JPH1183733A - Grade measuring instrument for grain - Google Patents

Grade measuring instrument for grain

Info

Publication number
JPH1183733A
JPH1183733A JP23806197A JP23806197A JPH1183733A JP H1183733 A JPH1183733 A JP H1183733A JP 23806197 A JP23806197 A JP 23806197A JP 23806197 A JP23806197 A JP 23806197A JP H1183733 A JPH1183733 A JP H1183733A
Authority
JP
Japan
Prior art keywords
grain
light
unit
quality information
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23806197A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishibashi
仁志 石橋
Ryoji Suzuki
良治 鈴木
Hideji Tamenaga
秀司 為永
Susumu Morimoto
進 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23806197A priority Critical patent/JPH1183733A/en
Publication of JPH1183733A publication Critical patent/JPH1183733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grade measuring instrument which can easily measure the quality information and sizes of grains one grain by one grain. SOLUTION: A grade measuring instrument is provided with a carrying means T which carries grains to be measured in a state where the grains are separated from each other, and a measuring means M which finds the quality information and sizes of the grains carried by means of the carrying means T one grain by one grain. The measuring means M is constituted to find the internal quality information and appearance quality information of the grains as the quality information, and provided with a light source section 6 which emits light upon the grains one grain by one grain while the grains are carried by means of the carrying means T, a light receiving section 8 which receives reflected light rays or transmitted light rays from the grains, and an arithmetic section 10 which finds the quality information and sizes of the grains based on the light rays received by means of the light receiving section 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、穀粒の品位を一粒
ずつ計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the quality of a grain one by one.

【0002】[0002]

【従来の技術】従来、穀粒の品位を一粒ずつ計測する装
置としては、計測対象の穀粒を一粒ずつ分離した状態で
搬送する搬送手段と、搬送手段にて搬送される穀粒の品
質情報を一粒ずつ計測する品質計測手段とを設けた穀粒
品質計測装置や、計測対象の穀粒を一粒ずつ分離した状
態で搬送する搬送手段と、搬送手段にて搬送される穀粒
の大きさを計測するサイズ計測手段とを設けた穀粒サイ
ズ計測装置があった。
2. Description of the Related Art Conventionally, as a device for measuring the quality of grains one by one, a conveying means for conveying the grains to be measured in a state of being separated one by one; A grain quality measuring device provided with a quality measuring means for measuring quality information one by one, a conveying means for conveying the grains to be measured separated one by one, and a grain conveyed by the conveying means There has been a grain size measuring device provided with a size measuring means for measuring the size of the grain.

【0003】[0003]

【発明が解決しようとする課題】ところで、穀粒一粒ず
つの品質情報と大きさの両方を計測する必要がある場合
がある。例えば、複数の生産者から納入される穀物の一
例としての米を受け入れて、乾燥並びに貯留を行うライ
スセンター等においては、穀物の受入検査として、穀粒
一粒ずつの品質情報と大きさの両方を計測する必要があ
る。従来では、上記のような穀粒品質計測装置、及び、
穀粒サイズ計測装置を用いて、穀粒一粒ずつの品質情報
と大きさを計測していたが、それらの計測のために、計
測対象の穀粒を一粒ずつ分離した状態で搬送する作業を
2回にわたって行う必要があり、計測作業が二度手間と
なって煩雑であるため、改善が望まれていた。
There are cases where it is necessary to measure both the quality information and the size of each grain. For example, in rice centers that receive rice as an example of grain delivered from multiple producers and dry and store the grain, as a grain acceptance inspection, both the quality information and the size of each grain are used. Need to be measured. Conventionally, a grain quality measuring device as described above, and,
The quality information and size of each grain were measured using a grain size measuring device, but the work of transporting the grains to be measured in a state of being separated one by one for these measurements It is necessary to perform the measurement twice, and the measurement operation is troublesome and troublesome, so that improvement has been desired.

【0004】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、穀粒一粒ずつの品質情報と大き
さを簡単に計測することができるようにすることにあ
る。
The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to easily measure quality information and size of each grain.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の特徴構
成によれば、搬送手段によって、計測対象の穀粒が一粒
ずつ分離した状態で搬送され、計測手段によって、搬送
手段にて搬送される穀粒の品質情報及び大きさが一粒ず
つ求められる。従って、計測対象の穀粒を一粒ずつ分離
した状態で1回搬送するだけで、穀粒一粒ずつの品質情
報と大きさの両方を計測することができるようになっ
た。
According to the first aspect of the present invention, the grain to be measured is transported in a state of being separated one by one by the transporting means, and transported by the transporting means by the measuring means. The quality information and the size of the grain to be obtained are obtained one by one. Therefore, it is possible to measure both the quality information and the size of each grain by simply transporting the grain to be measured once in a state where the grains are separated one by one.

【0006】請求項2に記載の特徴構成によれば、計測
手段によって、品質情報として、穀粒の内部品質情報及
び外観品質情報が求められる。つまり、穀粒の品質情報
としては、穀粒に含まれる成分にかかわる内部品質情
報、及び、穀粒の外観にかかわる外観品質情報がある
が、それらの両方を求めることができるので、穀粒の品
位を一粒ずつ計測する作業を一層簡素化することができ
るようになった。
According to the second aspect of the present invention, the internal quality information and the appearance quality information of the grain are obtained by the measuring means as the quality information. In other words, as the quality information of the grain, there are internal quality information related to the components contained in the grain, and appearance quality information related to the appearance of the grain, and both of them can be obtained. The work of measuring the quality one by one can be further simplified.

【0007】ちなみに、穀物の一例としての米の品位を
計測する場合、内部品質情報としては、例えば、穀粒に
含まれる水分量、タンパク量、アミロース量夫々に関す
る情報や、食味に関する情報がある。ここでいう食味と
は、米を炊飯して食べるときの官能値と相関性を持つも
のである。又、外観品質情報としては、例えば、良質
粒、未熟粒、被害粒、着色粒、死米がある。
[0007] Incidentally, when measuring the quality of rice as an example of grain, the internal quality information includes, for example, information on the amount of water, the amount of protein, and the amount of amylose contained in the grain, and information on taste. The taste here has a correlation with a sensory value when rice is cooked and eaten. The appearance quality information includes, for example, good quality grains, immature grains, damaged grains, colored grains, and dead rice.

【0008】請求項3に記載の特徴構成によれば、光源
部によって、搬送手段にて搬送される穀粒一粒ずつに光
が照射され、受光部によって、穀粒からの反射光又は透
過光が受光され、その受光部が受光した光に基づいて、
演算部によって穀粒の品質情報及び大きさが求められ
る。つまり、計測手段は、穀粒一粒ずつに光を照射し、
穀粒からの反射光又は透過光を受光して、その受光した
光に基づいて、穀粒の品質情報と大きさとの両方を求め
るように構成してある。ちなみに、計測手段として、穀
粒の品質情報を求めるものと、穀粒の大きさを求めるも
のとを各別に備えさせる場合や、品質情報の計測用の光
と、大きさの計測用の光を各別に穀粒一粒ずつに照射す
るとともに、それら照射光に基づく穀粒からの反射光又
は透過光を各別に受光して、それら各別に受光した光に
基づいて品質情報と大きさを各別に求めるように構成す
る場合が想定される。しかしながら、これらの場合、計
測手段の構成が複雑になるという欠点がある。従って、
請求項3に記載の特徴構成によれば、計測手段の構成を
簡略化することができるので、本発明を実施するための
コストを低減することができる。
According to the third aspect of the present invention, the light source unit irradiates light to each grain conveyed by the conveying means, and the light receiving unit reflects or transmits light from the kernel. Is received, and based on the light received by the light receiving portion,
The arithmetic unit obtains the quality information and the size of the grain. In other words, the measuring means irradiates light one grain at a time,
The system is configured to receive reflected light or transmitted light from a grain, and to obtain both quality information and a size of the grain based on the received light. By the way, as a measuring means, a device for obtaining the quality information of the kernel and a device for obtaining the size of the kernel are separately provided, or a light for measuring the quality information and a light for measuring the size are used. Irradiate each grain one by one, and receive the reflected light or transmitted light from the kernel based on the irradiated light separately, and separate the quality information and size based on the light received separately. It is assumed that the configuration is such that it is determined. However, in these cases, there is a disadvantage that the configuration of the measuring means is complicated. Therefore,
According to the characteristic configuration of the third aspect, the configuration of the measuring means can be simplified, so that the cost for implementing the present invention can be reduced.

