤とを含む複合磁性体を配置することが知られている(例えば特許文献2,3参照)。ここでは、複合磁性体の透磁率μ″(複素透磁率μの虚数成分)が使用周波数近傍で急瞬に立上ることを利用して、電磁波を熱ロスとして消費している。しかし、この場合にはアンテナ近傍の電磁界レベル自体が低下するため、発信信号の信号強度まで低下してしまうという問題がある。   As a technique for reducing the electromagnetic field level generated in the vicinity of an antenna, it is known to dispose a composite magnetic body containing a soft magnetic powder and an organic binder at the antenna base of a mobile phone (for example, Patent Document 2). 3). Here, electromagnetic waves are consumed as heat loss by utilizing the fact that the magnetic permeability μ ″ (imaginary component of the complex magnetic permeability μ) of the composite magnetic material suddenly rises in the vicinity of the operating frequency. However, there is a problem that the electromagnetic field level in the vicinity of the antenna is lowered, so that the signal strength of the transmission signal is lowered.

このような点に対して、高周波領域における複素透磁率μの実数成分μ′を大きくした軟磁性膜によれば、発信信号強度の低下を抑制しつつ、放射される電磁波の不要方向への電磁界強度を効果的に低減することができる。高周波領域で大きなμ′を実現するためには、例えば軟磁性膜の材料固有の異方性に形状異方性を加えることによって、強磁性共鳴周波数を高周波化することが有効である。軟磁性膜に形状異方性を付与する方法としては、凹部と凸部を設けた基台上に軟磁性膜を形成する方法が知られている。また、高分子フィルムにスリット状の溝を設け、その上に軟磁性膜を形成することによって、軟磁性膜の磁区を制御する方法が知られている(特許文献4参照)。   In contrast, according to the soft magnetic film in which the real component μ ′ of the complex permeability μ in the high frequency region is increased, the electromagnetic wave in the unnecessary direction of the radiated electromagnetic wave is suppressed while suppressing the decrease of the transmitted signal intensity. The field strength can be effectively reduced. In order to realize a large μ ′ in the high frequency region, it is effective to increase the ferromagnetic resonance frequency by adding shape anisotropy to the anisotropy inherent to the material of the soft magnetic film, for example. As a method for imparting shape anisotropy to a soft magnetic film, a method of forming a soft magnetic film on a base provided with a concave portion and a convex portion is known. Also, a method is known in which a magnetic domain of a soft magnetic film is controlled by providing a slit-like groove on a polymer film and forming a soft magnetic film thereon (see Patent Document 4).

しかしながら、凹部と凸部を有する基台を用いる方法は、形状自由度が低くかつある程度の体積を有する基台が必須となるため、携帯電話機のような小型の機器内に自由に設置することが可能な電磁波対策部品を得ることはできない。スリット状の溝を有する高分子フィルムを用いる方法は、溝で磁性体を平面的に分離しているため、磁性体間に隙間が生じて電磁波の漏洩が起こる。これでは電磁波対策部品として効果的に使用することができない。さらに、高分子フィルムに溝加工する際に、エッジ部分に欠けやチッピングが生じやすいという問題がある。これらは磁区の制御性を低下させる要因となる。   However, the method using a base having a concave portion and a convex portion requires a base having a low degree of freedom in shape and a certain volume, and therefore can be freely installed in a small device such as a mobile phone. It is not possible to obtain possible electromagnetic wave countermeasure parts. In the method using a polymer film having a slit-like groove, the magnetic material is planarly separated by the groove. Therefore, a gap is generated between the magnetic materials, and electromagnetic waves leak. This cannot be used effectively as an electromagnetic wave countermeasure component. Furthermore, there is a problem in that chipping or chipping tends to occur at the edge portion when grooves are formed in the polymer film. These are factors that reduce the controllability of the magnetic domains.

真空蒸着法やスパッタリング法等の気相成長法で形成した磁性薄膜を、所定の寸法並びに形状に打ち抜いたり、あるいはエッチングする方法も知られている。しかしながら、打ち抜き加工を適用した場合にはひずみ組織が残留し、またエッチング法では腐食組織が残留する。これらによって、磁性薄膜内部に組織の乱れが生じ、軟磁気特性が低下するという問題がある。さらに、磁性膜と絶縁膜の積層膜の場合、成膜後に加工を施すと膜断面が露出し、磁性膜の酸化や劣化が発生して磁区に乱れが生じやすいという問題がある。
特開2002−076681公報 特開2002−158484公報 特開2001−200305公報 特開2004−015038公報
A method of punching or etching a magnetic thin film formed by a vapor deposition method such as a vacuum deposition method or a sputtering method into a predetermined size and shape is also known. However, when punching is applied, a strained structure remains, and an etching process leaves a corrosive structure. As a result, there is a problem in that the structure of the magnetic thin film is disturbed and the soft magnetic properties are deteriorated. Further, in the case of a laminated film of a magnetic film and an insulating film, there is a problem that if the film is processed after the film formation, the cross section of the film is exposed and the magnetic film is oxidized or deteriorated to easily disturb the magnetic domain.
JP 2002-076681 A JP 2002-158484 A JP 2001-200305 A JP 2004-015038 A

本発明の目的は、形状自由度の低下や体積の増加、さらには平面的な磁性体の分離等を招くことなく、軟磁性薄膜に形状異方性を有効に付与することを可能にした軟磁性フィルムとそれを用いた電磁波対策部品および電子機器を提供することにある。   An object of the present invention is to provide a soft magnetic thin film that can effectively impart shape anisotropy to the soft magnetic thin film without causing a decrease in the degree of freedom in shape, an increase in volume, and a separation of planar magnetic materials. An object is to provide a magnetic film, an electromagnetic wave countermeasure component and an electronic device using the magnetic film.

本発明の一態様に係る軟磁性フィルムは、複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルムと、少なくとも前記基材フィルムの凸部の頂面および凹部の底面に形成された軟磁性薄膜であって、透磁率μ′と膜厚Tとの積が不連続な部分を有する軟磁性薄膜とを具備し、前記基材フィルムは前記凹凸部の繰り返し周期が1000μm以下であることを特徴としている。 A soft magnetic film according to an embodiment of the present invention includes a base film having a bent shape in which a plurality of concave and convex portions are repeatedly provided, and at least a top surface of a convex portion and a bottom surface of a concave portion of the base film. A thin film comprising a soft magnetic thin film having a discontinuous portion of the product of permeability μ ′ and film thickness T , wherein the base film has a repetition period of the concave and convex portions of 1000 μm or less. It is said.

本発明の他の態様に係る電磁波対策部品は、本発明の態様に係る軟磁性フィルムを具備することを特徴としている。本発明のさらに他の態様に係る電子機器は、電磁波送信部を有する電子機器本体と、本発明の態様に係る軟磁性フィルムを備える電磁波対策部品であって、前記電磁波送信部から放射される電磁波の不要方向に対する電磁界強度を選択的に低減するように配置された電磁波対策部品とを具備することを特徴としている。   An electromagnetic wave countermeasure component according to another aspect of the present invention includes the soft magnetic film according to the aspect of the present invention. An electronic device according to still another aspect of the present invention is an electromagnetic wave countermeasure component including an electronic device main body having an electromagnetic wave transmission unit and a soft magnetic film according to an aspect of the present invention, and the electromagnetic wave radiated from the electromagnetic wave transmission unit And an electromagnetic wave countermeasure component arranged so as to selectively reduce the electromagnetic field strength with respect to the unnecessary direction.

本発明の実施形態による軟磁性フィルムの構成を示す断面図である。It is sectional drawing which shows the structure of the soft-magnetic film by embodiment of this invention. 図1に示す軟磁性フィルムの基材フィルムの構成例を示す斜視図である。It is a perspective view which shows the structural example of the base film of the soft-magnetic film shown in FIG. 本発明の実施形態による軟磁性フィルムに適用する軟磁性薄膜の構成例を示す断面図である。It is sectional drawing which shows the structural example of the soft-magnetic thin film applied to the soft-magnetic film by embodiment of this invention. 図1に示す軟磁性フィルムの変形例を示す断面図である。It is sectional drawing which shows the modification of the soft-magnetic film shown in FIG. 本発明の実施形態による軟磁性フィルムの作製に適用されるコリメーションスパッタを説明するための図である。It is a figure for demonstrating the collimation sputtering applied to preparation of the soft-magnetic film by embodiment of this invention. コリメーションスパッタを適用して形成した軟磁性薄膜の構成例を示す断面図である。It is sectional drawing which shows the structural example of the soft-magnetic thin film formed by applying collimation sputtering. 図1に示す軟磁性フィルムのさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of the soft-magnetic film shown in FIG. 本発明の実施形態による携帯電話機の概略構成を示す正面図である。It is a front view which shows schematic structure of the mobile telephone by embodiment of this invention. 図7に示す携帯電話機の裏面図である。It is a reverse view of the mobile phone shown in FIG.

符号の説明Explanation of symbols

1…軟磁性フィルム、2…軟磁性薄膜、3…基材フィルム、4…凸部、5…凹部、10…携帯電話機、16…アンテナ、18…電磁波対策部品。     DESCRIPTION OF SYMBOLS 1 ... Soft magnetic film, 2 ... Soft magnetic thin film, 3 ... Base film, 4 ... Convex part, 5 ... Concave part, 10 ... Mobile phone, 16 ... Antenna, 18 ... Electromagnetic wave countermeasure component.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明を実施するための形態について説明する。図1は本発明の一実施形態による軟磁性フィルムの構成を示す断面図である。同図に示す軟磁性フィルム1は、軟磁性薄膜2の形成基材となる基材フィルム3を有している。この基材フィルム3は図2に示すように、複数の凹凸部を繰り返し設けた折り曲げ形状を有している。例えば、基材フィルム3を一方の面(A面/図中上面)側から見た場合、凸部4Aと凹部5Aとが順に繰り返して形成されるように、平板状の樹脂フィルムを折り曲げた形状を有している。   Hereinafter, modes for carrying out the present invention will be described. FIG. 1 is a cross-sectional view showing a configuration of a soft magnetic film according to an embodiment of the present invention. A soft magnetic film 1 shown in FIG. 1 has a base film 3 serving as a base for forming a soft magnetic thin film 2. As shown in FIG. 2, the base film 3 has a bent shape in which a plurality of concave and convex portions are repeatedly provided. For example, when the base film 3 is viewed from one side (A surface / upper surface in the figure), the flat resin film is bent so that the convex portions 4A and the concave portions 5A are sequentially formed. have.

基材フィルム3は軟磁性薄膜2の形成基材として用いられるものである。軟磁性薄膜2の形成面は、基材フィルム3の両面(A面(図中上面)およびB面(図中下面))としてもよいし、またいずれか一方の面(A面またはB面)のみとしてもよい。軟磁性薄膜2を基材フィルム3の両面に形成する場合、基材フィルム3の他方の面(B面/図中下面)側にも、A面側の凸部4Aおよび凹部5Aとは逆となるように、凸部4Bと凹部5Bとが順に繰り返して形成されている。   The base film 3 is used as a base material for forming the soft magnetic thin film 2. The surface on which the soft magnetic thin film 2 is formed may be both surfaces (A surface (upper surface in the drawing) and B surface (lower surface in the drawing)) of the base film 3, or any one surface (A surface or B surface). It is good only as well. When the soft magnetic thin film 2 is formed on both sides of the base film 3, the other side (B side / lower side in the figure) side of the base film 3 is also opposite to the convex part 4A and the concave part 5A on the A side. Thus, the convex portion 4B and the concave portion 5B are repeatedly formed in order.

