JP3354844B2 - Grain quality measuring method and quality measuring device - Google Patents

Grain quality measuring method and quality measuring device

Info

Publication number
JP3354844B2
JP3354844B2 JP23806097A JP23806097A JP3354844B2 JP 3354844 B2 JP3354844 B2 JP 3354844B2 JP 23806097 A JP23806097 A JP 23806097A JP 23806097 A JP23806097 A JP 23806097A JP 3354844 B2 JP3354844 B2 JP 3354844B2
Authority
JP
Japan
Prior art keywords
wavelength
light
measurement
sample
quality information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23806097A
Other languages
Japanese (ja)
Other versions
JPH1183735A (en
Inventor
仁志 石橋
秀司 為永
良治 鈴木
進 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23806097A priority Critical patent/JP3354844B2/en
Publication of JPH1183735A publication Critical patent/JPH1183735A/en
Application granted granted Critical
Publication of JP3354844B2 publication Critical patent/JP3354844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の穀粒から成
る試料に光を照射し、求める品質情報と相関のある計測
用波長の計測用光を、試料からの反射光又は透過光とし
て受光して、受光した計測用光に基づいて、穀物に含ま
れる成分に基づく品質情報を求める穀物の品質計測方
法、及び、その計測方法を用いた穀物の品質計測装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a sample consisting of a plurality of grains with light and receiving measurement light having a measurement wavelength correlated with quality information to be obtained as reflected light or transmitted light from the sample. Then, the present invention relates to a grain quality measuring method for obtaining quality information based on components contained in the grain based on the received measurement light, and a grain quality measuring device using the measuring method.

【0002】[0002]

【従来の技術】穀物に照射されると、穀物に含まれる成
分に応じて吸収される波長の光があり、そのような光、
つまり、穀物に含まれる成分に基づく品質情報(以下、
単に品質情報と略記する場合がある)と相関のある計測
用波長の計測用光を、試料からの反射光又は透過光とし
て受光して、受光した計測用光に基づいて、品質情報を
求めることができる。複数の穀粒から成る試料を計測対
象とするに当たって、従来は、殻が付いた殻付穀粒が混
入していない試料を対象として、計測用波長を設定して
いた。
2. Description of the Related Art When a grain is irradiated, there is light having a wavelength that is absorbed depending on the components contained in the grain.
In other words, quality information based on the components contained in the grain (hereinafter,
(It may be simply abbreviated as quality information.) Receiving measurement light of a measurement wavelength that is correlated with the measurement light as reflected light or transmitted light from the sample, and obtaining quality information based on the received measurement light. Can be. Conventionally, when measuring a sample composed of a plurality of grains, a measurement wavelength is set for a sample in which a shelled grain with a shell is not mixed.

【0003】[0003]

【発明が解決しようとする課題】従来では、試料に殻付
穀粒が混入していると、計測用波長の光は、殻に影響さ
れて吸収のされ方が変化して、品質情報の計測精度が悪
くなるので、試料に殻付穀粒が混入している場合は、殻
付穀粒を除去していた。しかしながら、試料から殻付穀
粒を除去する作業は煩雑であり、又、完全に殻付穀粒が
除去されていない場合は、計測精度が悪くなるため、改
善が望まれていた。例えば、収穫して未乾燥の穀粒の品
質情報を計測する場合があるが、未乾燥の穀粒のように
含有水分量の多い穀粒は、殻を除去しにくい。従って、
そのような場合は、殻付穀粒の混入量が多くなるため、
殻付穀粒の除去作業が特に煩雑となっていた。
Conventionally, if kernel grains with shells are mixed in a sample, the light of the wavelength for measurement is affected by the shells and the absorption is changed, so that the quality information is measured. Since the accuracy is deteriorated, the shelled grain is removed when the shelled grain is mixed in the sample. However, the operation of removing the husk grains from the sample is complicated, and if the husk grains are not completely removed, the measurement accuracy deteriorates, and thus an improvement has been desired. For example, there is a case where quality information of harvested and undried grains is measured. However, husks such as undried grains having a high moisture content are difficult to remove. Therefore,
In such a case, the amount of shelled grains increases,
The work of removing shelled grains has been particularly complicated.