【0009】請求項4に記載の特徴構成によれば、分光
部によって、受光部が受光した光の分光スペクトルが得
られ、演算部によって、分光部が得た分光スペクトルに
おける、求める品質情報と相関のある計測用波長の光に
基づいて品質情報が求められる。つまり、穀粒に光を照
射すると、求める品質情報に特有の波長(計測用波長に
相当する)において、求める品質情報に応じた吸収特性
を示す。そこで、受光部が受光した光の分光スペクトル
を得る分光部を設けることにより、求める品質情報の項
目が異なっても、分光部によって得られた分光スペクト
ルから、各品質情報の項目に相関のある計測用波長の光
を得て、各品質情報を求めることができる。ちなみに、
光源部を、各品質情報の項目に相関のある計測用波長の
光を各別に照射することができるように構成することが
想定されるが、一般に、一項目の品質情報を計測する場
合でも複数の計測用波長を利用するので、複数の項目の
品質情報を求めるとなると、多数の計測用波長の光が必
要となり、構成が複雑となる。従って、請求項4に記載
の特徴構成によれば、簡単な構成で、複数項目の品質情
報を計測することができるようになった。
According to the fourth aspect of the present invention, the spectral unit obtains the spectral spectrum of the light received by the light receiving unit, and the arithmetic unit correlates the quality information with the quality information to be obtained in the spectral spectrum obtained by the spectral unit. Quality information is required based on light having a measurement wavelength. That is, when the grain is irradiated with light, it exhibits an absorption characteristic at a wavelength (corresponding to a measurement wavelength) specific to the required quality information, according to the required quality information. Therefore, by providing a spectral unit that obtains the spectral spectrum of the light received by the light receiving unit, even if the items of the quality information to be obtained are different, from the spectral spectrum obtained by the spectral unit, measurement that has a correlation with each quality information item By obtaining light of the wavelength for use, quality information can be obtained. By the way,
It is assumed that the light source unit can be configured to be able to individually irradiate light having a measurement wavelength that is correlated with each item of quality information, but in general, even when measuring one item of quality information, Therefore, when quality information of a plurality of items is required, light of a large number of measurement wavelengths is required, and the configuration becomes complicated. Therefore, according to the characteristic configuration of the fourth aspect, the quality information of a plurality of items can be measured with a simple configuration.

【0010】請求項5に記載の特徴構成によれば、演算
部は、受光部が受光した光における光量の経時変化に基
づいて、穀粒の大きさを求める。つまり、搬送手段によ
って搬送される穀粒の進行方向先端が、照射部から照射
された光の光束に入った時点、及び、搬送手段によって
搬送される穀粒の進行方向後端が、照射部から照射され
た光の光束から抜け出た時点夫々において、受光部が受
光した光における光量が変化する。そこで、受光部が受
光した光における光量の経時変化に基づいて、搬送手段
によって搬送される穀粒が照射部から照射された光を通
過するのに要した通過時間を求めることができ、その通
過時間と、穀粒が照射部から照射された光を通過する間
の搬送速度とに基づいて、穀粒の大きさを求めることが
できる。従って、請求項5に記載の特徴構成によれば、
請求項3又は4に記載の特徴構成によるように、計測手
段の構成を簡略化しながら、穀粒の品質情報と大きさと
の両方を求める当たって、穀粒の大きさを求めるための
好ましい具体構成を提供することができるようになっ
た。
According to a fifth aspect of the present invention, the arithmetic unit determines the size of the kernel based on a temporal change in the amount of light received by the light receiving unit. In other words, the time when the forward end of the grain transported by the transport unit enters the luminous flux of the light emitted from the irradiation unit, and the rear end in the travel direction of the kernel transported by the transport unit from the irradiation unit At each point in time when the light exits from the luminous flux of the irradiated light, the amount of light in the light received by the light receiving unit changes. Therefore, based on a temporal change in the amount of light in the light received by the light receiving unit, the transit time required for the kernel conveyed by the conveying unit to pass the light emitted from the irradiation unit can be obtained. The size of the kernel can be determined based on the time and the transport speed during which the kernel passes through the light emitted from the irradiation unit. Therefore, according to the characteristic configuration of claim 5,
A preferred concrete configuration for determining the size of a grain when determining both the quality information and the size of the grain while simplifying the configuration of the measuring means, as in the characteristic configuration according to claim 3 or 4. Can now be offered.

【0011】尚、照射部から照射された光を穀粒が通過
する間の穀粒の搬送速度は、以下のようにして得ること
ができる。例えば、搬送手段を、あらかじめ設定された
設定速度で穀粒を搬送するように構成し、前記設定速度
を演算部に記憶させておくことにより、得ることができ
る。又、穀粒の搬送速度を検出する速度検出手段を設け
て、その速度検出手段の検出情報に基づいて、得ること
ができる。
[0011] The speed at which the grains are conveyed while the grains pass the light irradiated from the irradiation section can be obtained as follows. For example, it can be obtained by configuring the conveying means to convey grains at a preset set speed, and storing the set speed in an arithmetic unit. In addition, it is possible to provide a speed detecting means for detecting the conveying speed of the grain, and obtain the grain based on the detection information of the speed detecting means.

【0012】請求項6に記載の特徴構成によれば、演算
部は、穀粒に含まれる水分量に関する水分情報を求める
とともに、求めた水分情報に基づいて、求めた大きさを
補正して、設定水分情報になるように乾燥したときの穀
粒の大きさを求める。つまり、穀粒を乾燥すると、水分
含有率が低下するとともに穀粒の大きさは変化するが、
そのとき、水分含有率及び穀粒の大きさは、略一定の相
対関係を維持しながら変化することが分かっている。そ
こで、水分情報を求め、求めた水分情報、及び、前記相
対関係に基づいて、求めた大きさを補正して、設定水分
情報になるように乾燥したときの穀粒の大きさを推測す
ることができるのである。
[0012] According to the characteristic configuration of the sixth aspect, the arithmetic unit obtains moisture information relating to the amount of moisture contained in the grain, and corrects the determined size based on the determined moisture information. The size of the grain when dried is determined so that the set moisture information is obtained. In other words, when the grain is dried, the moisture content decreases and the size of the grain changes,
At that time, it is known that the moisture content and the grain size change while maintaining a substantially constant relative relationship. Therefore, the moisture information is obtained, the obtained water information, and based on the relative relationship, the obtained size is corrected, and the size of the grain when dried to become the set water information is estimated. You can do it.