基材フィルム3に付与する凹凸部の形状については、凹凸部の段差d(凸部4A、4Bの高さおよび凹部5A、5Bの深さ)を1μm以上とすることが好ましい。凹凸部の段差dが1μm未満であると、基材フィルム3上に形成する軟磁性薄膜2の形状異方性を十分に高めることができない。凹凸部の段差dは3μm以上とすることがより好ましい。ただし、凹凸部の段差dを高くしすぎても軟磁性薄膜2の形成性等が低下するため、凹凸部の段差dは100μm以下とすることが好ましい。   About the shape of the uneven | corrugated | grooved part provided to the base film 3, it is preferable that the level | step difference d (the height of convex part 4A, 4B and the depth of recessed part 5A, 5B) of an uneven | corrugated part shall be 1 micrometer or more. When the unevenness d is less than 1 μm, the shape anisotropy of the soft magnetic thin film 2 formed on the base film 3 cannot be sufficiently increased. It is more preferable that the unevenness portion has a step d of 3 μm or more. However, since the formability of the soft magnetic thin film 2 is deteriorated even if the step d of the concavo-convex portion is made too high, the step d of the concavo-convex portion is preferably 100 μm or less.

凹凸部の繰り返し周期pは1000μm以下とすることが好ましい。凸部4A、4Bの頂面の幅w1および凹部5A、5Bの底面の幅w2はそれぞれ500μm以下とすることが好ましい。幅w1、w2は同じでなければならないものではなく、部分的に幅w1、w2が異なっていてもよい。凹凸部の繰り返し周期pが1000μmを超えると、軟磁性薄膜2の形状異方性を十分に高めることができない。幅w1、w2が500μmを超える場合も同様である。ただし、凹凸部の繰り返し周期pが小さすぎると軟磁性薄膜2の形成性が低下するため、凹凸部の繰り返し周期pは5μm以上とすることが好ましい。幅w1、w2は2μm以上とすることが好ましい。   The repetition period p of the concavo-convex portion is preferably 1000 μm or less. The width w1 of the top surfaces of the convex portions 4A and 4B and the width w2 of the bottom surfaces of the concave portions 5A and 5B are preferably 500 μm or less, respectively. The widths w1 and w2 do not have to be the same, and the widths w1 and w2 may be partially different. When the repetition period p of the concavo-convex portion exceeds 1000 μm, the shape anisotropy of the soft magnetic thin film 2 cannot be sufficiently increased. The same applies when the widths w1 and w2 exceed 500 μm. However, if the repetition period p of the concavo-convex part is too small, the formability of the soft magnetic thin film 2 is lowered. The widths w1 and w2 are preferably 2 μm or more.

このような折り曲げ形状を有する基材フィルム3は、例えば熱可塑性の樹脂フィルムを所望の凹凸部に応じた形状を有する上下一対の型で挟み込み、加熱圧縮成形することにより得ることができる。基材フィルム3には、機械的強度や耐熱性に優れる熱可塑性樹脂フィルムを適用することが好ましい。このような樹脂フィルムとしては、熱可塑性のポリイミド系樹脂(例えばポリアミドイミド樹脂やポリエーテルイミド樹脂等)、ポリエチレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、ポリカーボネード樹脂等が挙げられる。   The base film 3 having such a bent shape can be obtained, for example, by sandwiching a thermoplastic resin film with a pair of upper and lower molds having a shape corresponding to a desired uneven portion and heat compression molding. As the base film 3, it is preferable to apply a thermoplastic resin film excellent in mechanical strength and heat resistance. Examples of such resin films include thermoplastic polyimide resins (for example, polyamideimide resins and polyetherimide resins), polyethylene resins, polystyrene resins, polyester resins, polyvinyl chloride resins, polyurethane resins, polyolefin resins, polycarbonate resins, and the like. Is mentioned.

基材フィルム3に適用する樹脂フィルムの厚さは、例えば加熱圧縮成形で所望の凹凸部を形成することができ、かつ軟磁性薄膜2の形成に耐え得る強度を維持することが可能であればよい。具体的には、平均厚さが7〜200μmの樹脂フィルムを使用することが好ましい。樹脂フィルムの厚さが7μm未満であると、材料強度にもよるが軟磁性薄膜2の形成時に変形しやすくなり、軟磁性薄膜2の形状が不安定になる。一方、樹脂フィルムの厚さが200μmを超えると、軟磁性フィルム1としての厚さが増大し、設置体積の増大や形状自由度の低下を招きやすくなる。樹脂フィルムの加熱圧縮成形性も低下する。   The thickness of the resin film applied to the base film 3 may be such that, for example, a desired uneven portion can be formed by heat compression molding and the strength that can withstand the formation of the soft magnetic thin film 2 can be maintained. Good. Specifically, it is preferable to use a resin film having an average thickness of 7 to 200 μm. If the thickness of the resin film is less than 7 μm, although it depends on the material strength, the soft magnetic thin film 2 is easily deformed and the shape of the soft magnetic thin film 2 becomes unstable. On the other hand, when the thickness of the resin film exceeds 200 μm, the thickness as the soft magnetic film 1 increases, which tends to cause an increase in installation volume and a decrease in shape flexibility. The heat compression moldability of the resin film also decreases.

軟磁性薄膜2は折り曲げ形状を有する基材フィルム3の両面(もしくは片面)に形成されている。軟磁性薄膜2としては、CoZrNb系アモルファス合金膜、CoZrNbTa系アモルファス合金膜、FeBN系へテロアモルファス膜、CoFeB−SiO系高電気抵抗膜、CoFeAlO系ナノグラニュラー膜、CoAlPdO系高電気抵抗膜、CoFeMn系微結晶膜、CoFeN系軟磁性膜、FeNi系軟磁性膜等、各種のCo基もしくはFe基軟磁性合金膜を使用することができる。軟磁性膜の微構造は特に限定されるものではなく、アモルファス構造、ヘテロアモルファス構造、グラニュラー構造、微結晶構造、結晶構造等のいずれであってもよい。   The soft magnetic thin film 2 is formed on both surfaces (or one surface) of a base film 3 having a bent shape. The soft magnetic thin film 2 includes a CoZrNb-based amorphous alloy film, a CoZrNbTa-based amorphous alloy film, a FeBN-based heteroamorphous film, a CoFeB-SiO-based high electrical resistance film, a CoFeAlO-based nanogranular film, a CoAlPdO-based high electrical resistance film, and a CoFeMn-based fine film. Various Co-based or Fe-based soft magnetic alloy films such as a crystal film, a CoFeN-based soft magnetic film, and a FeNi-based soft magnetic film can be used. The microstructure of the soft magnetic film is not particularly limited, and may be any of an amorphous structure, a heteroamorphous structure, a granular structure, a microcrystalline structure, a crystalline structure, and the like.

軟磁性薄膜2の膜厚Tは3μm以下とすることが好ましい。軟磁性薄膜2の膜厚Tが3μmを超えると凹凸部の段差dにもよるが、形状異方性を良好に付与することができないおそれがあり、また高周波磁気特性も低下する。軟磁性薄膜2は単層膜に限らず、例えば図3に示すような積層膜であってもよい。図3に示す軟磁性薄膜2は非磁性絶縁層6を介して複数の磁性層7を積層した積層膜を有している。積層型の軟磁性薄膜2によれば、高周波磁気特性の向上を図ることができる。積層構造を適用した場合、各磁性層7の単層としての膜厚Tは0.1〜1μmの範囲とすることが望ましい。   The thickness T of the soft magnetic thin film 2 is preferably 3 μm or less. If the thickness T of the soft magnetic thin film 2 exceeds 3 μm, although depending on the level difference d of the concavo-convex portion, there is a possibility that the shape anisotropy cannot be satisfactorily imparted, and the high-frequency magnetic characteristics are also deteriorated. The soft magnetic thin film 2 is not limited to a single layer film, and may be a laminated film as shown in FIG. The soft magnetic thin film 2 shown in FIG. 3 has a laminated film in which a plurality of magnetic layers 7 are laminated via a nonmagnetic insulating layer 6. According to the laminated soft magnetic thin film 2, high frequency magnetic characteristics can be improved. When the laminated structure is applied, the thickness T as a single layer of each magnetic layer 7 is preferably in the range of 0.1 to 1 μm.

軟磁性薄膜2をスパッタ法や蒸着法等の指向性を有する成膜方法を適用して形成すると、基材フィルム3の凸部4の頂面と凹部5底面に形成された部分の膜厚と凸部4と凹部5とを繋ぐ壁面上に形成された部分の膜厚との間に差が生じる。このため、軟磁性薄膜2は膜形状としては連続していたとしても、磁気的には不連続になる。具体的には、軟磁性薄膜2はその透磁率μ′(複素透磁率μの実数成分)と膜厚Tとの積(P値)が不連続な部分を有することになる。なお、軟磁性薄膜2の形成方法はスパッタ法や蒸着法等の気相成長法(PVD法)に限らず、膜厚に差を生じさせることが可能な成膜法であればよい。軟磁性薄膜2はCVD法、溶射法、メッキ法等を適用して形成してもよい。   When the soft magnetic thin film 2 is formed by applying a directivity film forming method such as sputtering or vapor deposition, the film thickness of the portion formed on the top surface of the convex portion 4 and the bottom surface of the concave portion 5 of the base film 3 A difference arises between the film thickness of the part formed on the wall surface which connects the convex part 4 and the recessed part 5. FIG. For this reason, even if the soft magnetic thin film 2 is continuous as a film shape, it is magnetically discontinuous. Specifically, the soft magnetic thin film 2 has a portion where the product (P value) of the magnetic permeability μ ′ (the real component of the complex magnetic permeability μ) and the film thickness T is discontinuous. The method for forming the soft magnetic thin film 2 is not limited to a vapor phase growth method (PVD method) such as a sputtering method or a vapor deposition method, and any film forming method capable of causing a difference in film thickness may be used. The soft magnetic thin film 2 may be formed by applying a CVD method, a thermal spraying method, a plating method, or the like.

上述したように、軟磁性薄膜2は基材フィルム3の凸部4の頂面に形成された部分と凹部5の底面に形成された部分とが磁気的に分断された状態となる。このような軟磁性薄膜2によれば、凸部4の頂面と凹部5の底面に軟磁性薄膜を個々に形成した場合と同様な形状異方性を得ることが可能となる。従って、軟磁性薄膜2に形状異方性を有効に付与することができる。ここで、図1および図2では凹凸部を形成するための折り曲げ角θを約90°(例えば85°以上95°以下)とした基材フィルム3を示したが、折り曲げ角θはこれに限られるものではない。   As described above, the soft magnetic thin film 2 is in a state in which the portion formed on the top surface of the convex portion 4 of the base film 3 and the portion formed on the bottom surface of the concave portion 5 are magnetically separated. According to such a soft magnetic thin film 2, it is possible to obtain the same shape anisotropy as when the soft magnetic thin films are individually formed on the top surface of the convex portion 4 and the bottom surface of the concave portion 5. Therefore, shape anisotropy can be effectively imparted to the soft magnetic thin film 2. Here, FIG. 1 and FIG. 2 show the base film 3 in which the bending angle θ for forming the concavo-convex portion is about 90 ° (for example, 85 ° to 95 °), but the bending angle θ is limited to this. It is not something that can be done.