【0004】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、複数の穀粒から成る試料に殻付
穀粒が混入していても、品質情報を精度良く計測するこ
とができるようにすることにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to accurately measure quality information even when shell grains are mixed in a sample including a plurality of grains. To be able to do it.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の特徴構
成によれば、求める品質情報に応じて光量が変化し且つ
殻付穀粒が試料に混入していると光量が増加するキャン
セル用波長の光と、求める品質情報に応じて光量が変化
し且つ殻付穀粒が試料に混入していると光量が減少する
キャンセル用波長の光を含んだ計測用光を受光して、受
光した計測用光に基づいて、品質情報を求める。そし
て、品質情報を求めるために各キャンセル用波長の光に
基づいて求められる情報の夫々は、夫々の情報が殻付穀
粒により受ける影響を抑制するように作用し合うので、
求めるべき品質情報が殻付穀粒に影響されて変動するの
を抑制することができる。従って、複数の穀粒から成る
試料に殻付穀粒が混入していても、品質情報を精度良く
計測することができる穀物の品質計測方法を提供するこ
とができるようになった。
According to the first aspect of the present invention, there is provided a canceling apparatus in which the amount of light changes according to the quality information to be obtained, and the amount of light increases when a grain with shells is mixed in the sample. The light of the wavelength and the amount of light that changes according to the quality information required and the light for measurement including the light of the wavelength for cancellation, in which the amount of light decreases when the shelled grain is mixed into the sample, are received and received. Quality information is obtained based on the measuring light. And, since each of the information obtained based on the light of each canceling wavelength to obtain the quality information acts so as to suppress the influence of the respective shells on the grain,
It is possible to suppress the fluctuation of the quality information to be obtained due to the influence of the kernel grain. Therefore, it has become possible to provide a grain quality measuring method capable of accurately measuring quality information even when shell grains are mixed in a sample composed of a plurality of grains.

【0006】請求項2に記載の特徴構成によれば、略9
68nmの波長と略972nmの波長とから成るキャン
セル用波長を用いて、米の品質情報として水分に関する
情報を精度良く求めることができる。
According to the characteristic structure of the second aspect, approximately 9
Using the canceling wavelength consisting of the wavelength of 68 nm and the wavelength of about 972 nm, it is possible to accurately obtain information on water as quality information of rice.

【0007】請求項3に記載の特徴構成によれば、略9
08nmの波長と略918nmの波長とから成るキャン
セル用波長を用いて、米の品質情報としてタンパクに関
する情報を精度良く求めることができる。
[0007] According to the characteristic structure of the third aspect, approximately 9
By using a canceling wavelength consisting of a wavelength of 08 nm and a wavelength of about 918 nm, information on protein as rice quality information can be accurately obtained.

【0008】請求項4に記載の特徴構成によれば、略8
24nmの波長、略852nmの波長、略914nmの
波長及び略916nmの波長から成るキャンセル用波長
を用いて、米の品質情報としてアミロースに関する情報
を精度良く求めることができる。
According to the characteristic structure of the fourth aspect, approximately 8
Using the canceling wavelength including the wavelength of 24 nm, the wavelength of approximately 852 nm, the wavelength of approximately 914 nm, and the wavelength of approximately 916 nm, it is possible to accurately obtain information on amylose as rice quality information.

【0009】請求項5に記載の特徴構成によれば、略9
02nmの波長、略922nmの波長、略928nmの
波長及び略934nmの波長から成るキャンセル用波長
を用いて、米の品質情報として食味に関する情報を精度
良く求めることができる。尚、ここでいう食味とは、例
えば米を炊飯して食べるときの官能値と相関性を持つも
のである。
According to the characteristic structure of the fifth aspect, approximately 9
Using the canceling wavelength including the wavelength of 02 nm, the wavelength of approximately 922 nm, the wavelength of approximately 928 nm, and the wavelength of approximately 934 nm, it is possible to accurately obtain information on the taste as rice quality information. The taste here has a correlation with a sensory value when rice is cooked and eaten, for example.

【0010】請求項6に記載の特徴構成によれば、計測
手段によって、求める品質情報に応じて光量が変化し且
つ殻付穀粒が試料に混入していると光量が増加するキャ
ンセル用波長の光と、求める品質情報に応じて光量が変
化し且つ殻付穀粒が試料に混入していると光量が減少す
るキャンセル用波長の光を含んだ計測用光を受光して、
受光した計測用光に基づいて、品質情報が求められる。
そして、品質情報を求めるために各キャンセル用波長の
光に基づいて求められる情報の夫々は、夫々の情報が殻
付穀粒により受ける影響を抑制するように作用し合うの
で、求めるべき品質情報が殻付穀粒に影響されて変動す
るのを抑制することができる。従って、複数の穀粒から
成る試料に殻付穀粒が混入していても、品質情報を精度
良く計測することができる穀物の品質計測装置を提供す
ることができるようになった。
According to the characteristic configuration of the present invention, the measuring means changes the amount of light in accordance with the quality information to be obtained and increases the amount of light when the kernel grain is mixed in the sample. The light and the measuring light including the light of the canceling wavelength whose light quantity changes according to the quality information required and the light quantity decreases when the shelled grain is mixed into the sample are received,
Quality information is obtained based on the received measurement light.
Then, since each piece of information obtained based on the light of each canceling wavelength to obtain the quality information acts so as to suppress the influence of each piece of information on the kernel grain, the quality information to be obtained is It is possible to suppress the fluctuation caused by the grain with shell. Therefore, it is possible to provide a grain quality measuring device capable of measuring quality information with high accuracy even when shell grains are mixed in a sample composed of a plurality of grains.