【0013】ところで、上記のライスセンターにおいて
は、穀粒を適正水分含有率に乾燥してから、貯留するよ
うになっているので、穀粒の大きさとしては、適正水分
含有率に乾燥したときの大きさが必要となる。一方、か
かるライスセンターにおいては、複数の生産者から納入
される穀物を効率よく受け入れる必要があるので、穀物
の受入検査を迅速に行うことが望まれる。しかしなが
ら、従来では、計測対象の穀粒を検査用の簡易乾燥機で
適正水分含有率にまで乾燥してから、穀粒の大きさを計
測する必要があり、受入検査を迅速に行う面において完
全が望まれていた。
In the above rice center, the grains are stored after being dried to an appropriate moisture content. Is required. On the other hand, in such a rice center, it is necessary to efficiently receive cereals delivered from a plurality of producers, and therefore, it is desired to quickly inspect the acceptance of cereals. However, in the past, it was necessary to dry the grain to be measured to a proper moisture content with a simple dryer for inspection, and then measure the grain size. Was desired.

【0014】これに対して、請求項6に記載の特徴構成
によれば、生産者から納入された儘の未乾燥の穀粒を計
測対象として、適正水分含有率になるように乾燥したと
きの穀粒の大きさを求めることができる。従って、適正
水分含有率になるように乾燥したときの穀粒の大きさ
を、迅速かつ簡単に求めることができるので、特にライ
スセンター等において、受入検査用として使用すると好
適である。
[0014] On the other hand, according to the characteristic configuration of the present invention, when the undried kernels as delivered from the producer are measured and dried so as to have an appropriate moisture content. The size of the grain can be determined. Therefore, it is possible to quickly and easily determine the size of the grain when dried so as to have an appropriate water content, and it is particularly preferable to use the grain at a rice center or the like for acceptance inspection.

【0015】請求項7に記載の特徴構成によれば、演算
部は、受光部が受光した光における光量に基づいて、品
質情報における外観品質情報として、胴割れの有無を判
別する。つまり、穀粒に胴割れが存在すると、照射部か
ら照射された光は、胴割れ部分で乱反射して、受光部が
受光した光における光量が変化するので、受光部が受光
した光における光量に基づいて、胴割れの有無を判別す
ることができるのである。従って、計測対象の穀粒が一
粒ずつ分離した状態で1回搬送するだけで、穀粒の大き
さとともに、品質情報における外観品質情報として、胴
割れの有無を一粒ずつ判別することができるようになっ
た。
According to the seventh aspect of the present invention, the arithmetic unit determines the presence or absence of a body crack as appearance quality information in the quality information based on the amount of light in the light received by the light receiving unit. In other words, if there is a crack in the kernel, the light irradiated from the irradiation unit is irregularly reflected at the cracked portion, and the light amount in the light received by the light receiving unit changes. Based on this, it is possible to determine the presence or absence of a body crack. Therefore, it is possible to determine the size of the grain as well as the presence or absence of a crack in the body as appearance quality information in the quality information by simply transporting the grain to be measured once in a state where the grains are separated one by one. It became so.

【0016】請求項8に記載の特徴構成によれば、演算
部は、受光部が受光した光の光量に基づいて、殻が除去
されている殻無し穀粒を判別して、その殻無し穀粒につ
いて、穀粒の品質情報及び大きさを求める。つまり、殻
が除去されている殻無し穀粒と、殻が除去されていない
殻付穀粒とでは、照射部から照射された光が穀粒を透過
する状態や、穀粒によって反射される状態が異なって、
受光部が受光した光の光量が異なるので、受光部が受光
した光の光量に基づいて、殻無し穀粒を判別することが
できる。そして、その判別情報に基づいて、殻無し穀粒
についてのみ、品質情報及び大きさを求めることができ
るので、計測結果に殻付穀粒のデータが含まれることに
起因した計測精度の低下を防止することができる。
According to the characteristic configuration of the present invention, the arithmetic unit determines the shellless kernel from which the shell has been removed based on the amount of light received by the light receiving unit, and determines the shellless kernel. For the grain, the quality information and size of the grain are obtained. In other words, between the shellless kernel with the shell removed and the shelled kernel without the shell removed, the state where the light irradiated from the irradiation unit is transmitted through the kernel or reflected by the kernel Are different,
Since the light amount of the light received by the light receiving unit is different, it is possible to determine the kernelless kernel based on the light amount of the light received by the light receiving unit. Then, based on the discrimination information, the quality information and the size can be obtained only for the shellless kernel, so that the measurement accuracy is prevented from being reduced due to the inclusion of the shelled kernel data in the measurement result. can do.

【0017】収穫した儘で未乾燥の高水分含有率の穀粒
を計測対象とする場合がある。そのような高水分含有率
の穀粒は、殻が除去しにくいので、計測対象の穀粒に、
殻付穀粒が混入されやすい。従来では、高水分含有率の
穀粒を計測対象とするときは、計測対象の穀粒に混入さ
れている殻付穀粒を、計測前に取り除く必要があり、そ
の作業が煩雑であり、改善が望まれていた。請求項8に
記載の特徴構成によれば、特に、高水分含有率の穀粒を
計測対象とするときでも、計測対象の穀粒に混入されて
いる殻付穀粒を取り除く必要がないので、計測作業を簡
素化するうえで好適である。
There is a case where a grain having a high moisture content which is undried as harvested is to be measured. Since such high-moisture content kernels are difficult to remove the shell,
Grains with shells are easily mixed. Conventionally, when measuring kernels with a high water content, it is necessary to remove shell-containing kernels mixed in the kernels to be measured before measurement, which makes the work complicated and improves Was desired. According to the characteristic configuration of claim 8, especially when a grain having a high moisture content is to be measured, it is not necessary to remove shell-containing grains mixed in the grain to be measured. This is suitable for simplifying the measurement operation.

【0018】[0018]

【発明の実施の形態】以下、図面に基づいて、本発明の
実施の形態を、穀物の一例として米を計測対象とした場
合について説明する。図1及び図2に示すように、穀物
の品質計測装置は、脱ぷ装置(図示せず)で殻を除去し
た穀粒Sを一粒ずつ分離した状態で搬送する搬送手段と
しての搬送部Tと、その搬送部Tにて搬送される穀粒S
の品質情報及び大きさを一粒ずつ求める計測手段として
の計測部Mと、その計測部Mにて求められた結果を表示
する表示部15と、計測部Mに対して各種計測条件や表
示部15に表示させる表示項目等を指令する設定部14
と、計測部Mの計測情報に基づいて、搬送部Tから排出
される穀粒Sを選別する選別部16を備えて構成してあ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings, in which rice is measured as an example of grain. As shown in FIGS. 1 and 2, the grain quality measuring device includes a transport unit T as a transport unit that transports the kernels S from which husks have been removed by a peeling device (not shown) in a state of being separated one by one. And the grain S transported by the transport unit T
Measuring unit M as a measuring means for obtaining quality information and size of each particle, a display unit 15 for displaying the results obtained by the measuring unit M, and various measuring conditions and display units for the measuring unit M A setting unit 14 for instructing display items to be displayed on the display unit 15
And a sorting unit 16 for sorting the grains S discharged from the transport unit T based on the measurement information of the measuring unit M.

【0019】搬送部Tは、固定設置された透明で環状の
固定板1と、外周部が固定板1に重なる状態で、回転自
在に支持された円板状の穀粒送り板2と、その穀粒送り
板2を回転駆動する電動モータ3とを備えて構成してあ
る。図2中の11は、電動モータ3の回転軸に設けられ
たロータリエンコーダであり、そのロータリエンコーダ
11の出力情報に基づいて、搬送部Tにて搬送される穀
粒Sの搬送速度を求めるように構成してある。
The transport section T includes a transparent and annular fixed plate 1 fixedly installed, a disk-shaped grain feed plate 2 rotatably supported with its outer peripheral portion overlapping the fixed plate 1, An electric motor 3 for rotating and driving the grain feed plate 2 is provided. Reference numeral 11 in FIG. 2 denotes a rotary encoder provided on the rotating shaft of the electric motor 3, and calculates a transport speed of the grain S transported by the transport unit T based on output information of the rotary encoder 11. It is configured in.