基材フィルム3の凹凸部の折り曲げ角θは、例えば図4に示すように鋭角としてもよい。この場合の折り曲げ角θは10°以上90°未満とすることが好ましく、さらに好ましくは30°以上70°以下である。折り曲げ角θが10°未満であると、凹部5の底面に対する軟磁性薄膜2の形成性が低下し、軟磁性薄膜2の平面的な連続性が低下するおそれがある。また、基材フィルム3の形状安定性等も低下する。凹凸部の折り曲げ角θが鋭角の基材フィルム3は、折り曲げ角θを約90°として形成したフィルムを凹凸部の繰り返し方向に圧縮することにより得ることができる。   The bending angle θ of the concavo-convex portion of the base film 3 may be an acute angle as shown in FIG. 4, for example. In this case, the bending angle θ is preferably 10 ° or more and less than 90 °, and more preferably 30 ° or more and 70 ° or less. If the bending angle θ is less than 10 °, the formability of the soft magnetic thin film 2 with respect to the bottom surface of the recess 5 is lowered, and the planar continuity of the soft magnetic thin film 2 may be lowered. In addition, the shape stability of the base film 3 is also reduced. The base film 3 having an acute fold angle θ can be obtained by compressing a film formed with a fold angle θ of about 90 ° in the direction in which the concavo-convex portion is repeated.

折り曲げ角θを鋭角とした基材フィルム3によれば、軟磁性薄膜2をスパッタ法等で形成する際に成膜粒子の飛来方向に対して影ができるため、軟磁性薄膜2の凸部頂面に形成された部分と凹部底面に形成された部分との分離性が高まる。これによって、軟磁性薄膜2の形状異方性が大きくなる。図4に示すように、軟磁性薄膜2は基材フィルム3の少なくとも凸部4の頂面と凹部5の底面に形成されていればよく、凸部4と凹部5との間は分離されていてもよい。すなわち、凸部4と凹部5とを繋ぐ壁面上には、軟磁性薄膜2が連続した膜として堆積していなくてもよい。   According to the base film 3 having the bending angle θ as an acute angle, when the soft magnetic thin film 2 is formed by a sputtering method or the like, a shadow is formed on the flying direction of the film formation particles. Separation between the portion formed on the surface and the portion formed on the bottom surface of the recess is enhanced. This increases the shape anisotropy of the soft magnetic thin film 2. As shown in FIG. 4, the soft magnetic thin film 2 only needs to be formed on at least the top surface of the convex portion 4 and the bottom surface of the concave portion 5 of the base film 3, and the convex portion 4 and the concave portion 5 are separated. May be. That is, the soft magnetic thin film 2 may not be deposited as a continuous film on the wall surface connecting the convex portion 4 and the concave portion 5.

軟磁性薄膜2の凸部4の頂面に形成された部分と凹部5の底面に形成された部分とが分離されていても、平面的に見た場合にはおおよそ一様な膜となる。従って、電磁波対策部品として有効に機能させることができる。なお、図4では軟磁性薄膜2を基材フィルムの一方の面のみに形成した場合を示しているが、両面に形成した場合の軟磁性薄膜2の形状、それに基づく作用・効果等は同様である。以下に示す図6および図7も同様である。   Even if the portion formed on the top surface of the convex portion 4 of the soft magnetic thin film 2 and the portion formed on the bottom surface of the concave portion 5 are separated, the film is almost uniform when viewed in plan. Therefore, it can function effectively as an electromagnetic wave countermeasure component. 4 shows the case where the soft magnetic thin film 2 is formed on only one surface of the base film, the shape of the soft magnetic thin film 2 when it is formed on both surfaces, and the action and effect based on the shape are the same. is there. The same applies to FIGS. 6 and 7 shown below.

上述したように、凹凸部の折り曲げ角θを鋭角とした基材フィルム3は、軟磁性薄膜2の凸部4の頂面に形成された部分と凹部5の底面に形成された部分とを分離させる上で有効である。ただし、軟磁性フィルム1を電磁波対策部品として使用するにあたって、基材フィルム3の形状安定性等を考慮して、折り曲げ角θを約90°(例えば85°以上95°以下)とすることが好ましい場合がある。このような点に対しては、スパッタターゲットと被成膜材料(ここでは基材フィルム3)との間にスリット(ソーラースリット)を配置したコリメーションスパッタを適用することが有効である。   As described above, the base film 3 with the bending angle θ of the concavo-convex portion being an acute angle separates the portion formed on the top surface of the convex portion 4 and the portion formed on the bottom surface of the concave portion 5 of the soft magnetic thin film 2. It is effective in making it happen. However, when the soft magnetic film 1 is used as an electromagnetic wave countermeasure component, the bending angle θ is preferably about 90 ° (for example, 85 ° to 95 °) in consideration of the shape stability of the base film 3 and the like. There is a case. For such a point, it is effective to apply collimation sputtering in which a slit (solar slit) is disposed between the sputtering target and the film formation material (here, the base film 3).

図5はコリメーションスパッタを適用した軟磁性薄膜2の形成状態を模式的に示している。図5において、Tはスパッタターゲット、Mは被成膜材料(基材フィルム3)、CはスパッタターゲットTと被成膜材料Mとの間に配置したコリメータである。コリメータCはスパッタターゲットTからスパッタされたスパッタ粒子の飛翔方向に対して平行に配置された複数のスリットSを有している。スパッタ粒子は飛翔角度がコリメータCで制限されるため、被成膜材料Mに対してより垂直に近い状態で飛翔して堆積することになる。すなわち、スパッタ粒子の直進性を高めることができる。   FIG. 5 schematically shows the formation state of the soft magnetic thin film 2 to which collimation sputtering is applied. In FIG. 5, T is a sputter target, M is a film forming material (base film 3), and C is a collimator disposed between the sputter target T and the film forming material M. The collimator C has a plurality of slits S arranged in parallel to the flying direction of the sputtered particles sputtered from the sputter target T. Since the flying angle of the sputtered particles is limited by the collimator C, the sputtered particles fly and accumulate in a state closer to the deposition target material M. That is, the straightness of the sputtered particles can be improved.

図6に示すように、折り曲げ角θを約90°(例えば85°以上95°以下)とした基材フィルム3を用いた場合においても、コリメーションスパッタを適用して軟磁性薄膜2を形成することによって、凸部4の頂面に形成された部分と凹部5の底面に形成された部分とを分離することができる。すなわち、凸部4と凹部5とを繋ぐ壁面上に軟磁性薄膜2を連続した膜として堆積させないようにすることができる。このような軟磁性薄膜2によれば、よりきれいに形状異方性を高めることが可能となる。軟磁性薄膜2の分離性はスリットSの形状(スリット長さDに対するスリット幅sの比)で制御することができる。   As shown in FIG. 6, even when the base film 3 having a bending angle θ of about 90 ° (for example, 85 ° to 95 °) is used, the soft magnetic thin film 2 is formed by applying collimation sputtering. Thus, the portion formed on the top surface of the convex portion 4 and the portion formed on the bottom surface of the concave portion 5 can be separated. That is, it is possible to prevent the soft magnetic thin film 2 from being deposited as a continuous film on the wall surface connecting the convex portion 4 and the concave portion 5. According to such a soft magnetic thin film 2, shape anisotropy can be increased more neatly. The separability of the soft magnetic thin film 2 can be controlled by the shape of the slit S (ratio of the slit width s to the slit length D).

基材フィルム3の凹凸部の折り曲げ角θは、例えば図7に示すように鈍角であってもよい。この場合の折り曲げ角θは90°を超えて135°未満とすることが好ましい。折り曲げ角θが135°を超えると、軟磁性薄膜2の連続性が強くなって形状異方性が低下する。このような基材フィルム3は、折り曲げ角θを約90°として形成したフィルムを凹凸部の繰り返し方向に拡張したり、あるいはフィルム成形時やフィルム加工時の型の角度を鈍角にすることで得ることができる。   The bending angle θ of the concavo-convex portion of the base film 3 may be an obtuse angle as shown in FIG. 7, for example. In this case, the bending angle θ is preferably more than 90 ° and less than 135 °. When the bending angle θ exceeds 135 °, the continuity of the soft magnetic thin film 2 becomes strong and the shape anisotropy decreases. Such a base film 3 is obtained by extending a film formed with a bending angle θ of about 90 ° in the repeating direction of the concavo-convex portion, or by making the mold angle at the time of film forming or film processing an obtuse angle. be able to.

折り曲げ角θを鈍角とした基材フィルム3上に軟磁性薄膜2を形成した場合においても、軟磁性薄膜2の凸部4の頂面と凹部5の底面に形成された部分の膜厚は、凸部4と凹部5とを繋ぐ壁面上に形成された部分より厚くなるため、磁気的に不連続な軟磁性薄膜2を得ることができる。さらに、軟磁性薄膜2の膜形状としての連続性は向上するため、軟磁性薄膜2の磁気特性の劣化等を抑制することができる。   Even when the soft magnetic thin film 2 is formed on the base film 3 with an obtuse bending angle θ, the film thickness of the portions formed on the top surface of the convex portion 4 and the bottom surface of the concave portion 5 of the soft magnetic thin film 2 is as follows. Since it becomes thicker than the part formed on the wall surface which connects the convex part 4 and the recessed part 5, the magnetically discontinuous soft-magnetic thin film 2 can be obtained. Furthermore, since the continuity of the soft magnetic thin film 2 as the film shape is improved, it is possible to suppress deterioration of the magnetic characteristics of the soft magnetic thin film 2 and the like.

ただし、凹凸部の折り曲げ角θが大きすぎると軟磁性薄膜2の磁気的な連続性が強くなって形状異方性が低下する。軟磁性薄膜2の磁気的な不連続性に基づく形状異方性を得るためには、軟磁性薄膜2の凸部4の頂面に形成された部分の透磁率μ′と膜厚Tとの積(P1値)に対する凸部4と凹部5とを繋ぐ壁面上に形成された部分の透磁率μ′と膜厚Tとの積(P2値)の比(P2/P1)が0.7以下となるように、凹凸部の折り曲げ角θを設定することが好ましい。軟磁性薄膜2のP2/P1比が0.7を超えると磁気的な連続性が強まり、軟磁性薄膜2の形状異方性が低下する。   However, if the bending angle θ of the concavo-convex portion is too large, the magnetic continuity of the soft magnetic thin film 2 becomes strong and the shape anisotropy is lowered. In order to obtain the shape anisotropy based on the magnetic discontinuity of the soft magnetic thin film 2, the permeability μ ′ of the portion formed on the top surface of the convex portion 4 of the soft magnetic thin film 2 and the film thickness T The ratio (P2 / P1) of the product (P2 value) of the permeability μ ′ of the portion formed on the wall surface connecting the convex part 4 and the concave part 5 to the product (P1 value) and the film thickness T is 0.7 or less. It is preferable to set the bending angle θ of the concavo-convex portion so that When the P2 / P1 ratio of the soft magnetic thin film 2 exceeds 0.7, the magnetic continuity increases and the shape anisotropy of the soft magnetic thin film 2 decreases.