【0011】請求項7に記載の特徴構成によれば、計測
手段によって、試料からの反射光又は透過光が計測用波
長を含んだ設定波長範囲内において分光されて分光スペ
クトルが得られ、その分光スペクトルに基づいて、計測
用波長の計測用光が得られる。つまり、通常、1項目の
品質情報を求めるにしても、複数の計測用波長を用い、
又、求めるべき品質情報の項目は複数有り、計測用波長
は求める品質情報の項目に応じて異なるので、複数の計
測用波長の計測用光を得る必要がある。そこで、求める
べき品質情報の全項目に対応する計測用波長を含む所定
の波長範囲の光を照射する光源を備え、試料からの反射
光又は透過光における前記設定波長範囲内の分光スペク
トルを得るようにすることにより、その分光スペクトル
から、複数の計測用波長の計測用光を得ることができ
る。従って、複数の計測用波長の計測用光を得るための
構成を簡略化することができるので、本発明を実施する
ためのコストを低減することができる。ちなみに、計測
用波長の光を各別に試料に照射することにより、複数の
計測用波長の計測用光を得ることができるが、複数の計
測用波長の光を各別に照射するための構成が複雑にな
る。
According to the seventh aspect of the present invention, the reflected light or the transmitted light from the sample is separated by the measuring means within a set wavelength range including the measuring wavelength to obtain a spectral spectrum. Measurement light having a measurement wavelength is obtained based on the spectrum. That is, usually, even if one item of quality information is obtained, a plurality of measurement wavelengths are used,
In addition, there are a plurality of items of quality information to be obtained, and measurement wavelengths are different according to the items of quality information to be obtained. Therefore, it is necessary to obtain measurement lights of a plurality of measurement wavelengths. Therefore, a light source for irradiating light in a predetermined wavelength range including a measurement wavelength corresponding to all items of quality information to be obtained is provided, and a spectral spectrum within the set wavelength range in reflected light or transmitted light from a sample is obtained. Thus, measurement light having a plurality of measurement wavelengths can be obtained from the spectrum. Therefore, the configuration for obtaining the measurement light beams having a plurality of measurement wavelengths can be simplified, so that the cost for implementing the present invention can be reduced. By irradiating the sample with the measurement wavelength light, the measurement light with multiple measurement wavelengths can be obtained, but the configuration for irradiating the measurement wavelength light with each is complicated. become.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて、米の品質
情報を計測する場合に適用した本発明の実施の形態を説
明する。図1に示すように、品質計測装置は、複数の玄
米から成る試料を保持する試料保持部Hと、その試料保
持部Hに保持されている試料に光を照射し、求める品質
情報と相関のある計測用波長の計測用光を試料からの透
過光として受光して、受光した計測用光に基づいて、玄
米に含まれる成分に基づく品質情報を求める計測手段M
を備えて構成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to measuring quality information of rice will be described below with reference to the drawings. As shown in FIG. 1, the quality measuring device irradiates light to the sample holding unit H that holds a sample made of brown rice, and irradiates the sample held in the sample holding unit H with the quality information to be obtained. Measuring means M which receives measurement light of a certain measurement wavelength as transmitted light from a sample and obtains quality information based on components contained in brown rice based on the received measurement light.
It is provided with.

【0013】計測手段Mは、赤外線光を放射するタング
ステン−ハロゲンランプから成る光源1と、試料からの
透過光を分光して分光スペクトルを得る分光部2と、そ
の分光部2にて得られた分光スペクトルに基づいて、前
記品質情報を求める処理部3を備えて構成してある。
尚、図1中、一点鎖線Pにて、光源1からの光が、試料
保持部Hに保持されている試料を通過して分光部2に入
射し、分光部2内を分光されて進む光路を示す。
The measuring means M includes a light source 1 composed of a tungsten-halogen lamp which emits infrared light, a spectroscopic section 2 for dispersing transmitted light from a sample to obtain a spectral spectrum, and a spectroscopic section 2 obtained by the spectroscopic section 2. A processing unit 3 for obtaining the quality information based on the spectrum is provided.
In FIG. 1, the light path from the light source 1 passes through the sample held by the sample holding unit H, enters the spectroscopic unit 2, and travels through the spectroscopic unit 2 at the one-dot chain line P. Is shown.