【0020】更に、回転する穀粒送り板2にて受けられ
る状態で穀粒を溜める試料供給部4を備えて構成してあ
る。
Further, the apparatus is provided with a sample supply unit 4 for storing grains in a state where the grains are received by the rotating grain feed plate 2.

【0021】穀粒送り板2は、後述する光源部6から照
射される光を遮光する材料で形成してある。又、穀粒送
り板2には、図3にも示すように、固定板1に重なる部
分に位置させて、穀粒Sの外形よりもやや大きい長円状
の穀粒保持孔2aの複数を、夫々の長手方向を穀粒送り
板2の周方向に沿わせた状態で、穀粒送り板2の周方向
に等間隔に並べて形成してある。尚、複数の穀粒保持孔
2aのうちの一つには、所定の吸光度を備えたリファレ
ンス用フィルタ12を嵌め込み、別の一つには、所定波
長の光を通過させる校正用フィルタ13を嵌め込んであ
り、後述する計測部Mの分光分析精度を向上させるよう
にしてある。
The grain feed plate 2 is formed of a material that blocks light emitted from a light source unit 6 described later. Further, as shown in FIG. 3, the grain feed plate 2 is provided with a plurality of oval-shaped grain holding holes 2 a slightly larger than the outer shape of the grain S by being positioned at a portion overlapping the fixed plate 1. The grain feed plate 2 is formed at regular intervals in the circumferential direction of the grain feed plate 2 in a state where the respective longitudinal directions are along the circumferential direction of the grain feed plate 2. Note that one of the plurality of grain holding holes 2a is fitted with a reference filter 12 having a predetermined absorbance, and the other is fitted with a calibration filter 13 that allows passage of light of a predetermined wavelength. In this case, the spectral analysis accuracy of the measuring unit M described later is improved.

【0022】固定板1には、穀粒送り板2における穀粒
保持孔2aの移動軌跡と重なる位置に、穀粒送り板2の
穀粒保持孔2aに保持されている穀粒Sを落下させるた
めの排出用孔1aを形成してある。選別部5は、固定板
1の排出用孔1aの下方に位置させて配置してある。
The grain S held in the grain holding hole 2a of the grain feed plate 2 is dropped onto the fixed plate 1 at a position overlapping the movement locus of the grain holding hole 2a in the grain feed plate 2. Hole 1a is formed. The sorting unit 5 is located below the discharge hole 1a of the fixed plate 1.

【0023】つまり、電動モータ3によって、穀粒送り
板2を回転駆動すると、試料供給部4にて回転する穀粒
送り板2上に溜められている穀粒が、一粒ずつ長手方向
が穀粒送り板2の周方向を向いた状態で穀粒保持孔2a
に嵌まり込み、固定板1により受けられて穀粒保持孔2
aに保持される状態で搬送される。そして、上記のよう
に、搬送部Tによって一粒ずつ分離した状態で搬送され
る穀粒Sに対して、後述するように、光源部6からの光
が照射されるとともに、透過光が受光部8に受光され
る。更に、光源部6からの光の照射箇所を通過して更に
搬送される穀粒Sは、固定板1の穀粒保持孔1aから落
下して、選別部5に供給され、選別部5において、後述
するように選別される。
That is, when the grain feed plate 2 is driven to rotate by the electric motor 3, the grains stored on the grain feed plate 2 rotated by the sample supply unit 4 are separated by one grain in the longitudinal direction. Grain holding hole 2a facing in the circumferential direction of grain feed plate 2
And the kernel holding hole 2 received by the fixing plate 1
The sheet is transported while being held at a. Then, as described above, light from the light source unit 6 is applied to the grains S transported in a state of being separated by the transport unit T one by one, as described later, and transmitted light is received by the light receiving unit. 8 is received. Further, the grains S that are further conveyed after passing through the irradiation position of the light from the light source unit 6 fall from the grain holding holes 1 a of the fixed plate 1 and are supplied to the sorting unit 5. Sorted as described below.

【0024】計測部Mは、計測用の光を放射する光源部
6と、その光源部6から放射される光を導いて、搬送手
段Tにて搬送される穀粒S一粒ずつに照射する照射部7
と、穀粒Sからの透過光を受光する受光部8と、その受
光部8が受光した光の分光スペクトルを得る分光部9
と、その分光部9が得た分光スペクトルに基づいて、穀
粒Sの品質情報及び大きさを求める演算部10を備えて
構成してある。尚、図2中、一点鎖線にて、光源部6か
らの光が、搬送手段Tにて搬送される穀粒Sを通過して
分光部9に入射し、分光部9内を分光されて進む光路を
示す。
The measuring section M guides the light emitted from the light source section 6 and the light emitted from the light source section 6 and irradiates the light to each grain S transported by the transport means T. Irradiation unit 7
And a light receiving unit 8 for receiving the transmitted light from the kernel S, and a spectral unit 9 for obtaining a spectral spectrum of the light received by the light receiving unit 8
And an arithmetic unit 10 for obtaining quality information and size of the grain S based on the spectral spectrum obtained by the spectral unit 9. In FIG. 2, the light from the light source unit 6 passes through the kernel S transported by the transport unit T and is incident on the spectroscopic unit 9 along the alternate long and short dash line. 4 illustrates an optical path.

【0025】図2に基づいて、計測部Mについて説明を
加える。光源部6は、赤外線光を放射するタングステン
−ハロゲンランプ6aと、そのタングステン−ハロゲン
ランプ6aからの光を平行光線束に成形するレンズ6b
により構成してある。照射部7は、レンズ6bにより成
形された光を導いて、搬送部Tによって一粒ずつ分離し
た状態で搬送される穀粒Sに対して、端面から光を照射
するように配置した照射用光ファイバにて構成してあ
る。照射部7は、穀粒Sの粒長及び幅よりも小さい径で
光を照射するように構成してある。
The measuring section M will be described with reference to FIG. The light source unit 6 includes a tungsten-halogen lamp 6a that emits infrared light, and a lens 6b that shapes light from the tungsten-halogen lamp 6a into a parallel light beam.
It is constituted by. The irradiating unit 7 guides the light formed by the lens 6b, and irradiates the grain S conveyed in a state of being separated one by one by the conveying unit T so as to irradiate the light from the end face. It is composed of fiber. The irradiating unit 7 is configured to irradiate light with a diameter smaller than the grain length and width of the grain S.

【0026】受光部8は、穀粒送り板2に対して照射部
7とは反対側において、照射部7から照射される光を受
光して、受光した光を分光部9に導くように配置した受
光用光ファイバにて構成してある。受光部8は、穀粒S
の粒長及び幅よりも小さい径の受光面で受光するように
構成してある。
The light receiving section 8 is arranged on the side opposite to the irradiation section 7 with respect to the grain feeding plate 2 so as to receive the light emitted from the irradiation section 7 and guide the received light to the spectral section 9. It is composed of the light receiving optical fiber described above. The light receiving section 8 is a grain S
Is configured to receive light on a light receiving surface having a diameter smaller than the grain length and width of the particles.

【0027】尚、照射部7は、穀粒送り板2の厚さ方向
(穀粒Sの長手方向に直交する方向に相当する)と交差
する方向に光を照射するように配置し、受光部8は、そ
の受光面が、照射部7から照射される光の光束の中心か
らややずれた位置において、前記厚さ方向と直交する状
態で配置してある。
The irradiating section 7 is arranged so as to irradiate light in a direction intersecting with the thickness direction of the grain feeding plate 2 (corresponding to a direction orthogonal to the longitudinal direction of the grain S), and a light receiving section. Reference numeral 8 denotes a light-receiving surface which is arranged at a position slightly deviated from the center of the luminous flux of the light emitted from the irradiating section 7 in a state orthogonal to the thickness direction.