軟磁性薄膜2のP2/P1比は、凹凸部の折り曲げ角θを鈍角にした場合に限らず、折り曲げ角θを約90°(例えば85°以上95°以下)とした場合や鋭角(例えば10°以上90°未満)とした場合にも当て嵌まる。従って、凹凸部の折り曲げ角θによらずに、軟磁性薄膜2の凸部4の頂面に形成された部分の透磁率μ′と膜厚Tとの積(P1値)に対する凸部4と凹部5とを繋ぐ壁面上に形成された部分の透磁率μ′と膜厚Tとの積(P2値)は0.7以下とすることが好ましく、さらに好ましくは0.5以下である。   The P2 / P1 ratio of the soft magnetic thin film 2 is not limited to the case where the fold angle θ of the concavo-convex part is an obtuse angle, but when the fold angle θ is about 90 ° (for example, 85 ° to 95 °) or an acute angle (for example, 10 This is also the case when the angle is greater than 90 ° and less than 90 °. Therefore, regardless of the bending angle θ of the concavo-convex portion, the convex portion 4 with respect to the product (P1 value) of the permeability μ ′ and the film thickness T of the portion formed on the top surface of the convex portion 4 of the soft magnetic thin film 2 The product (P2 value) of the magnetic permeability μ ′ and the film thickness T of the portion formed on the wall surface connecting the recess 5 is preferably 0.7 or less, and more preferably 0.5 or less.

上述したように、基材フィルム3の凹凸部の折り曲げ角θは、典型的には約90°(例えば85°以上95°以下)とされる。折り曲げ角θは90°に限らず、鋭角であっても鈍角であってもよい。基材フィルム3の折り曲げ角θは、具体的には10°以上135°以下の範囲とすることが好ましい。折り曲げ角θは30°以上120°以下の範囲とすることがさらに好ましい。   As described above, the bending angle θ of the uneven portion of the base film 3 is typically about 90 ° (for example, 85 ° to 95 °). The bending angle θ is not limited to 90 °, and may be an acute angle or an obtuse angle. Specifically, the bending angle θ of the base film 3 is preferably in the range of 10 ° to 135 °. The bending angle θ is more preferably in the range of 30 ° to 120 °.

複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルム3を用いることによって、軟磁性薄膜2を平面的に見た場合に隙間を生じさせることなく、形状異方性を付与した軟磁性薄膜2を有する軟磁性フィルム1を得ることが可能となる。さらに、軟磁性薄膜2の端部の加工やそれに基づく組織、磁区の乱れ等を生じさせることない。このような軟磁性フィルム1は、電磁波対策部品として有効に使用することができる。   A soft magnetic thin film provided with shape anisotropy without causing a gap when the soft magnetic thin film 2 is viewed in plan by using a base film 3 having a bent shape in which a plurality of concave and convex portions are repeatedly provided. The soft magnetic film 1 having 2 can be obtained. Further, the processing of the end portion of the soft magnetic thin film 2, the structure based on the processing, the disturbance of the magnetic domain, and the like are not caused. Such a soft magnetic film 1 can be effectively used as an electromagnetic wave countermeasure component.

この実施形態の軟磁性フィルム1においては、軟磁性薄膜2の凸部4の頂面と凹部5の底面に形成された部分で形状異方性を得ているため、平面的に見た場合には軟磁性薄膜2に隙間が生じさせることがない。従って、電磁波の漏洩を抑制することができる。さらに、軟磁性薄膜2の端部形状や加工状態等に基づく軟磁気特性の低下を招くこともない。すなわち、健全な軟磁性薄膜2に対して形状異方性を有効に付与することが可能となる。軟磁性フィルム1自体は柔軟でかつ薄型化が可能であるため、設置自由度の向上や設置体積の低減を図ることができる。軟磁性フィルム1を具備する電磁波対策部品によれば、放射される電磁波の不要方向への電磁界強度を効果的に低減することが可能となる。   In the soft magnetic film 1 of this embodiment, since the shape anisotropy is obtained at the portions formed on the top surface of the convex portion 4 and the bottom surface of the concave portion 5 of the soft magnetic thin film 2, when viewed in plan Does not cause a gap in the soft magnetic thin film 2. Therefore, leakage of electromagnetic waves can be suppressed. Furthermore, the soft magnetic thin film 2 is not deteriorated in soft magnetic properties based on the end shape, processing state, and the like. That is, it is possible to effectively impart shape anisotropy to the healthy soft magnetic thin film 2. Since the soft magnetic film 1 itself is flexible and can be thinned, the degree of installation freedom can be improved and the installation volume can be reduced. According to the electromagnetic wave countermeasure component including the soft magnetic film 1, it is possible to effectively reduce the electromagnetic field strength in the unnecessary direction of the radiated electromagnetic wave.

電磁波対策部品による不要方向への電磁界強度の低減効果について詳述する。この実施形態の軟磁性薄膜2によれば、その材料固有の異方性に加えて、複数の凹凸部を有する基材フィルム3に基づいて形状異方性を付与している。これら軟磁性薄膜2の材料固有の異方性と形状異方性とに基づいて強磁性共鳴周波数frを高めることができる。   The effect of reducing the electromagnetic field strength in the unnecessary direction by the electromagnetic wave countermeasure component will be described in detail. According to the soft magnetic thin film 2 of this embodiment, in addition to the anisotropy inherent to the material, shape anisotropy is imparted based on the base film 3 having a plurality of uneven portions. The ferromagnetic resonance frequency fr can be increased based on the material-specific anisotropy and shape anisotropy of the soft magnetic thin film 2.

ここで、強磁性共鳴周波数frは次式で表される。
fr=r/2π(Hkeff・Ndz・M/μ01/2
keff=Hkmat+Hext.+(Ndy−Ndx)・M/μ0
(式中、rはジャイロ磁気定数(=μ・e/2・me)、Ndzは試料厚さ方向の反磁界係数、Ndxは試料長手方向の反磁界係数、Ndyは試料幅方向の反磁界係数、Hkmatは材料組成および残留応力に依存する異方性、Hext.は試料に印加される外部磁界、μ0=4π×10-7、me=9.1091×10-31[kg]、e=1.60210×10-19[C]である)
Here, the ferromagnetic resonance frequency fr is expressed by the following equation.
fr = r / 2π (H keff · N dz · M s / μ 0 ) 1/2
H keff = H kmat + H ext. + (N dy −N dx ) · M s / μ 0
(Where r is the gyromagnetic constant (= μ · e / 2 · me), N dz is the demagnetizing factor in the sample thickness direction, N dx is the demagnetizing factor in the sample longitudinal direction, and N dy is the sample width direction. Demagnetizing factor, H kmat is anisotropy depending on material composition and residual stress, H ext. Is an external magnetic field applied to the sample, μ 0 = 4π × 10 −7 , me = 9.1091 × 10 −31 [ kg], e = 1.60210 × 10 −19 [C])

上述した強磁性共鳴周波数frを高めることによって、低周波領域における大きな透磁率μ′(複素透磁率μの実数成分)を高周波領域まで維持することができる。すなわち、高周波領域で大きなμ′を得ることが可能となる。一方、複素透磁率μの虚数成分μ″は高周波領域においても極めて小さくなる。軟磁性薄膜2の強磁性共鳴周波数frは送信帯周波数の1.5倍以上、さらには2倍以上であることが好ましい。このような軟磁性薄膜2を電磁波対策部品として使用することによって、放射された電磁波を軟磁性薄膜2による磁気回路を介して所望方向に導くことができる。これによって、放射される電磁波の不要方向への電磁界強度を効果的に低減することが可能となる。   By increasing the above-described ferromagnetic resonance frequency fr, it is possible to maintain a large magnetic permeability μ ′ (real component of the complex magnetic permeability μ) in the low frequency region up to the high frequency region. That is, a large μ ′ can be obtained in the high frequency region. On the other hand, the imaginary component μ ″ of the complex magnetic permeability μ is extremely small even in the high frequency region. The ferromagnetic resonance frequency fr of the soft magnetic thin film 2 is 1.5 times or more, more preferably 2 times or more of the transmission band frequency. By using such a soft magnetic thin film 2 as an electromagnetic wave countermeasure component, the emitted electromagnetic wave can be guided in a desired direction through the magnetic circuit by the soft magnetic thin film 2. Thereby, the emitted electromagnetic wave It is possible to effectively reduce the electromagnetic field strength in the unnecessary direction.

ここで、携帯電話機等の周波数帯域は多岐にわたっているが、人体に吸収される電磁波強度(SAR)で特に問題となる送信帯は824MHz〜1980MHzの範囲である。このような高周波領域(2GHzまでの領域)において、従来の電磁波吸収体は十分なμ′を有していないのに対して、この実施形態の軟磁性フィルム1は軟磁性薄膜2の形状異方性を大きくして強磁性共鳴周波数frを高めているため、低周波領域における大きなμ′を高周波領域においても実現することができる。従って、電磁波を軟磁性薄膜2による磁気回路で所望方向に導くことができる。   Here, although the frequency bands of mobile phones and the like are diverse, the transmission band that is particularly problematic in the electromagnetic wave intensity (SAR) absorbed by the human body is in the range of 824 MHz to 1980 MHz. In such a high frequency region (up to 2 GHz), the conventional electromagnetic wave absorber does not have sufficient μ ′, whereas the soft magnetic film 1 of this embodiment has an anisotropic shape of the soft magnetic thin film 2. Since the magnetic resonance frequency fr is increased by increasing the property, a large μ ′ in the low frequency region can be realized also in the high frequency region. Therefore, the electromagnetic wave can be guided in a desired direction by the magnetic circuit using the soft magnetic thin film 2.

さらに、軟磁性薄膜2の強磁性共鳴周波数frを高めることによって、高周波領域におけるμ″が小さくなる。従って、電磁波の熱ロスによる損失を低減することができる。従来の電磁波吸収体は、高周波領域における大きなμ″に基づいて電磁波を熱ロスとして消費している。この実施形態の軟磁性フィルム1は、電磁波の熱ロスによる損失を低減しているため、例えば電磁波の信号強度自体の低下等を抑制することが可能となる。   Further, by increasing the ferromagnetic resonance frequency fr of the soft magnetic thin film 2, μ ″ in the high frequency region is reduced. Therefore, loss due to heat loss of the electromagnetic wave can be reduced. Electromagnetic waves are consumed as heat loss based on the large μ ″. Since the soft magnetic film 1 of this embodiment has reduced loss due to heat loss of electromagnetic waves, it is possible to suppress, for example, a decrease in the signal strength itself of the electromagnetic waves.