【0014】試料保持部Hについて説明を加える。試料
保持部Hは、図2ないし図4にも示すように、漏斗状の
試料投入ホッパ4と、その試料投入ホッパ4の排出口4
eに連通接続されて、排出口4eから流下する試料を貯
留する四角筒形状のセル5と、試料投入ホッパ4とセル
5との連通接続部に介装された入口側シャッタ6と、セ
ル5の出口部に介装された出口側シャッタ7とを備えて
構成してある。セル5は、横断面形状が長方形状の四角
筒形状に形成し、セル5の筒壁部のうち、前記長方形状
の横断面の長辺部を形成する一対の筒壁部は透明ガラス
にて形成してある。そして、光源部1、試料保持部H及
び分光部2は、光源1からの光が、セル5の一対の透明
の筒壁部を通過して、分光部2の入射孔21iに入射す
るような位置関係で配置してある。
The sample holder H will be described. As shown in FIGS. 2 to 4, the sample holding unit H includes a funnel-shaped sample input hopper 4 and an outlet 4 of the sample input hopper 4.
e, a square-tube-shaped cell 5 for storing a sample flowing down from the outlet 4e, an inlet-side shutter 6 interposed at a communication connection portion between the sample input hopper 4 and the cell 5, and a cell 5 And an exit-side shutter 7 interposed at the exit portion of the apparatus. The cell 5 is formed in a rectangular tube shape having a rectangular cross-sectional shape, and a pair of cylindrical wall portions forming a long side portion of the rectangular cross-section among the cylindrical wall portions of the cell 5 are made of transparent glass. It is formed. Then, the light source unit 1, the sample holding unit H, and the spectroscopic unit 2 allow the light from the light source 1 to pass through the pair of transparent cylindrical walls of the cell 5 and to enter the entrance holes 21i of the spectroscopic unit 2. They are arranged in a positional relationship.

【0015】試料投入ホッパ4は、横断面形状が長円状
で、その長円形状の横断面における長径RL と短径RS
との比(RL /RS )が排出口4e側ほど大きくなる漏
斗状に形成してある。そして、試料投入ホッパ4とセル
5とを、試料投入ホッパ4の長径方向とセル5の長辺方
向とが同方向を向く姿勢で連通接続してある。
The sample input hopper 4 has an elliptical cross section, and has a major axis RL and a minor axis R S in the elliptical cross section.
Is formed in a funnel shape in which the ratio (R L / R S ) becomes larger toward the outlet 4e. The sample input hopper 4 and the cell 5 are connected to each other so that the major axis direction of the sample input hopper 4 and the long side direction of the cell 5 are in the same direction.

【0016】本発明における品質計測装置は、収穫して
乾燥していない高水分含有率の玄米を試料とする場合が
あり、そのような高水分含有率の玄米であっても、試料
投入ホッパ4からセル5に円滑に流下するように、下記
のように、試料投入ホッパ4及びセル5の寸法を設定し
てある。即ち、図2ないし図4において示すところの、
試料投入ホッパ4の排出口4eにおける短径部分の内寸
法A、試料投入ホッパ4の長径部分と軸芯とにより形成
される角度α1,α2夫々は、下記のように設定してあ
る。又、図2ないし図4において示すところの、セル5
における短辺方向での内寸法Bは、下記のように設定し
てある。 A :20〜30mm α1:35°±5° α2:35°±5° B :18〜25mm 角度α1,α2が上記の設定値よりも小の場合は、高水
分含有率の玄米を投入すると詰まりやすくなり、大の場
合は、セル5に玄米が均一に供給されにくくなる。又、
セル5における短辺方向での内寸法B、つまり、光源1
からの光が試料を通過する光路長が、上記設定値よりも
小の場合は、透過光量が多過ぎ、大の場合は、透過光量
が少な過ぎ、いずれの場合も、計測精度が悪くなる。
The quality measuring apparatus according to the present invention sometimes uses brown rice with a high moisture content that has not been harvested and dried, and even with such a high moisture content brown rice, the sample input hopper 4 may be used. The dimensions of the sample input hopper 4 and the cell 5 are set as described below so that the sample flows smoothly from the cell 5 to the cell 5. That is, as shown in FIGS.
The inner dimension A of the short diameter portion of the outlet 4e of the sample input hopper 4 and the angles α1 and α2 formed by the long diameter portion of the sample input hopper 4 and the axis are set as follows. The cell 5 shown in FIGS.
Are set as follows in the short side direction. A: 20 to 30 mm α1: 35 ° ± 5 ° α2: 35 ° ± 5 ° B: 18 to 25mm When the angles α1 and α2 are smaller than the above set values, clogging occurs when brown rice having a high moisture content is introduced. In a large case, it is difficult to uniformly supply brown rice to the cell 5. or,
The inner dimension B in the short side direction of the cell 5, that is, the light source 1
If the optical path length through which the light from the sample passes through the sample is smaller than the above set value, the transmitted light amount is too large, and if it is large, the transmitted light amount is too small, and in any case, the measurement accuracy is deteriorated.