【0028】分光部9は、受光部8にて受光された光が
入射孔9eから入射するアルミニウム製の暗箱9a内
に、その暗箱9aに入射した光を反射する反射鏡9b
と、反射鏡9bにより反射された光を分光反射する凹面
回折格子9cと、凹面回折格子9cにより分光反射され
た各波長毎の光線束強度を検出するアレイ型受光素子9
dを備えて構成してある。アレイ型受光素子9dは、凹
面回折格子9cにて分光反射された光を、同時に波長毎
に受光するとともに波長毎の信号に変換して出力する。
The spectroscopic section 9 has a reflecting mirror 9b for reflecting the light incident on the dark box 9a in a dark box 9a made of aluminum into which the light received by the light receiving section 8 is incident from an entrance hole 9e.
A concave diffraction grating 9c that spectrally reflects the light reflected by the reflecting mirror 9b; and an array-type light receiving element 9 that detects the light flux intensity for each wavelength spectrally reflected by the concave diffraction grating 9c.
d. The array-type light receiving element 9d receives the light spectrally reflected by the concave diffraction grating 9c at the same time for each wavelength and converts it to a signal for each wavelength and outputs the signal.

【0029】演算部10について説明を加える。演算部
10は、マイクロコンピュータを利用して構成してあ
り、基本的には、アレイ型受光素子9dからの出力信号
を処理して、吸光度スペクトル、及び、吸光度スペクト
ルの波長領域での二次微分値を得るとともに、その二次
微分値に基づいて、品質情報として穀粒Sの内部品質情
報及び外観品質情報を求める。
The operation unit 10 will be described. The arithmetic unit 10 is configured using a microcomputer, and basically processes an output signal from the array-type light receiving element 9d to generate an absorbance spectrum and a second derivative in a wavelength region of the absorbance spectrum. In addition to obtaining the value, the internal quality information and appearance quality information of the grain S are obtained as quality information based on the second derivative.

【0030】説明を加えると、演算部10は、下記の演
算式(以下、検量式と称する)に基づいて、穀粒Sに含
まれる成分に基づく内部品質情報を算出する。 Y=K0 +K1 ×A(λ1 )+K2 ×A(λ2 )+K3 ×A(λ3 )…… 但し、 Y ;内部品質情報 A(λ1 ),A(λ2 ),A(λ3 )……;求める内部品質情報と相関のある 計測用波長λにおける吸光度の二次微分値 K0 ,K1 ,K2 ,K3 …… ;充分に多い母集団において計測さ れた吸光度及び内部品質情報の実測値を用いて最小二乗法にて設定された係数
In addition, the calculation unit 10 calculates internal quality information based on the components contained in the grain S based on the following calculation formula (hereinafter referred to as a calibration formula). Y = K 0 + K 1 × A (λ 1 ) + K 2 × A (λ 2 ) + K 3 × A (λ 3 ) where Y: internal quality information A (λ 1 ), A (λ 2 ), A (Λ 3 ): second derivative of absorbance at measurement wavelength λ correlated with desired internal quality information K 0 , K 1 , K 2 , K 3 ... measured in a sufficiently large population Coefficient set by least squares method using measured values of absorbance and internal quality information

【0031】演算部10には、内部品質情報の項目毎
に、特定の検量式を設定してある。つまり、上記検量式
において、計測用波長λ1 ,λ2 ,λ3 ……、係数
0 ,K1,K2 ,K3 ……を内部品質情報の項目毎に
設定してある。例えば、内部品質情報として、水分含有
率、タンパク含有量に関する情報、アミロース含有量に
関する情報及び食味評価値夫々を求める場合は、夫々に
相関のある計測用波長及び係数を設定してある。
A specific calibration formula is set in the calculation unit 10 for each item of the internal quality information. That is, in the above calibration formula, measurement wavelengths λ 1 , λ 2 , λ 3 ... And coefficients K 0 , K 1 , K 2 , K 3 ... Are set for each item of internal quality information. For example, when obtaining information on the water content, information on the protein content, information on the amylose content, and the taste evaluation value as the internal quality information, respectively, a measurement wavelength and a coefficient having a correlation are set.

【0032】600nm〜1000nmの波長範囲にお
いて、図4に示すように、外観品質情報としての良質
粒、未熟粒、被害粒、着色粒、死米に応じて、吸光度ス
ペクトルを示す。そこで、図3に示す吸光度スペクトル
に基づいて、良質粒、未熟粒、被害粒、着色粒及び死米
夫々に応じて特有の計測用波長を予め設定してあり、演
算部10は、その計測用波長における吸光度の二次微分
値に基づいて、穀粒Sが、良質粒、未熟粒、被害粒、着
色粒及び死米のうちのいずれであるかを判別する。
In the wavelength range of 600 nm to 1000 nm, as shown in FIG. 4, the absorbance spectrum is shown according to good quality grains, immature grains, damaged grains, colored grains, and dead rice as appearance quality information. Therefore, based on the absorbance spectrum shown in FIG. 3, a specific measurement wavelength is set in advance for each of the good quality grain, the immature grain, the damaged grain, the colored grain, and the dead rice. Based on the second derivative of the absorbance at the wavelength, it is determined whether the grain S is a good grain, an immature grain, a damaged grain, a colored grain, or dead rice.

【0033】つまり、演算部10は、分光部9が得た分
光スペクトルにおける、求める品質情報と相関のある計
測用波長の光に基づいて品質情報を求めるように構成し
てある。
That is, the arithmetic unit 10 is configured to obtain quality information based on light of a measurement wavelength that is correlated with the quality information to be obtained in the spectral spectrum obtained by the spectroscopic unit 9.

【0034】更に、演算部10は、受光部8が受光した
光における光量の経時変化に基づいて、穀粒Sの大きさ
を求めるとともに、受光部8が受光した光における光量
に基づいて、品質情報における外観品質情報として、胴
割れの有無を判別する。以下、穀粒Sの大きさを求める
方法、及び、胴割れの有無を判別する方法について説明
を加える。
Further, the arithmetic unit 10 determines the size of the grain S based on a temporal change in the amount of light in the light received by the light receiving unit 8, and calculates the quality based on the amount of light in the light received by the light receiving unit 8. As appearance quality information in the information, the presence or absence of a body crack is determined. Hereinafter, a method for determining the size of the grain S and a method for determining the presence or absence of a body crack will be described.

【0035】穀粒送り板2が回転して、照射部6から照
射された光の光束を横切る部分が変化するに伴って、受
光部8が受光した光における光量は、図5に示すように
時間に伴って変化する。尚、本実施形態においては、受
光部8が受光した光における光量として、分光部9にて
得られた分光スペクトルにおける設定波長の光の光量
を、アレイ型受光素子9dからの出力信号に基づいて検
出するように構成してある。
As the grain feed plate 2 rotates and the portion crossing the light beam of the light irradiated from the irradiation unit 6 changes, the amount of light in the light received by the light receiving unit 8 becomes as shown in FIG. It changes with time. In the present embodiment, the light amount of the light of the set wavelength in the spectral spectrum obtained by the spectroscopic unit 9 is used as the light amount of the light received by the light receiving unit 8 based on the output signal from the array type light receiving element 9d. It is configured to detect.