上述した実施形態の軟磁性フィルム1は、例えば電磁波対策部品として有効に利用されるものである。本発明の実施形態による電磁波対策部品は、上述した実施形態の軟磁性フィルム1を具備している。このような電磁波対策部品を適用した電子機器の実施形態について、図8および図9を参照して説明する。図8は本発明の電子機器を携帯電話機に適用した実施形態の構成を示す正面図、図9はその裏面図である。これらの図に示す折り畳みタイプの携帯電話機10は、下筐体11と上筐体12とがヒンジ部13を介して回転自在に連結された構造を有している。   The soft magnetic film 1 of the embodiment described above is effectively used as an electromagnetic wave countermeasure component, for example. The electromagnetic wave countermeasure component according to the embodiment of the present invention includes the soft magnetic film 1 of the above-described embodiment. An embodiment of an electronic apparatus to which such an electromagnetic wave countermeasure component is applied will be described with reference to FIGS. 8 and 9. FIG. 8 is a front view showing a configuration of an embodiment in which the electronic apparatus of the present invention is applied to a mobile phone, and FIG. 9 is a rear view thereof. The folding-type mobile phone 10 shown in these drawings has a structure in which a lower housing 11 and an upper housing 12 are rotatably connected via a hinge portion 13.

下筐体11は送信回路、受信回路、切替回路、制御回路等が搭載された回路基板14を収納しており、その表面には入力用のキーパッド15が配置されている。さらに、下筐体11は電磁波送信部としてアンテナ16を備えており、このアンテナ16から音声データ、文字データ、画像データ等の各種データを含む無線信号(電磁波)が送受信される。アンテナ16は回路基板14に設けられたアンテナ配線等を介して送信回路と受信回路に接続されている。上筐体12は液晶表示装置等による表示部17を有している。   The lower housing 11 houses a circuit board 14 on which a transmission circuit, a reception circuit, a switching circuit, a control circuit, and the like are mounted, and an input keypad 15 is disposed on the surface thereof. Further, the lower housing 11 includes an antenna 16 as an electromagnetic wave transmission unit, and wireless signals (electromagnetic waves) including various data such as voice data, character data, and image data are transmitted and received from the antenna 16. The antenna 16 is connected to the transmission circuit and the reception circuit via antenna wiring or the like provided on the circuit board 14. The upper housing 12 has a display unit 17 such as a liquid crystal display device.

電磁波送信部としてのアンテナ16の近傍には、軟磁性フィルム1からなる電磁波対策部品18が配置されている。具体的には、回路基板14によるアンテナ配線と下筐体11の人体側に向けられる表面(キーパッド15等を有する表面)との間に電磁波対策部品18が配置されている。すなわち、人体頭部とアンテナ16並びにその近傍のアンテナ配線との間には、下筐体11に配置された電磁波対策部品18が介在される。電磁波対策部品18は前述した実施形態の軟磁性フィルム1で構成されている。   An electromagnetic wave countermeasure component 18 made of the soft magnetic film 1 is disposed in the vicinity of the antenna 16 serving as an electromagnetic wave transmitter. Specifically, the electromagnetic wave countermeasure component 18 is disposed between the antenna wiring by the circuit board 14 and the surface (surface having the keypad 15 or the like) facing the human body side of the lower housing 11. That is, the electromagnetic wave countermeasure component 18 arranged in the lower housing 11 is interposed between the human head, the antenna 16 and the antenna wiring in the vicinity thereof. The electromagnetic wave countermeasure component 18 is composed of the soft magnetic film 1 of the above-described embodiment.

この実施形態における電磁波対策部品18は、軟磁性薄膜2の強磁性共鳴周波数frが高く(例えば送信帯周波数の1.5倍以上)、これにより携帯電話機10の送信帯周波数における透磁率μ′が大きい。このような軟磁性薄膜2を有する電磁波対策部品18によれば、アンテナ16やアンテナ配線から人体頭部側に放射される電磁波を、軟磁性薄膜2による磁気回路を介して上方もしくは下方に導くことができる。すなわち、人体頭部が配置される空間の電磁界強度が低減される。基材フィルム3の凹凸部の繰り返し周期pは使用周波数と軟磁性薄膜2の材料固有の異方性とに基づいて設定することが好ましい。   In the electromagnetic wave countermeasure component 18 in this embodiment, the ferromagnetic resonance frequency fr of the soft magnetic thin film 2 is high (for example, 1.5 times or more of the transmission band frequency), so that the permeability μ ′ at the transmission band frequency of the mobile phone 10 is increased. large. According to the electromagnetic wave countermeasure component 18 having such a soft magnetic thin film 2, the electromagnetic waves radiated from the antenna 16 and the antenna wiring to the human head side are guided upward or downward via the magnetic circuit of the soft magnetic thin film 2. Can do. That is, the electromagnetic field intensity in the space where the human head is arranged is reduced. It is preferable to set the repetition period p of the concavo-convex portion of the base film 3 based on the operating frequency and the material specific anisotropy of the soft magnetic thin film 2.

このように、携帯電話機10の周波数帯域(例えば2GHzまでの領域)で大きなμ′を示す軟磁性薄膜2を具備する電磁波対策部品18を使用することによって、人体頭部側に放射される不要な電磁波の強度を低減することが可能となる。さらに、軟磁性薄膜2の強磁性共鳴周波数frを高めることで高周波領域におけるμ″が小さくなるため、熱ロスによる損失を低減することができる。これらによって、携帯電話機10から送信される信号強度の低下を抑制しつつ、不要な方向に放射される電磁波の強度、言い換えると人体頭部等が配置される空間の電磁界強度を効果的に低減することが可能となる。   As described above, by using the electromagnetic wave countermeasure component 18 including the soft magnetic thin film 2 having a large μ ′ in the frequency band (for example, a region up to 2 GHz) of the mobile phone 10, unnecessary radiation emitted to the human head side is unnecessary. It becomes possible to reduce the intensity of electromagnetic waves. Furthermore, since the μ ″ in the high frequency region is reduced by increasing the ferromagnetic resonance frequency fr of the soft magnetic thin film 2, loss due to heat loss can be reduced. With these, the signal intensity transmitted from the mobile phone 10 can be reduced. While suppressing the decrease, it is possible to effectively reduce the intensity of electromagnetic waves radiated in unnecessary directions, in other words, the electromagnetic field intensity of the space where the human head is arranged.

なお、上述した実施形態においては、本発明の電子機器を携帯電話機に適用した例について説明したが、本発明はこれに限られるものではなく、各種の携帯型通信機器に適用可能である。さらに、電磁界強度を低減する空間は人体頭部が配置される空間に限られるものではない。本発明の電磁波対策部品は、ノイズに弱い他の電子機器(例えば携帯電話機であればカメラ部品等)が配置される空間の電磁界強度の低減、送受信信号の周波数や方式が異なる複数のアンテナ間の干渉抑制等に対しても有効に機能する。従って、本発明は電磁波送信機能を有する各種の電子機器に適用可能である。   In the above-described embodiment, an example in which the electronic device of the present invention is applied to a mobile phone has been described. However, the present invention is not limited to this, and can be applied to various portable communication devices. Furthermore, the space for reducing the electromagnetic field strength is not limited to the space where the human head is arranged. The electromagnetic wave countermeasure component of the present invention is a reduction in electromagnetic field strength in a space where other electronic devices that are vulnerable to noise (for example, a camera component for a mobile phone) are arranged, and between a plurality of antennas having different frequencies and methods of transmission / reception signals. It also functions effectively for suppressing interference. Therefore, the present invention is applicable to various electronic devices having an electromagnetic wave transmission function.

次に、本発明の具体的な実施例およびその評価結果について述べる。   Next, specific examples of the present invention and evaluation results thereof will be described.

(実施例1)
まず、厚さ25μmのポリイミド樹脂フィルムを用意し、これを型に挟み込んで加熱圧縮成形(例えばアイトリックス社製のナノインプリント装置を使用)することによって、図2に示したような折り曲げ形状を有する基材フィルムを作製した。基材フィルムの凹凸部の長手方向に平行な長さLは20mmとした。また、基材フィルムの凹凸部の形状は、凸部頂面の幅w1および凹部底面の幅w2がそれぞれ100μm、凹凸部の繰り返し周期pが200μm、段差dが4μmとした。凹凸部の折り曲げ角度θは90°とした。
Example 1
First, a polyimide resin film having a thickness of 25 μm is prepared, and this is sandwiched between molds and subjected to heat compression molding (for example, using a nanoimprint apparatus manufactured by Itricks), whereby a base having a bent shape as shown in FIG. A material film was prepared. The length L parallel to the longitudinal direction of the uneven portion of the base film was 20 mm. Further, the shape of the concavo-convex portion of the base film was such that the width w1 of the top surface of the convex portion and the width w2 of the bottom surface of the concave portion were 100 μm, the repetition period p of the concavo-convex portion was 200 μm, and the step d was 4 μm. The bending angle θ of the uneven portion was 90 °.

上述したポリイミド樹脂製の基材フィルムをアセトン洗浄した後に、以下にようにして基材フィルムの両面に積層型軟磁性薄膜を形成した。まず、基材フィルム上に厚さ0.03μmのSiO2膜と厚さ0.01μmのTi膜をRFスパッタおよびDCスパッタで順に成膜した。このような下地膜上に厚さ0.5μmのFeCoZrSiO膜と厚さ0.05μmのSiO2膜とを交互に積層することによって、基材フィルムの両面に積層型軟磁性薄膜を形成した。これらの積層数は両面とも4回とした。After the above polyimide resin base film was washed with acetone, a laminated soft magnetic thin film was formed on both sides of the base film as follows. First, a 0.03 μm thick SiO 2 film and a 0.01 μm thick Ti film were sequentially formed on a base film by RF sputtering and DC sputtering. A laminated soft magnetic thin film was formed on both surfaces of the base film by alternately laminating a 0.5 μm thick FeCoZrSiO film and a 0.05 μm thick SiO 2 film on such a base film. The number of these layers was four on both sides.

FeCoZrSiO膜の成膜には、RFマグネトロンスパッタ装置を使用した。スパッタターゲットとしては、Fe68Co17Zr15組成(原子%)を有する直径125mm×厚さ3mmの円板状合金ターゲットのエロージョンパターン上に、20個のSiO2チップ(10mm×10mm×2.3mm)を均等に載置したターゲットを用いた。このようなスパッタターゲットを用いて、4層のFeCoZrSiO膜(厚さ0.5μm)をSiO2膜(厚さ0.05μm)を介して順に積層した。軟磁性膜の成膜時の投入電力は3.3W/cm2、ターゲット−基板間距離は75mm、アルゴン圧は3.2Pa(500SCCM)とした。成膜時に凹凸部の長手方向に1.6×103A/mの磁界が印加されるように永久磁石を配置した。An RF magnetron sputtering apparatus was used for forming the FeCoZrSiO film. As a sputtering target, 20 SiO 2 chips (10 mm × 10 mm × 2.3 mm) were formed on an erosion pattern of a disk-shaped alloy target having a diameter of 125 mm × thickness of 3 mm having a composition of Fe 68 Co 17 Zr 15 (atomic%). ) Was used evenly. Using such a sputter target, four layers of FeCoZrSiO film (thickness: 0.5 μm) were sequentially stacked via a SiO 2 film (thickness: 0.05 μm). The input power during the formation of the soft magnetic film was 3.3 W / cm 2 , the target-substrate distance was 75 mm, and the argon pressure was 3.2 Pa (500 SCCM). A permanent magnet was arranged so that a magnetic field of 1.6 × 10 3 A / m was applied in the longitudinal direction of the uneven portion during film formation.