【0017】分光部2について説明を加える。図1に示
すように、分光部2は、試料を透過した透過光が入射孔
21iから入射するアルミニウム製の暗箱21内に、そ
の暗箱21に入射した光を反射する反射鏡22と、反射
鏡22により反射された光を分光反射する凹面回折格子
23と、凹面回折格子23により分光反射された各波長
毎の光線束強度を検出するアレイ型受光素子24を備え
て構成してある。アレイ型受光素子24は、凹面回折格
子23にて分光反射された拡散反射光を、同時に波長毎
に受光するとともに波長毎の信号に変換して出力する。
The spectral unit 2 will be described. As shown in FIG. 1, the spectroscopic unit 2 includes a reflecting mirror 22 that reflects light incident on the dark box 21 in a dark box 21 made of aluminum into which transmitted light transmitted through the sample enters through an entrance hole 21 i. A concave diffraction grating 23 that spectrally reflects the light reflected by 22 and an array-type light receiving element 24 that detects the light flux intensity for each wavelength spectrally reflected by the concave diffraction grating 23 are provided. The array type light receiving element 24 receives the diffusely reflected light spectrally reflected by the concave diffraction grating 23 at the same time for each wavelength and converts it into a signal for each wavelength and outputs the signal.

【0018】処理部3について説明を加える。処理部3
は、マイクロコンピュータを利用して構成してあり、基
本的には、アレイ型受光素子24からの出力信号を処理
して、吸光度スペクトル、及び、吸光度スペクトルの波
長領域での二次微分値を得るとともに、その二次微分値
に基づいて、玄米に含まれる成分に基づく品質情報を算
出する。処理部3は、下記の演算式(以下、検量式と称
する)に基づいて、品質情報を算出する。 Y=K0 +K1 ×A(λ1 )+K2 ×A(λ2 )+K3 ×A(λ3 )…… 但し、 Y ;品質情報 A(λ1 ),A(λ2 ),A(λ3 )……;求める品質情報と相関のある計測 用波長λにおける吸光度の二次微分値 K0 ,K1 ,K2 ,K3 …… ;充分に多い母集団において計測さ れた吸光度及び品質情報の実測値を用いて最小二乗法にて設定された係数
The processing unit 3 will be described. Processing unit 3
Is configured using a microcomputer, and basically processes an output signal from the array type light receiving element 24 to obtain an absorbance spectrum and a second derivative in a wavelength region of the absorbance spectrum. At the same time, quality information based on the components contained in the brown rice is calculated based on the second derivative. The processing unit 3 calculates the quality information based on the following arithmetic expression (hereinafter, referred to as a calibration expression). Y = K 0 + K 1 × A (λ 1 ) + K 2 × A (λ 2 ) + K 3 × A (λ 3 ) where Y: quality information A (λ 1 ), A (λ 2 ), A ( λ 3 ) ……; second derivative K 0 , K 1 , K 2 , K 3 of the absorbance at the measurement wavelength λ that is correlated with the required quality information. Coefficients set by the least squares method using measured values of quality information