【0036】即ち、穀粒送り板2における穀粒保持孔2
aの間の板部分が、照射部6から照射された光の光束か
ら出た時点で、光量は急増し、続いて、穀粒Sの進行方
向先端が前記光束に入った時点で光量が急減し、続い
て、穀粒Sの進行方向後端が前記光束から出た時点で光
量が急増し、続いて、前記板部分が前記光束に入った時
点で光量が急減する。そして、このような光量の変化
が、照射部6からの光の照射箇所を穀粒Sが順次通過す
るのに対応して、図5における(イ),(ロ),(ハ)
・・・のように、繰り返される。
That is, the grain holding hole 2 in the grain feed plate 2
When the plate portion between the points a comes out of the luminous flux of the light emitted from the irradiating section 6, the light quantity sharply increases, and subsequently, when the leading end of the grain S in the traveling direction enters the luminous flux, the light quantity sharply decreases. Subsequently, when the trailing end of the grain S in the traveling direction comes out of the light beam, the light amount sharply increases, and subsequently, when the plate portion enters the light beam, the light amount sharply decreases. Then, such a change in the light amount corresponds to the fact that the kernel S sequentially passes through the irradiation position of the light from the irradiation unit 6, and (A), (B), and (C) in FIG.
It is repeated like ...

【0037】従って、上記のような光量の変化に基づい
て、所定の箇所を、穀粒Sの進行方向先端が通過してか
ら、穀粒Sの進行方向後端が通過するのに要した通過時
間を求めることができる。つまり、演算部10は、アレ
イ型受光素子9dからの出力信号に基づいて、前記通過
時間を求めるとともに、ロータリーエンコーダ11から
の出力信号に基づいて、穀粒Sが前記光束を通過してい
るときの穀粒Sの搬送速度を求め、そのように求めた前
記通過時間と前記搬送速度に基づいて、穀粒Sの粒長を
求める。
Therefore, based on the change in the amount of light as described above, the passage required for the front end in the traveling direction of the grain S to pass through the predetermined location and the rear end in the traveling direction of the grain S to pass through the predetermined location. You can ask for time. That is, the arithmetic unit 10 calculates the passing time based on the output signal from the array-type light receiving element 9d, and calculates the time when the grain S is passing through the light flux based on the output signal from the rotary encoder 11. Is determined, and the grain length of the kernel S is determined based on the determined transit time and the transport speed.

【0038】更に、設定部14から粒長補正指示が指令
されているときは、求めた水分含有率に基づいて、求め
た粒長を補正して、設定部14にて設定された設定水分
含有率に乾燥したときの粒長を求める。例えば、穀粒を
乾燥すると、穀粒の粒長は、水分含有率が低下するに伴
って、それと比例して短くなる。そこで、穀粒の粒長が
水分含有率に比例して変化するときの比例係数を、予め
演算部10に記憶させておいて、その比例係数と求めた
水分含有率に基づいて、求めた粒長を補正して、前記設
定水分含有率に乾燥したときの粒長を求める。例えば、
ライスセイタ等における受入検査において、未乾燥の穀
粒を計測対象として、適正水分含有率(14〜16%)
に乾燥したときの粒長が必要であるような場合に、設定
部14により粒長補正指示をする。
Further, when a grain length correction instruction is instructed from the setting unit 14, the obtained grain length is corrected based on the obtained moisture content, and the set moisture content set by the setting unit 14 is set. Determine the grain length when dried to a specific rate. For example, when a grain is dried, the grain length of the grain decreases proportionally as the moisture content decreases. Therefore, a proportionality coefficient when the grain length of the grain changes in proportion to the water content is stored in advance in the arithmetic unit 10 and the grain obtained based on the proportionality coefficient and the obtained water content is calculated. The length is corrected, and the grain length when dried to the set moisture content is determined. For example,
Appropriate moisture content (14-16%) for incoming grain at rice seita etc.
When the grain length after drying is necessary, the setting unit 14 issues a grain length correction instruction.

【0039】更に、穀粒Sに胴割れが存在する場合、照
射部6から照射された光の光束を、穀粒Sにおける胴割
れ部分が横切る間は、光が胴割れ部分において乱反射す
るので、図5の(ハ)に示すように、受光部8が受光し
た光における光量がa部において低下する。演算部10
は、アレイ型受光素子9dからの出力信号に基づいて、
前記光束を穀粒Sが通過している間における前記出力信
号の低下の有無を検出して、胴割れの有無を判別する。
Further, when a crack is present in the grain S, the light is diffusely reflected at the cracked portion of the grain S while the light beam emitted from the irradiation section 6 is traversed by the cracked portion of the grain S. As shown in FIG. 5C, the amount of light in the light received by the light receiving unit 8 decreases in the part a. Arithmetic unit 10
Is based on an output signal from the array type light receiving element 9d.
The presence or absence of a decrease in the output signal while the grain S is passing through the light flux is detected to determine the presence or absence of a body crack.

【0040】尚、上述のように、照射部7からは、穀粒
送り板2の厚さ方向と交差する方向に光を照射して、穀
粒Sには、その長手方向に対して斜め方向から光を照射
するこよにより、胴割れ部分における乱反射を助長させ
て、胴割れ有無の判別精度を向上させている。又、受光
部8は、その受光面が前記厚さ方向と直交する状態で配
置して、穀粒送り板2の穀粒保持孔2aの縁部と穀粒S
の進行方向先端との間の透明部分を通過した光を受光す
るときの受光量を抑制するようにしてある。つまり、穀
粒Sを透過した光は微弱であり、アレイ型受光素子9d
が強い光を受けた後に、微弱な光の光量を計測するとそ
の精度が低下するので、その精度の低下を抑制するよう
にしてある。
As described above, the irradiation unit 7 irradiates light in a direction intersecting the thickness direction of the grain feed plate 2 so that the grain S is oblique to the longitudinal direction. By irradiating light from above, irregular reflection at the cracked portion of the body is promoted, and the accuracy of determining the presence / absence of a cracked body is improved. Further, the light receiving section 8 is arranged so that its light receiving surface is orthogonal to the thickness direction, so that the edge of the grain holding hole 2a of the grain feed plate 2 and the grain S
The amount of light received when receiving light that has passed through the transparent portion between the front end and the front end in the traveling direction is suppressed. That is, the light transmitted through the grain S is weak, and the array type light receiving element 9d
If the amount of the weak light is measured after receiving the strong light, the accuracy is reduced. Therefore, the decrease in the accuracy is suppressed.

【0041】尚、演算部10は、受光部8が受光した光
の光量に基づいて、殻が除去されている殻無し穀粒を判
別して、その殻無し穀粒について、上記のように、内部
品質情報の算出と、穀粒Sの粒長の算出と、その粒長の
補正と、良質粒、未熟粒、被害粒、着色粒及び死米のう
ちのいずれであるかの判別と、胴割れの有無の判別とを
実行する。つまり、穀粒の殻は光を通しにくいので、殻
無し穀粒を透過した透過光の光量が、殻付穀粒を透過し
た透過光の光量よりも多いことに基づいて、殻無し穀粒
を判別することができる。
The arithmetic unit 10 determines the shell-free kernel from which the shell has been removed based on the amount of light received by the light receiving unit 8, and calculates the shell-free kernel as described above. Calculation of the internal quality information, calculation of the grain length of the grain S, correction of the grain length, determination of any of good quality grains, immature grains, damaged grains, colored grains and dead rice, The determination of the presence or absence of a crack is executed. In other words, since the shell of the kernel is hard to transmit light, the shellless kernel is determined based on the fact that the amount of transmitted light transmitted through the shellless kernel is larger than the amount of transmitted light transmitted through the shelled kernel. Can be determined.