このようにして、複数の凹凸部を有する基材フィルムの両面に積層型軟磁性薄膜を形成して軟磁性フィルムを作製した。軟磁性フィルムの構成は、[(SiO2膜(0.05μm)/FeCoZrSiO膜(0.5μm))/Ti膜(0.01μm)/SiO2膜(0.03μm)//ポリイミド樹脂製基材フィルム(25μm)//SiO2膜(0.03μm)/Ti膜(0.01μm)/(FeCoZrSiO膜(0.5μm)SiO2膜(0.05μm))]である。In this manner, a laminated soft magnetic thin film was formed on both surfaces of a base film having a plurality of uneven portions to produce a soft magnetic film. The structure of the soft magnetic film is [(SiO 2 film (0.05 μm) / FeCoZrSiO film (0.5 μm)) 4 / Ti film (0.01 μm) / SiO 2 film (0.03 μm) // Polyimide resin base Material film (25 μm) // SiO 2 film (0.03 μm) / Ti film (0.01 μm) / (FeCoZrSiO film (0.5 μm) SiO 2 film (0.05 μm)) 4 ].

この軟磁性フィルムの磁気特性を測定したところ、強磁性共鳴周波数frは3GHz以上であった。2GHzにおけるμ′/μ″は十分に大きく、高周波領域で良好な特性を示すことが確認された。なお、軟磁性薄膜の凸部の頂面に形成された部分のμ′・T(P1値)に対する凸部と凹部とを繋ぐ壁面上に形成された部分のμ′・T(P2値)の比(P2/P1)は0.09であった。   When the magnetic properties of the soft magnetic film were measured, the ferromagnetic resonance frequency fr was 3 GHz or more. It was confirmed that μ ′ / μ ″ at 2 GHz is sufficiently large and exhibits good characteristics in the high frequency region. Note that μ ′ · T (P1 value) of the portion formed on the top surface of the convex portion of the soft magnetic thin film. ), The ratio (P2 / P1) of μ ′ · T (P2 value) of the portion formed on the wall surface connecting the convex portion and the concave portion was 0.09.

(実施例2〜9)
上述した実施例1において、基材フィルムの凹凸部の形状や軟磁性薄膜の積層数等を変える以外は、それぞれ実施例1と同様にして軟磁性フィルムを作製した。各軟磁性フィルムの詳細条件は表1に示す通りである。表中の参考例は凹凸部の形状等を本発明の好ましい範囲外に設定したものである。これらの軟磁性フィルムについても、実施例1と同様にして磁気特性を測定した。それらの結果を表2に示す。
(Examples 2-9)
In Example 1 described above, soft magnetic films were produced in the same manner as in Example 1 except that the shape of the concavo-convex portions of the base film and the number of laminated soft magnetic thin films were changed. Detailed conditions of each soft magnetic film are as shown in Table 1. In the reference examples in the table, the shape of the concavo-convex part is set outside the preferred range of the present invention. The magnetic properties of these soft magnetic films were measured in the same manner as in Example 1. The results are shown in Table 2.

表2において、frは5.5GHz以上の場合をA、3.5GHz以上の場合をB、3.5GHz未満の場合をCとして示した。μ′/μ″は2GHzにおける値が3以上である場合をA、3未満である場合をCとして示した。総合評価はfr、2GHzにおけるμ′/μ″に基づくものであり、両項目がAである場合をA、いずれかの項目がBである場合をB、いずれかの項目がCである場合をCとして示した。   In Table 2, fr indicates A when 5.5 GHz or more, B indicates 3.5 GHz or more, and C indicates less than 3.5 GHz. For μ ′ / μ ″, the case where the value at 2 GHz is 3 or more is indicated as A, and the case where it is less than 3 is indicated as C. The overall evaluation is based on μ ′ / μ ″ at fr, 2 GHz. The case where A is A is indicated as A, the case where any item is B, B, and the case where any item is C are indicated as C.

Figure 0004843612
Figure 0004843612

Figure 0004843612
Figure 0004843612

表2から明らかなように、実施例2〜9による軟磁性フィルムはいずれも強磁性共鳴周波数frが高く、良好に形状異方性が付与されていることが分かる。さらに、軟磁性フィルムの強磁性共鳴周波数frを再現性よく高めるためには、基材フィルムの凹凸部の段差dを1μm以上、繰り返し周期pを1000μm以下、軟磁性薄膜の膜厚Tを3μm以下とすることが好ましいことが分かる。   As can be seen from Table 2, all of the soft magnetic films according to Examples 2 to 9 have a high ferromagnetic resonance frequency fr and are well imparted with shape anisotropy. Furthermore, in order to increase the ferromagnetic resonance frequency fr of the soft magnetic film with good reproducibility, the step d of the uneven portion of the base film is 1 μm or more, the repetition period p is 1000 μm or less, and the thickness T of the soft magnetic thin film is 3 μm or less. It turns out that it is preferable.

(実施例10)
実施例1と同一素材および同一形状の基材フィルムを用意し、この基材フィルムの両面に積層型軟磁性薄膜を以下のようにして形成した。まず、基材フィルムをアセトン洗浄した後に、厚さ0.03μmのSiO2膜と厚さ0.01μmのTi膜をRFスパッタおよびDCスパッタで順に成膜した。この下地膜上に厚さ0.5μmのFeCoBSiO膜と厚さ0.05μmのSiO2膜とを交互に積層することによって、基材フィルムの両面に積層型軟磁性薄膜を形成した。これらの積層数は両面とも4回とした。
(Example 10)
A base film having the same material and shape as in Example 1 was prepared, and a laminated soft magnetic thin film was formed on both sides of the base film as follows. First, after the substrate film was washed with acetone, a 0.03 μm thick SiO 2 film and a 0.01 μm thick Ti film were sequentially formed by RF sputtering and DC sputtering. By laminating an FeCoBSiO film having a thickness of 0.5 μm and an SiO 2 film having a thickness of 0.05 μm alternately on the base film, a laminated soft magnetic thin film was formed on both surfaces of the base film. The number of these layers was four on both sides.

FeCoBSiO膜の成膜には、RFマグネトロンスパッタ装置を使用した。スパッタターゲットとしては、(Fe0.80Co0.208515組成(原子%)を有する直径125mm×厚さ3mmの円板状合金ターゲットとSiO2ターゲットを用いた。これらのスパッタターゲットを用いて、4層のFeCoBSiO膜(厚さ0.5μm)をSiO2膜(厚さ0.05μm)を介して順に積層した。軟磁性膜の成膜時の投入電力は3.3W/cm2、ターゲット−基板間距離は75mm、アルゴン圧は1.6Pa(500SCCM)とした。An RF magnetron sputtering apparatus was used for forming the FeCoBSiO film. As the sputtering target, a disk-shaped alloy target having a diameter of 125 mm and a thickness of 3 mm and an SiO 2 target having a composition (Fe 0.80 Co 0.20 ) 85 B 15 (atomic%) were used. Using these sputter targets, four layers of FeCoBSiO films (thickness 0.5 μm) were sequentially stacked via SiO 2 films (thickness 0.05 μm). The input power during the formation of the soft magnetic film was 3.3 W / cm 2 , the target-substrate distance was 75 mm, and the argon pressure was 1.6 Pa (500 SCCM).

このようにして、複数の凹凸部を有する基材フィルムの両面に積層型軟磁性薄膜を形成して軟磁性フィルムを作製した。軟磁性フィルムの構成は、[(SiO2膜(0.05μm)/FeCoBSiO膜(0.5μm))/Ti膜(0.01μm)/SiO2膜(0.03μm)//ポリイミド樹脂製基材フィルム(25μm)//SiO2膜(0.03μm)/Ti膜(0.01μm)/(FeCoBSiO膜(0.5μm)/SiO2膜(0.05μm))]である。In this manner, a laminated soft magnetic thin film was formed on both surfaces of a base film having a plurality of uneven portions to produce a soft magnetic film. The structure of the soft magnetic film is [(SiO 2 film (0.05 μm) / FeCoBSiO film (0.5 μm)) 4 / Ti film (0.01 μm) / SiO 2 film (0.03 μm) // Polyimide resin base Material film (25 μm) // SiO 2 film (0.03 μm) / Ti film (0.01 μm) / (FeCoBSiO film (0.5 μm) / SiO 2 film (0.05 μm)) 4 ].

この軟磁性フィルムの磁気特性を測定したところ、強磁性共鳴周波数frは3GHz以上であった。μ′およびμ″の周波数依存性を測定したところ、軟磁性薄膜のμ′は低周波領域のみならず高周波領域まで大きく、かつ高周波領域においてもμ″の値が小さいことが確認された。2GHzにおけるμ′/μ″は十分に大きく、高周波領域で良好な特性を示すことが確認された。なお、軟磁性薄膜の凸部の頂面に形成された部分のμ′・T(P1値)に対する凸部と凹部とを繋ぐ壁面上に形成された部分のμ′・T(P2値)の比(P2/P1)は0.10であった。   When the magnetic properties of the soft magnetic film were measured, the ferromagnetic resonance frequency fr was 3 GHz or more. When the frequency dependence of μ ′ and μ ″ was measured, it was confirmed that μ ′ of the soft magnetic thin film was large not only in the low frequency region but also in the high frequency region, and the value of μ ″ was small also in the high frequency region. It was confirmed that μ ′ / μ ″ at 2 GHz is sufficiently large and exhibits good characteristics in the high frequency region. Note that μ ′ · T (P1 value) of the portion formed on the top surface of the convex portion of the soft magnetic thin film. The ratio (P2 / P1) of μ ′ · T (P2 value) of the portion formed on the wall surface connecting the convex portion and the concave portion to) was 0.10.

(実施例11)
上述した実施例10において、樹脂フィルムを凹凸部の繰り返し方向に圧縮することによって、凹凸部の折り曲げ角θを70°とした基材フィルムを使用する以外は、実施例10と同様にして軟磁性フィルムを作製した。軟磁性フィルムの詳細条件は表3に示す通りである。この軟磁性フィルムについても、実施例10と同様にして磁気特性を測定した。それらの結果を表4に示す。
(Example 11)
In Example 10 described above, the soft film was compressed in the same manner as in Example 10 except that the base film having a fold angle θ of 70 ° was used by compressing the resin film in the repeating direction of the concavo-convex portion. A film was prepared. Detailed conditions of the soft magnetic film are as shown in Table 3. For this soft magnetic film, the magnetic properties were measured in the same manner as in Example 10. The results are shown in Table 4.