【0019】処理部3には、品質情報の項目毎に、特定
の検量式を設定してある。つまり、上記検量式におい
て、求める品質情報と相関のある計測用波長λ1
λ2 ,λ3……、係数K0 ,K1 ,K2 ,K3 ……を品
質情報の項目毎に設定してある。本発明においては、計
測用波長は、求める品質情報と相関があり、且つ、籾殻
が除去されていない籾(殻付穀粒に相当する)が試料に
混入していると光量が増加する波長と、求める品質情報
と相関があり、且つ、籾が試料に混入していると光量が
減少する波長とから成るキャンセル用波長を含めるよう
に設定してある。品質情報として、水分含有率、タンパ
ク含有率、アミロース含有率及び食味評価値夫々を求め
る場合の計測用波長及び係数を、図5、図6、図7及び
図8夫々に示す。尚、図5ないし図8において、計測用
波長を示す符号λ1 ,λ2 ,λ3……の後に符号Cを付
したものが、キャンセル用波長である。例えば、水分含
有率を求める場合は、図5に示すように、λ2 ,λ3
即ち、968nm及び972nmがキャンセル用波長で
ある。
In the processing section 3, a specific calibration formula is set for each item of quality information. That is, in the above calibration equation, the measurement wavelength λ 1 , which is correlated with the quality information to be obtained,
λ 2, λ 3 ......, the coefficient K 0, K 1, K 2 , K 3 ...... is set for each item of quality information. In the present invention, the wavelength for measurement is correlated with the quality information to be sought, and the wavelength at which the amount of light increases when paddy hulls (corresponding to husk grains) from which husks have not been removed are mixed in the sample. It is set so as to include a canceling wavelength which has a correlation with the quality information to be obtained and a wavelength at which the amount of light decreases when paddy is mixed in the sample. As quality information, measurement wavelengths and coefficients for obtaining each of the moisture content, protein content, amylose content, and taste evaluation value are shown in FIGS. 5, 6, 7, and 8, respectively. In FIGS. 5 to 8, the wavelengths for measurement are denoted by reference symbols λ 1 , λ 2 , λ 3 ,. For example, when obtaining the water content, as shown in FIG. 5, λ 2 , λ 3 ,
That is, 968 nm and 972 nm are the cancellation wavelengths.

【0020】以下、試料中の籾の影響がキャンセルされ
る根拠について、水分含有率を求める場合を参考にして
説明する。未乾燥の高水分含有率の玄米を用いて、籾の
混入率を種々に変えた試料を作成して、上記の検量式に
て水分含有率を求めた。図9は、その際の演算結果を示
すものであり、籾混入率の異なる各試料について、検量
式におけるK1 ×A(λ1)、K2 ×A(λ2 )及びK
3 ×A(λ3 )の各項の演算値と、求めた水分含有率を
示す。キャンセル用波長968nmに対応するK2 ×A
(λ2 )の項の演算値は、試料に籾が混入することによ
り小さくなり、逆に、キャンセル用波長972nmに対
応するK3 ×A(λ3 )の項の演算値は大きくなるが、
2 ×A(λ2 )の項の減少分とK3 ×A(λ3 )の項
の増大分がキャンセルし合うので、試料に籾が混入して
いても、籾が混入していない試料と同様に水分含有率を
求めることができる。尚、図9に示すように、試料に対
する籾の混入率が0〜20%に変化しても、水分含有率
は0.1%の誤差の範囲内で求めることができることが
分かる。
Hereinafter, the grounds for canceling the influence of the paddy in the sample will be described with reference to the case where the moisture content is determined. Using undried brown rice having a high moisture content, samples were prepared in which the mixing ratio of paddy was variously changed, and the moisture content was determined by the above calibration formula. FIG. 9 shows the calculation results at that time, and K 1 × A (λ 1 ), K 2 × A (λ 2 ) and K
The calculated value of each item of 3 × A (λ 3 ) and the obtained water content are shown. K 2 × A corresponding to cancellation wavelength of 968 nm
The calculated value of the term (λ 2 ) becomes smaller due to the mixing of paddy into the sample, and conversely, the calculated value of the term K 3 × A (λ 3 ) corresponding to the cancellation wavelength 972 nm increases,
Since the decrease in the term of K 2 × A (λ 2 ) and the increase in the term of K 3 × A (λ 3 ) cancel each other, even if the sample is mixed with the paddy, the sample is not mixed with the paddy. The moisture content can be determined in the same manner as in the above. As shown in FIG. 9, it can be seen that even if the mixing ratio of paddy to the sample changes from 0 to 20%, the water content can be determined within an error range of 0.1%.

【0021】図10は、本発明による品質計測装置によ
って求めた水分含有率の値と、化学分析値との相関を示
すグラフである。図10のグラフによれば、両者の相関
が高いので、本発明によって、試料に籾が混入していて
も、品質情報を精度良く計測することができることが分
かる。
FIG. 10 is a graph showing the correlation between the value of the water content obtained by the quality measuring apparatus according to the present invention and the chemical analysis value. According to the graph of FIG. 10, since the correlation between the two is high, it can be understood that quality information can be accurately measured by the present invention even if paddy is mixed in the sample.