【0042】演算部10は、設定個数(例えば500
個)の穀粒について、内部品質情報の算出と、穀粒の粒
長の算出と、その粒長の補正と、良質粒、未熟粒、被害
粒、着色粒及び死米のうちのいずれであるかの判別と、
胴割れの有無の判別とを実行する。尚、内部品質情報の
算出、及び、良質粒、未熟粒、被害粒、着色粒及び死米
のうちのいずれであるかの判別は、1個の穀粒に対して
複数回実行して、算出精度及び判別精度を向上させるよ
うにしてある。
The arithmetic unit 10 is provided with a set number (for example, 500
), The internal quality information is calculated, the grain length of the kernel is calculated, the grain length is corrected, and any one of good grain, immature grain, damaged grain, colored grain and dead rice is calculated. And whether
The determination of the presence or absence of a body crack is executed. Note that the calculation of the internal quality information and the determination as to which of the high-quality grains, immature grains, damaged grains, colored grains and dead rice are performed a plurality of times for one grain, and the calculation is performed. The accuracy and the discrimination accuracy are improved.

【0043】更に、演算部10は、計測後の穀粒を、予
め設定された品位レベルに応じて選別するように、選別
部16を制御する。尚、品位レベルは、内部品質情報
や、外観品質情報に応じて設定される。
Further, the arithmetic unit 10 controls the sorting unit 16 so as to sort the measured kernels according to a preset quality level. The quality level is set according to the internal quality information and the appearance quality information.

【0044】そして、設置個数に対する計測が終了する
と、演算部10は、設定部14からの指令に応じて、内
部品質情報の各項目別の平均値、粒長の平均値、全個数
に対する、良質粒、未熟粒、被害粒、着色粒、死米、胴
割れ粒夫々の比率等を求めて、表示部15に表示させ
る。又、設定部14からの指令に応じて、内部品質情報
の各項目や、粒長に応じた度数分布を求め、それを表示
部15に表示させる。
When the measurement for the number of installations is completed, the arithmetic unit 10 responds to the command from the setting unit 14 to set the average value of each item of the internal quality information, the average value of the grain length, and the high quality The ratio, etc. of each of the grains, immature grains, damaged grains, colored grains, dead rice, and cracked grains are obtained and displayed on the display unit 15. In addition, in accordance with a command from the setting unit 14, a frequency distribution corresponding to each item of the internal quality information and the grain length is obtained, and the obtained distribution is displayed on the display unit 15.

【0045】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 上記の実施形態においては、計測部Mを、内部
品質情報及び外観品質情報の両方を求めるように構成す
る場合について例示したが、これに代えて、内部品質情
報及び外観品質情報のうちのいずれか一方のみを求める
ように構成してもよい。
[Another Embodiment] Next, another embodiment will be described. (B) In the above embodiment, the case where the measuring unit M is configured to obtain both the internal quality information and the appearance quality information has been described. Alternatively, only one of the above may be determined.

【0046】(ロ) 計測部Mの具体構成は、上記の実
施形態において例示した構成に限定されるものではな
く、各種の構成が可能である。例えば、上記の実施形態
においては、1個の計測部Mにて、内部品質情報、外観
品質情報及び大きさの全てを求めるように構成したが、
これに代えて、内部品質情報を求めるものと、外観品質
情報及び大きさを求めるものとを別個に構成してもよ
い。この場合、内部品質情報を求めるのものは、上記の
実施形態と同様に分光分析法を利用して構成し、外観品
質情報及び大きさを求めるものは、撮像手段とその撮像
手段にて撮像された画像を解析する画像解析手段を備え
た画像処理法を利用して構成することができる。
(B) The specific configuration of the measuring section M is not limited to the configuration exemplified in the above embodiment, and various configurations are possible. For example, in the above embodiment, one internal measuring unit M is configured to obtain all of the internal quality information, the external quality information, and the size.
Instead of this, one for obtaining internal quality information and one for obtaining appearance quality information and size may be configured separately. In this case, those for obtaining the internal quality information are configured by using the spectroscopic analysis method as in the above embodiment, and those for obtaining the appearance quality information and the size are imaged by the imaging means and the imaging means. It can be configured using an image processing method provided with an image analyzing means for analyzing the image.

【0047】あるいは、大きさを求めるものを別個に構
成してもよい。この場合、測長用のラインセンサを利用
して構成してもよい。
Alternatively, the component for which the size is to be obtained may be configured separately. In this case, the configuration may be made using a line sensor for length measurement.

【0048】(ハ) 照射部7からの光の照射方向、及
び、受光部8の受光面の方向は、上記の実施形態におい
て例示した方向に限定されるものではない。例えば、照
射方向を穀粒送り板2の厚さ方向に設定し、受光面の方
向を、前記厚さ方向と交差する方向に設定してもよい。
あるいは、照射方向を前記厚さ方向に設定し、受光面
を、前記厚さ方向に設定してもよい。
(C) The irradiation direction of the light from the irradiation section 7 and the direction of the light receiving surface of the light receiving section 8 are not limited to the directions exemplified in the above embodiment. For example, the irradiation direction may be set in the thickness direction of the grain feed plate 2 and the direction of the light receiving surface may be set in a direction intersecting the thickness direction.
Alternatively, the irradiation direction may be set in the thickness direction, and the light receiving surface may be set in the thickness direction.

【0049】(ニ) 搬送部Tの具体構成は、上記の実
施形態において例示した構成に限定されるものではな
く、各種の構成が可能である。例えば、ベルトコンベア
にて構成してもよい。
(D) The specific configuration of the transport section T is not limited to the configuration exemplified in the above embodiment, but various configurations are possible. For example, you may comprise with a belt conveyor.

【0050】(ホ) 上記の実施形態においては、計測
部Mを、穀粒からの透過光を受光して、受光した光を分
光するように構成する場合について例示したが、これに
代えて、穀粒からの反射光を受光して、受光した光を分
光するように構成してもよい。
(E) In the above-described embodiment, the case where the measuring unit M is configured to receive the transmitted light from the grain and disperse the received light has been described as an example. You may comprise so that the reflected light from a grain may be received and the received light may be disperse | distributed.

【0051】(ヘ) 上記の実施形態においては、計測
部Mを、穀粒からの反射光又は透過光を分光して分光ス
ペクトルを得て、その分光スペクトルに基づいて、計測
用波長の光を得るように構成する場合について例示し
た。これに代えて、干渉フィルタ等を用いて、計測用波
長の光を穀粒に照射して、穀粒からの反射光又は透過光
を受光するように構成してもよい。
(F) In the above embodiment, the measuring unit M obtains a spectral spectrum by splitting the reflected light or transmitted light from the grain, and based on the spectral spectrum, emits the light of the measuring wavelength. The case where it is configured so as to obtain it has been exemplified. Alternatively, the kernel may be configured to irradiate the kernel with light having a wavelength for measurement by using an interference filter or the like and receive reflected light or transmitted light from the kernel.

【0052】(ト) 本発明においては、上記の実施形
態において例示した米以外にも、麦等種々の穀物を計測
対象とすることができる。
(G) In the present invention, in addition to the rice exemplified in the above embodiment, various grains such as wheat can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】穀物の品位計測装置の全体概略構成を示す斜視
FIG. 1 is a perspective view showing an overall schematic configuration of a grain quality measuring device.

【図2】穀物の品位計測装置の全体構成を示すブロック
FIG. 2 is a block diagram showing an overall configuration of a grain quality measuring device;

【図3】穀粒送り板の板面を示す図FIG. 3 is a view showing a plate surface of a grain feed plate;

【図4】外観品質情報毎の吸光度スペクトルを示す図FIG. 4 is a diagram showing an absorbance spectrum for each appearance quality information.

【図5】受光部が受光した光における光量の経時変化を
示す図
FIG. 5 is a diagram showing a temporal change in the amount of light in light received by a light receiving unit.