(実施例12)
上述した実施例10において、樹脂フィルムを凹凸部の繰り返し方向に拡張することによって、凹凸部の折り曲げ角θを110°とした基材フィルムを使用する以外は、実施例10と同様にして軟磁性フィルムを作製した。軟磁性フィルムの詳細条件は表3に示す通りである。なお、表中の参考例4は凹凸部の折り曲げ角θを150°としたものである。これらの軟磁性フィルムについても、実施例10と同様にして磁気特性を測定した。それらの結果を表4に示す。
(Example 12)
In Example 10 described above, the soft film was expanded in the repeating direction of the concavo-convex part, and a soft magnetic material was used in the same manner as in Example 10 except that a base film having a concavo-convex part bending angle θ of 110 ° was used. A film was prepared. Detailed conditions of the soft magnetic film are as shown in Table 3. In addition, the reference example 4 in a table | surface makes the bending angle (theta) of an uneven | corrugated | grooved part 150 degrees. For these soft magnetic films, the magnetic properties were measured in the same manner as in Example 10. The results are shown in Table 4.

Figure 0004843612
Figure 0004843612

Figure 0004843612
Figure 0004843612

表4から明らかなように、実施例10〜12による軟磁性フィルムはいずれも強磁性共鳴周波数frが高く、良好に形状異方性が付与されていることが分かる。軟磁性薄膜のP2/P1比が大きくなりすぎると強磁性共鳴周波数frが低下するため、P2/P1比は0.7以下とすることが好ましいことが分かる。   As is clear from Table 4, it can be seen that all of the soft magnetic films according to Examples 10 to 12 have a high ferromagnetic resonance frequency fr and a good shape anisotropy. When the P2 / P1 ratio of the soft magnetic thin film becomes too large, the ferromagnetic resonance frequency fr decreases, and it is understood that the P2 / P1 ratio is preferably 0.7 or less.

(実施例13〜15)
軟磁性薄膜の成膜に図5に示したようなコリメーションスパッタを適用する以外は、実施例1と同様にして軟磁性フィルムを作製した。コリメーションスパッタ時のスリットの形状(スリット長さDに対するスリット幅sの比(s/D比))は、実施例13では1、実施例14では0.2、実施例15では0.1とした。軟磁性フィルムの詳細条件は表5に示す通りである。これらの軟磁性フィルムについても、実施例1と同様にして磁気特性を測定した。それらの結果を表6に示す。なお、表5における側面膜厚は、凸部と凹部とを繋ぐ壁面上の軟磁性薄膜の1層あたりの膜厚である。
(Examples 13 to 15)
A soft magnetic film was produced in the same manner as in Example 1 except that collimation sputtering as shown in FIG. 5 was applied to the formation of the soft magnetic thin film. The shape of the slit during collimation sputtering (ratio of slit width s to slit length D (s / D ratio)) was 1 in Example 13, 0.2 in Example 14, and 0.1 in Example 15. . Detailed conditions of the soft magnetic film are as shown in Table 5. The magnetic properties of these soft magnetic films were measured in the same manner as in Example 1. The results are shown in Table 6. In addition, the side film thickness in Table 5 is the film thickness per layer of the soft magnetic thin film on the wall surface connecting the convex part and the concave part.

Figure 0004843612
Figure 0004843612

Figure 0004843612
Figure 0004843612

表5および表6から明らかなように、コリメーションスパッタを適用することでP2/P1比を低減することができる。このことは軟磁性薄膜の形状異方性をよりきれいに高めることが可能であることを意味する。さらに、コリメーションスパッタにおけるスリットのs/D比を小さくすることによって、凸部と凹部とを繋ぐ壁面上おける軟磁性薄膜の堆積量を減少させることができる。スリットのs/D比を0.1とした実施例15においては、SEM観察(5万倍)したときに凸部と凹部とを繋ぐ壁面(側面)上に軟磁性薄膜を連続した膜として観察することができなかった。   As is clear from Tables 5 and 6, the P2 / P1 ratio can be reduced by applying collimation sputtering. This means that the shape anisotropy of the soft magnetic thin film can be increased more neatly. Further, by reducing the s / D ratio of the slit in the collimation sputtering, the amount of soft magnetic thin film deposited on the wall surface connecting the convex portion and the concave portion can be reduced. In Example 15 in which the s / D ratio of the slit was 0.1, the soft magnetic thin film was observed as a continuous film on the wall surface (side surface) connecting the convex portion and the concave portion when SEM observation (50,000 times) was performed. I could not.

(実施例16)
実施例1の軟磁性フィルムを用いた電磁波対策部品18を、20mm×5mmの形状と40mm×5mmの形状に切断した。これらを図8および図9に示したように携帯電話機10のアンテナ16近傍のアンテナ配線上に、軟磁性薄膜の磁化容易軸方向が基板配線パターンと平行となるように貼り付けた。このような携帯電話機10について、SAMファントムを用いた均一模擬組織モデル内部に励起される電界強度分布を、電界プローブを用いて測定した。
(Example 16)
The anti-electromagnetic wave component 18 using the soft magnetic film of Example 1 was cut into a shape of 20 mm × 5 mm and a shape of 40 mm × 5 mm. As shown in FIGS. 8 and 9, these were pasted on the antenna wiring in the vicinity of the antenna 16 of the mobile phone 10 so that the easy magnetization direction of the soft magnetic thin film was parallel to the substrate wiring pattern. With respect to such a mobile phone 10, the electric field strength distribution excited inside the uniform simulated tissue model using the SAM phantom was measured using an electric field probe.

その結果、2GHzの送信周波数においてSAMファントム内部の電磁波強度は2.3dB低減されていた。同様に電界プローブを用いて空間の電磁強度を測定した結果、SAMファントム以外の空間において、アンテナ効率が2dB向上していた。この測定結果から、強磁性共鳴周波数frが高い軟磁性薄膜を具備する電磁波対策部品を使用することによって、携帯電話機10から送信される信号強度の低下を抑制しつつ、人体頭部等が配置される空間の電磁界強度を効果的に低減できることが分かる。   As a result, the electromagnetic wave intensity inside the SAM phantom was reduced by 2.3 dB at a transmission frequency of 2 GHz. Similarly, as a result of measuring the electromagnetic strength of the space using the electric field probe, the antenna efficiency was improved by 2 dB in the space other than the SAM phantom. From this measurement result, by using an electromagnetic wave countermeasure component including a soft magnetic thin film having a high ferromagnetic resonance frequency fr, a human head or the like is arranged while suppressing a decrease in signal intensity transmitted from the mobile phone 10. It can be seen that the electromagnetic field strength in the space can be effectively reduced.

電磁波対策部品として使用する軟磁性薄膜(軟磁性フィルム)は、高周波領域でμ′が大きければそれ以外の例えば直流磁界測定で得られる保磁力等の特性にはあまり影響されない。従って、(Co35.6Fe5014.4)と(SiO2)の2元スパッタによる磁性膜、(Co20Fe80)と(SiO2)の2元スパッタによる軟磁性膜等を適用してもよく、これらの軟磁性膜によっても同様の効果を得ることができる。さらに、軟磁性膜はスパッタ法に限らず蒸着法等を適用して成膜してもよい。A soft magnetic thin film (soft magnetic film) used as an electromagnetic wave countermeasure component is not significantly affected by other characteristics such as coercive force obtained by DC magnetic field measurement as long as μ ′ is large in a high frequency region. Therefore, a magnetic film by binary sputtering of (Co 35.6 Fe 50 B 14.4 ) and (SiO 2 ), a soft magnetic film by binary sputtering of (Co 20 Fe 80 ) and (SiO 2 ), etc. may be applied. Similar effects can be obtained with these soft magnetic films. Further, the soft magnetic film is not limited to the sputtering method, and may be formed by applying a vapor deposition method or the like.

本発明の態様に係る軟磁性フィルムは、形状自由度の低下や体積の増加、さらには平面的な磁性体の分離を招くことなく、軟磁性薄膜に形状異方性を有効に付与したものである。従って、そのような軟磁性フィルムは電磁波対策部品に有効に利用される。さらに、本発明の態様に係る電磁波対策部品によれば、発信信号強度の低下を抑制しつつ、放射される電磁波の不要方向に対する電磁界強度を低減することができる。そのような電磁波対策部品を用いた電子機器によれば、電磁波による通信特性等を良好に保った上で、例えば人体や他の電子部品や電子機器に対する電磁波の影響を低減することが可能となる。

The soft magnetic film according to the embodiment of the present invention effectively imparts shape anisotropy to a soft magnetic thin film without lowering the degree of freedom in shape, increasing the volume, and further causing separation of a planar magnetic material. is there. Therefore, such a soft magnetic film is effectively used for an electromagnetic wave countermeasure component. Furthermore, according to the electromagnetic wave countermeasure component according to the aspect of the present invention, it is possible to reduce the electromagnetic field strength with respect to the unnecessary direction of the radiated electromagnetic wave while suppressing a decrease in the transmitted signal strength. According to the electronic device using such an electromagnetic wave countermeasure component, it is possible to reduce the influence of the electromagnetic wave on, for example, the human body, other electronic components, and the electronic device while maintaining good communication characteristics due to the electromagnetic wave. .

Claims (19)