【0022】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 水分含有率、タンパク含有率、アミロース含有
率及び食味評価値夫々を求めるための計測用波長、及
び、それに含まれるキャンセル用波長は、上記の実施形
態において例示した値に限定されるものではなく、適宜
変更可能である。
[Another Embodiment] Next, another embodiment will be described. (B) The measurement wavelength for determining each of the water content, the protein content, the amylose content, and the taste evaluation value, and the cancellation wavelength included therein are limited to the values exemplified in the above embodiment. Instead, it can be changed as appropriate.

【0023】(ロ) 上記の実施形態においては、計測
手段Mを、試料からの透過光を受光して、受光した光を
分光するように構成する場合について例示したが、これ
に代えて、試料からの反射光を受光して、受光した光を
分光するように構成してもよい。
(B) In the above embodiment, the case where the measuring means M is configured to receive the transmitted light from the sample and disperse the received light has been exemplified. May be configured to receive reflected light from the light source and split the received light.

【0024】(ハ) 上記の実施形態においては、計測
手段Mは、試料からの反射光又は透過光を分光して分光
スペクトルを得て、その分光スペクトルに基づいて、計
測用波長の計測用光を得るように構成する場合について
例示した。これに代えて、例えば、干渉フィルタを用い
て、計測用波長の光を試料に照射して、試料からの反射
光又は透過光を受光することにより、計測用波長の計測
用光を得るように構成してもよい。
(C) In the above embodiment, the measuring means M obtains a spectral spectrum by separating the reflected light or transmitted light from the sample, and based on the spectral spectrum, the measuring light having the measuring wavelength. The case where it is configured so as to obtain is described above. Instead of this, for example, by using an interference filter, irradiating the sample with light having a measurement wavelength, and receiving reflected light or transmitted light from the sample to obtain measurement light having a measurement wavelength. You may comprise.

【0025】(ニ) 本発明により計測することができ
る品質情報の項目は、上記の実施形態において例示し
た、水分含有率、タンパク含有率、アミロース含有率及
び食味評価値に限定されるものではなく、その他の種々
の項目の品質情報を計測することができる。
(D) The items of quality information that can be measured according to the present invention are not limited to the moisture content, protein content, amylose content, and taste evaluation values exemplified in the above embodiment. , Quality information of various other items can be measured.

【0026】(ホ) 本発明によれば、上記の実施形態
において例示した米以外に、麦等、種々の穀物の品質情
報を、試料に殻付穀粒が混入しているにもかかわらず精
度良く計測することができる。
(E) According to the present invention, in addition to the rice exemplified in the above embodiment, the quality information of various cereals such as barley can be obtained with accuracy even if the sample contains husk grains. It can measure well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】穀物の品質計測装置のブロック図FIG. 1 is a block diagram of a grain quality measuring device.

【図2】試料保持部の平面図FIG. 2 is a plan view of a sample holding unit.

【図3】試料保持部の縦断正面図FIG. 3 is a vertical front view of a sample holding unit.

【図4】試料保持部の縦断側面図FIG. 4 is a longitudinal sectional side view of a sample holding unit.

【図5】水分含有率を求めるための計測用波長及び係数
を示す図
FIG. 5 is a diagram showing measurement wavelengths and coefficients for obtaining a water content.

【図6】タンパク含有率を求めるための計測用波長及び
係数を示す図
FIG. 6 is a diagram showing a measurement wavelength and a coefficient for obtaining a protein content.

【図7】アミロース含有率を求めるための計測用波長及
び係数を示す図
FIG. 7 is a diagram showing measurement wavelengths and coefficients for obtaining an amylose content.

【図8】食味評価値を求めるための計測用波長及び係数
を示す図
FIG. 8 is a diagram showing measurement wavelengths and coefficients for obtaining a taste evaluation value.

【図9】水分含有率を求める場合において試料中の籾の
影響がキャンセルされる根拠を説明する図
FIG. 9 is a view for explaining the basis for canceling the influence of paddy in the sample when obtaining the water content.

【図10】本発明装置によって求めた水分含有率の値と
化学分析値との相関を示す図
FIG. 10 is a diagram showing the correlation between the value of the water content obtained by the apparatus of the present invention and the chemical analysis value.