【符号の説明】[Explanation of symbols]

6 光源部 8 受光部 9 分光部 10 演算部 M 計測手段 T 搬送手段 Reference Signs List 6 light source unit 8 light receiving unit 9 spectral unit 10 arithmetic unit M measuring unit T transport unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 進 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Susumu Morimoto 1-1-1 Hama, Amagasaki-shi, Hyogo Inside Kubota R & D Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 計測対象の穀粒を一粒ずつ分離した状態
で搬送する搬送手段と、 その搬送手段にて搬送される穀粒の品質情報及び大きさ
を一粒ずつ求める計測手段が設けられている穀物の品位
計測装置。
1. A transport means for transporting grains to be measured in a state of being separated one by one, and a measuring means for obtaining quality information and size of the grains transported by the transport means one by one. Grain quality measuring device.
【請求項2】 前記計測手段が、前記品質情報として、
穀粒の内部品質情報及び外観品質情報を求めるように構
成されている請求項1記載の穀物の品位計測装置。
2. The method according to claim 1, wherein the measuring unit includes:
The grain quality measuring device according to claim 1, wherein the grain quality measuring device is configured to obtain the internal quality information and the appearance quality information of the grain.
【請求項3】 前記計測手段が、前記搬送手段にて搬送
される穀粒一粒ずつに光を照射する光源部と、 穀粒からの反射光又は透過光を受光する受光部と、 その受光部が受光した光に基づいて、穀粒の品質情報及
び大きさを求める演算部を備えて構成されている請求項
1又は2記載の穀物の品位計測装置。
3. A light source unit for irradiating light to each grain transported by the transport unit, a light receiving unit for receiving reflected light or transmitted light from the kernel, and receiving the light. The grain quality measuring device according to claim 1, further comprising an arithmetic unit that obtains quality information and a size of the grain based on light received by the unit.
【請求項4】 前記受光部が受光した光の分光スペクト
ルを得る分光部が設けられ、 前記演算部は、前記分光部が得た分光スペクトルにおけ
る、求める品質情報と相関のある計測用波長の光に基づ
いて品質情報を求めるように構成されている請求項3記
載の穀物の品位計測装置。
4. A spectroscopic unit for obtaining a spectral spectrum of the light received by the light receiving unit, wherein the calculating unit is a light having a measuring wavelength correlated with quality information to be obtained in the spectral spectrum obtained by the spectral unit. 4. The grain quality measuring device according to claim 3, wherein the quality information is obtained based on the following.
【請求項5】 前記演算部は、前記受光部が受光した光
における光量の経時変化に基づいて、穀粒の大きさを求
めるように構成されている請求項3又は4記載の穀物の
品位計測装置。
5. The grain quality measurement according to claim 3, wherein the arithmetic unit is configured to obtain a grain size based on a temporal change in the amount of light received by the light receiving unit. apparatus.
【請求項6】 前記演算部が求める品質情報に、穀粒に
含まれる水分量に関する水分情報が含まれ、 前記演算部は、求めた大きさを求めた水分情報に基づい
て補正して、設定水分情報になるように乾燥したときの
穀粒の大きさを求めるように構成されている請求項5記
載の穀物の品位計測装置。
6. The quality information determined by the arithmetic unit includes moisture information on the amount of moisture contained in the grain, and the arithmetic unit corrects the determined size based on the determined moisture information and sets the corrected size. 6. The grain quality measuring device according to claim 5, wherein the size of the grain when dried is determined to obtain moisture information.
【請求項7】 前記演算部は、前記受光部が受光した光
における光量に基づいて、品質情報における外観品質情
報として、胴割れの有無を判別するように構成されてい
る請求項3〜6のいずれか1項に記載の穀物の品位計測
装置。
7. The arithmetic unit according to claim 3, wherein the calculation unit determines presence or absence of a body crack as appearance quality information in quality information based on an amount of light in the light received by the light receiving unit. The grain quality measuring device according to any one of the preceding claims.
【請求項8】 前記演算部は、前記受光部が受光した光
の光量に基づいて、殻が除去されている殻無し穀粒を判
別して、その殻無し穀粒について、穀粒の品質情報及び
大きさを求めるように構成されている請求項3〜7のい
ずれか1項に記載の穀粒の品位計測装置。
8. The arithmetic unit determines, based on the amount of light received by the light receiving unit, a shellless kernel from which the shell has been removed, and determines quality information of the kernel without the shell. The grain quality measuring device according to any one of claims 3 to 7, wherein the grain quality measuring device is configured to determine a grain size.
JP23806197A 1997-09-03 1997-09-03 Grade measuring instrument for grain Pending JPH1183733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23806197A JPH1183733A (en) 1997-09-03 1997-09-03 Grade measuring instrument for grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23806197A JPH1183733A (en) 1997-09-03 1997-09-03 Grade measuring instrument for grain

Publications (1)

Publication Number Publication Date
JPH1183733A true JPH1183733A (en) 1999-03-26

Family

ID=17024581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23806197A Pending JPH1183733A (en) 1997-09-03 1997-09-03 Grade measuring instrument for grain

Country Status (1)

Country Link
JP (1) JPH1183733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155312A (en) * 2014-08-11 2014-11-19 华北水利水电大学 Method for detecting pests in food grains based on near infrared machine vision, and apparatus thereof
JP2017122607A (en) * 2016-01-05 2017-07-13 大阪瓦斯株式会社 Method and device for determining moisture state of cooking target rice, rice immersion time determination device, and rice cooking facility
KR102452080B1 (en) * 2021-11-30 2022-10-07 주식회사 아이디알시스템 The system and method of determining rice grade and quality management using artificial intelligence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155312A (en) * 2014-08-11 2014-11-19 华北水利水电大学 Method for detecting pests in food grains based on near infrared machine vision, and apparatus thereof
JP2017122607A (en) * 2016-01-05 2017-07-13 大阪瓦斯株式会社 Method and device for determining moisture state of cooking target rice, rice immersion time determination device, and rice cooking facility
KR102452080B1 (en) * 2021-11-30 2022-10-07 주식회사 아이디알시스템 The system and method of determining rice grade and quality management using artificial intelligence

Similar Documents

Publication Publication Date Title
US5406084A (en) Process and device for the in-line NIR measurement of pourable foodstuffs
US8411276B2 (en) Multi-grade object sorting system and method
KR101019650B1 (en) Different-kind-of-object detector employing plane spectrometer
JP4824017B2 (en) Apparatus and method for inspecting material flow by light scattering inside the material
US9091643B2 (en) Device and method for analyzing kernel component
US5077477A (en) Method and apparatus for detecting pits in fruit
JP3792175B2 (en) Internal quality inspection method and apparatus for core fruits and vegetables
AU4720899A (en) Optoelectronic apparatus for detecting damaged grain
JP7072802B2 (en) Seed quality evaluation / sorting system
JP2002174592A (en) Evaluation apparatus
JPH1183733A (en) Grade measuring instrument for grain
AU2002214504B2 (en) A method and device for recording images of grains from cereals to detect cracking
WO1989004468A1 (en) An apparatus for colour control of objects
JP6181780B2 (en) Combine
JP2005037398A (en) Method for recognizing foreign bodies in continuous stream of transported products, and apparatus for carrying out the method
JP2002508847A (en) Method and apparatus for detecting undesirable substances in eggs
JPH05133883A (en) Determining method of quality of unhulled rice
AU2002215281B2 (en) Device and method for optical measurement of small particles such as grains from cereals and like crops
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
JP3354844B2 (en) Grain quality measuring method and quality measuring device
JP2004004077A (en) System for measuring internal quality of agricultural product
JPH0618329A (en) Spectroscopic method for object image and its device
JP2002139443A (en) Quality discrimination apparatus for grain, etc.
CA2459275A1 (en) Device and method for irradiation of small particles for analysis of the quality of the particles
US20080144011A1 (en) Apparatus and Method for Detecting the Orientation/Position of Products, in Particular Fish, on a Transport Element