複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルムと、
少なくとも前記基材フィルムの前記凸部の頂面および前記凹部の底面に形成された軟磁性薄膜であって、透磁率μ′と膜厚Tとの積が不連続な部分を有する軟磁性薄膜とを具備し、
前記基材フィルムは前記凹凸部の繰り返し周期が1000μm以下であることを特徴とする軟磁性フィルム。
A base film having a bent shape in which a plurality of uneven portions are repeatedly provided;
A soft magnetic thin film formed on at least a top surface of the convex portion and a bottom surface of the concave portion of the base film, wherein the product of the permeability μ ′ and the film thickness T has a discontinuous portion; equipped with,
The base film has a repetition period of the concavo-convex portions of 1000 μm or less, and is a soft magnetic film.
請求項1記載の軟磁性フィルムにおいて、
前記基材フィルムは前記凹凸部の段差が1μm以上であることを特徴とする軟磁性フィルム。
The soft magnetic film according to claim 1,
The soft magnetic film, wherein the base film has a step of 1 μm or more in the uneven portion.
請求項記載の軟磁性フィルムにおいて、
記凹凸部の段差が3μm以上100μm以下であることを特徴とする軟磁性フィルム。
In the soft magnetic film according to claim 2 ,
Soft magnetic film characterized by the step of pre Ki凹 convex portion is 3μm or 100μm or less.
請求項1ないし請求項3のいずれか1項記載の軟磁性フィルムにおいて、
前記基材フィルムは前記凸部頂面の幅および前記凹部底面の幅がそれぞれ500μm以下であることを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 3 ,
The base film has a width of the top surface of the convex portion and a width of the bottom surface of the concave portion of 500 μm or less, respectively.
請求項1ないし請求項4のいずれか1項記載の軟磁性フィルムにおいて、
前記基材フィルムは平均厚さが200μm以下の樹脂フィルムを備えることを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 4 ,
The base film includes a resin film having an average thickness of 200 μm or less.
請求項1ないし請求項5のいずれか1項記載の軟磁性フィルムにおいて、
前記軟磁性薄膜は膜厚Tが3μm以下であることを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 5 ,
The soft magnetic thin film has a thickness T of 3 μm or less.
請求項1ないし請求項6のいずれか1項記載の軟磁性フィルムにおいて、
前記軟磁性薄膜は非磁性絶縁層を介して複数の磁性層を積層した積層膜を有することを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 6 ,
The soft magnetic thin film has a laminated film in which a plurality of magnetic layers are laminated via a nonmagnetic insulating layer.
請求項記載の軟磁性フィルムにおいて、
前記複数の磁性層の単層としての膜厚はそれぞれ1μm以下であることを特徴とする軟磁性フィルム
The soft magnetic film according to claim 7 ,
The soft magnetic film according to claim 1, wherein each of the plurality of magnetic layers has a thickness of 1 μm or less.
請求項1ないし請求項8のいずれか1項記載の軟磁性フィルムにおいて、
前記軟磁性薄膜は前記基材フィルムの両面に形成されていることを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 8 ,
The soft magnetic film is characterized in that the soft magnetic thin film is formed on both surfaces of the base film.
請求項1ないし請求項9のいずれか1項記載の軟磁性フィルムにおいて、
前記基材フィルムは前記凹凸部の折り曲げ角が10°以上135°以下の範囲である折り曲げ形状を有することを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 9 ,
The base film has a bent shape in which a bending angle of the concavo-convex portion is in a range of 10 ° to 135 °.
請求項10記載の軟磁性フィルムにおいて、
記凹凸部の折り曲げ角が85°以上95°以下の範囲であることを特徴とする軟磁性フィルム。
The soft magnetic film according to claim 10 ,
Soft film folding angle before Ki凹 protrusions and wherein the range der Turkey of to 95 ° 85 ° or more.
請求項1ないし請求項9のいずれか1項記載の軟磁性フィルムにおいて、
前記基材フィルムは前記凹凸部の折り曲げ角が鋭角となる折り曲げ形状を有することを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 9 ,
The soft magnetic film according to claim 1, wherein the base film has a bent shape in which a bending angle of the concavo-convex portion is an acute angle.
請求項12記載の軟磁性フィルムにおいて、
前記凹凸部の折り曲げ角が10°以上90°未満の範囲であることを特徴とする軟磁性フィルム。
The soft magnetic film according to claim 12 ,
A soft magnetic film, wherein a bending angle of the concavo-convex portion is in a range of 10 ° or more and less than 90 °.
請求項1ないし請求項13のいずれか1項記載の軟磁性フィルムにおいて、
前記凸部の頂面に形成された前記軟磁性薄膜の前記透磁率μ′と膜厚Tとの積(P1値)に対する前記凸部と前記凹部とを繋ぐ壁面上に形成された前記軟磁性薄膜の前記透磁率μ′と膜厚Tとの積(P2値)の比(P2/P1)が0.7以下であることを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 13 ,
The soft magnetism formed on the wall surface connecting the convex portion and the concave portion to the product (P1 value) of the magnetic permeability μ ′ and the film thickness T of the soft magnetic thin film formed on the top surface of the convex portion. A soft magnetic film, wherein a ratio (P2 / P1) of a product (P2 value) of the magnetic permeability μ ′ and the film thickness T of the thin film is 0.7 or less.
請求項1ないし請求項14のいずれか1項記載の軟磁性フィルムにおいて、
前記軟磁性薄膜は前記凸部の頂面に形成された部分と前記凹部の底面に形成された部分とが分離されていることを特徴とする軟磁性フィルム。
The soft magnetic film according to any one of claims 1 to 14 ,
The soft magnetic film is characterized in that a portion formed on the top surface of the convex portion and a portion formed on the bottom surface of the concave portion are separated.
請求項1ないし請求項15のいずれか1項記載の軟磁性フィルムを具備することを特徴とする電磁波対策部品。An electromagnetic wave countermeasure component comprising the soft magnetic film according to any one of claims 1 to 15 . 電磁波送信部を有する電子機器本体と、
請求項1ないし請求項15のいずれか1項記載の軟磁性フィルムを備える電磁波対策部品であって、前記電磁波送信部から放射される電磁波の不要方向に対する電磁界強度を選択的に低減するように配置された電磁波対策部品と
を具備することを特徴とする電子機器。
An electronic device body having an electromagnetic wave transmission unit;
An electromagnetic wave countermeasure component comprising the soft magnetic film according to any one of claims 1 to 15 , wherein the electromagnetic field intensity with respect to an unnecessary direction of an electromagnetic wave radiated from the electromagnetic wave transmission unit is selectively reduced. An electronic device comprising: an electromagnetic wave countermeasure component arranged.
請求項17記載の電子機器において、
前記軟磁性フィルムにおける軟磁性薄膜は前記電子機器本体の送信帯周波数の1.5倍以上の強磁性共鳴周波数を有することを特徴とする電子機器。
The electronic device according to claim 17 .
The electronic device characterized in that the soft magnetic thin film in the soft magnetic film has a ferromagnetic resonance frequency of 1.5 times or more of a transmission band frequency of the electronic device main body.
請求項17または請求項18記載の電子機器において、
前記電子機器は携帯型通信機器であることを特徴とする電子機器。
The electronic device according to claim 17 or claim 18 ,
The electronic device is a portable communication device.
JP2007535433A 2005-09-12 2006-09-07 Soft magnetic film, anti-electromagnetic wave component and electronic device using the same Active JP4843612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535433A JP4843612B2 (en) 2005-09-12 2006-09-07 Soft magnetic film, anti-electromagnetic wave component and electronic device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005264151 2005-09-12
JP2005264151 2005-09-12
PCT/JP2006/317754 WO2007032252A1 (en) 2005-09-12 2006-09-07 Soft magnetic film, electromagnetic wave countermeasure part using such soft magnetic film, and electronic device
JP2007535433A JP4843612B2 (en) 2005-09-12 2006-09-07 Soft magnetic film, anti-electromagnetic wave component and electronic device using the same

Publications (2)

Publication Number Publication Date
JPWO2007032252A1 JPWO2007032252A1 (en) 2009-03-19
JP4843612B2 true JP4843612B2 (en) 2011-12-21

Family

ID=37864848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535433A Active JP4843612B2 (en) 2005-09-12 2006-09-07 Soft magnetic film, anti-electromagnetic wave component and electronic device using the same

Country Status (3)

Country Link
JP (1) JP4843612B2 (en)
KR (1) KR100993969B1 (en)
WO (1) WO2007032252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306790B2 (en) 2014-08-21 2019-05-28 Sony Corporation Casing component, electronic apparatus, and casing component production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325964B2 (en) * 2019-01-11 2023-08-15 株式会社東芝 Electromagnetic wave attenuator and electronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620720B2 (en) * 1977-10-19 1981-05-15
JPS6233413A (en) * 1985-08-06 1987-02-13 Nec Corp Manufacture of soft magnetic thin film core
JPH0328881A (en) * 1989-02-07 1991-02-07 Teruo Suzuki Advertising device
JPH08288684A (en) * 1995-04-20 1996-11-01 K Lab:Kk Electromagnetic wave absorber
JPH09186486A (en) * 1995-12-28 1997-07-15 Tosoh Corp Electromagnetic-wave absorber
JPH11274787A (en) * 1998-03-20 1999-10-08 Tdk Corp Ferrite radio wave absorber
JP2002232184A (en) * 2001-02-07 2002-08-16 Nisshin Steel Co Ltd Electromagnetic wave shielding material
JP2004015038A (en) * 2002-06-05 2004-01-15 Res Inst Electric Magnetic Alloys Magnetic domain controlled soft magnetic thin film, method for manufacturing the same and high frequency magnetic device
WO2004017701A2 (en) * 2002-08-17 2004-02-26 3M Innovative Properties Company Flexible, formable conductive films

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530682Y2 (en) * 1989-07-31 1997-03-26 株式会社 リケン Magnetic shield box for color TV

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620720B2 (en) * 1977-10-19 1981-05-15
JPS6233413A (en) * 1985-08-06 1987-02-13 Nec Corp Manufacture of soft magnetic thin film core
JPH0328881A (en) * 1989-02-07 1991-02-07 Teruo Suzuki Advertising device
JPH08288684A (en) * 1995-04-20 1996-11-01 K Lab:Kk Electromagnetic wave absorber
JPH09186486A (en) * 1995-12-28 1997-07-15 Tosoh Corp Electromagnetic-wave absorber
JPH11274787A (en) * 1998-03-20 1999-10-08 Tdk Corp Ferrite radio wave absorber
JP2002232184A (en) * 2001-02-07 2002-08-16 Nisshin Steel Co Ltd Electromagnetic wave shielding material
JP2004015038A (en) * 2002-06-05 2004-01-15 Res Inst Electric Magnetic Alloys Magnetic domain controlled soft magnetic thin film, method for manufacturing the same and high frequency magnetic device
WO2004017701A2 (en) * 2002-08-17 2004-02-26 3M Innovative Properties Company Flexible, formable conductive films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306790B2 (en) 2014-08-21 2019-05-28 Sony Corporation Casing component, electronic apparatus, and casing component production method

Also Published As

Publication number Publication date
JPWO2007032252A1 (en) 2009-03-19
WO2007032252A1 (en) 2007-03-22
KR20080049103A (en) 2008-06-03
KR100993969B1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
KR100955992B1 (en) Electromagnetic interference preventing component and electronic device using the same
KR101903540B1 (en) Near-field noise suppression sheet
JP7325964B2 (en) Electromagnetic wave attenuator and electronic device
JP2012038807A (en) Electromagnetic shield sheet
US10364511B1 (en) Magneto dielectric composite materials and microwave applications thereof
US10587049B2 (en) Magnetic isolator, method of making the same, and device containing the same
JP2010206182A (en) Electromagnetic shielding sheet
JP4281858B2 (en) Magnetic film
JP4843612B2 (en) Soft magnetic film, anti-electromagnetic wave component and electronic device using the same
US8043727B2 (en) Electromagnetic wave-absorption multilayer substrate
US20040185309A1 (en) Soft magnetic member, electromagnetic wave controlling sheet and method of manufacturing soft magnetic member
WO2009145130A1 (en) Magnetic sheet and method for manufacturing the same
Grimes EMI shielding characteristics of permalloy multilayer thin films
KR100712836B1 (en) Multi-layered film for shielding electromagnetic interference and circuit board including the same
US11005149B2 (en) Metaconductor skins for low loss RF conductors
Matsushita et al. Ni-Zn ferrite films synthesized from aqueous solution usable for sheet-type conducted noise suppressors in GHz range
KR100621422B1 (en) Multi-Layer Type Flexible Electro-magnetic wave absorber
Osipov et al. Multi-layered Fe films for microwave applications
WO2022247465A1 (en) Magnetic thin film and preparation method therefor, semiconductor package module, and electronic device
JP2007073551A (en) Magnetic multilayer film and its manufacturing method
JP2001076913A (en) Electromagnetic interference suppressor and manufacture thereof
JP2784275B2 (en) Radio wave absorber
JP2003197410A (en) Electromagnetic noise suppressing body and manufacturing method thereof
JP2004172909A (en) Portable communication device
JP2022007092A (en) Common mode noise suppression member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3