【符号の説明】[Explanation of symbols]

M 計測手段 M measuring means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 進 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ 技術開発研究所内 (56)参考文献 特開 平11−83736(JP,A) 特開 平5−164691(JP,A) 特開 平4−351945(JP,A) 特開 平4−310845(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Susumu Morimoto 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. (56) References JP-A-11-83736 (JP, A) JP-A-5-164691 (JP, A) JP-A-4-351945 (JP, A) JP-A-4-310845 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21 / 00-21/01 G01N 21/17-21/61 Practical file (PATOLIS) Patent file (PATOLIS)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の穀粒から成る試料に光を照射し、
求める品質情報と相関のある計測用波長の計測用光を、
試料からの反射光又は透過光として受光して、受光した
計測用光に基づいて、穀物に含まれる成分に基づく品質
情報を求める穀物の品質計測方法であって、 求める品質情報と相関があり、且つ、殻が除去されてい
ない殻付穀粒が試料に混入していると光量が増加する波
長と、求める品質情報と相関があり、且つ、前記殻付穀
粒が試料に混入していると光量が減少する波長とから成
るキャンセル用波長を含んだ前記計測用波長の計測用光
を受光して、受光した計測用光に基づいて前記品質情報
を求める穀物の品質計測方法
Illuminating a sample comprising a plurality of grains with light;
Measurement light with a measurement wavelength that is correlated with the quality information required
A quality measurement method for a grain that receives light reflected or transmitted from a sample and obtains quality information based on components contained in the grain based on the received measurement light, and has a correlation with the desired quality information. And, the wavelength at which the amount of light increases when the shelled grains from which the shell has not been removed is mixed with the sample, there is a correlation with the quality information to be sought, and when the shelled grains are mixed into the sample. A grain quality measuring method for receiving the measuring light having the measuring wavelength including the canceling wavelength including the wavelength at which the light amount decreases, and obtaining the quality information based on the received measuring light.
【請求項2】 米の品質情報として水分に関する情報を
求めるときには、前記キャンセル用波長が、略968n
mの波長と略972nmの波長とから成る請求項1記載
の穀物の品質計測方法。
2. When information about moisture is obtained as quality information of rice, the wavelength for cancellation is approximately 968 n.
2. The method for measuring grain quality according to claim 1, comprising a wavelength of m and a wavelength of about 972 nm.
【請求項3】 米の品質情報としてタンパクに関する情
報を求めるときには、前記キャンセル用波長が、略90
8nmの波長と略918nmの波長とから成る請求項1
記載の穀物の品質計測方法。
3. When obtaining information on protein as rice quality information, the wavelength for cancellation is approximately 90%.
2. The method of claim 1, wherein the wavelength comprises a wavelength of 8 nm and a wavelength of approximately 918 nm.
Grain quality measurement method described.
【請求項4】 米の品質情報としてアミロースに関する
情報を求めるときには、前記キャンセル用波長が、略8
24nmの波長、略852nmの波長、略914nmの
波長及び略916nmの波長から成る請求項1記載の穀
物の品質計測方法。
4. When seeking information on amylose as rice quality information, the wavelength for cancellation is about 8
The grain quality measuring method according to claim 1, comprising a wavelength of 24 nm, a wavelength of approximately 852 nm, a wavelength of approximately 914 nm, and a wavelength of approximately 916 nm.
【請求項5】 米の品質情報として食味に関する情報を
求めるときには、前記キャンセル用波長が、略902n
mの波長、略922nmの波長、略928nmの波長及
び略934nmの波長から成る請求項1記載の穀物の品
質計測方法。
5. When information about taste is obtained as rice quality information, the wavelength for cancellation is approximately 902n.
2. The grain quality measuring method according to claim 1, comprising a wavelength of m, a wavelength of approximately 922 nm, a wavelength of approximately 928 nm, and a wavelength of approximately 934 nm.
【請求項6】 複数の穀粒から成る試料に光を照射し、
求める品質情報と相関のある計測用波長の計測用光を、
試料からの反射光又は透過光として受光して、受光した
計測用光に基づいて、穀物に含まれる成分に基づく品質
情報を求める計測手段が設けられた穀物の品質計測装置
であって、前記計測手段は、求める品質情報と相関があ
り、且つ、殻が除去されていない殻付穀粒が試料に混入
していると光量が増加する波長と、求める品質情報と相
関があり、且つ、前記殻付穀粒が試料に混入していると
光量が減少する波長とから成るキャンセル用波長を含ん
だ計測用波長の計測用光を受光して、受光した計測用光
に基づいて、前記品質情報を求めるように構成されてい
る穀物の品質計測装置。
6. Irradiating a sample comprising a plurality of grains with light,
Measurement light with a measurement wavelength that is correlated with the quality information required
A grain quality measuring device provided with measuring means for receiving quality reflected light or transmitted light from a sample and obtaining quality information based on components contained in the grain based on the received measurement light, wherein the measurement is performed. The means is correlated with the quality information to be obtained, and the wavelength at which the amount of light increases when the shelled kernels from which the shell has not been removed is mixed with the sample, and the wavelength is correlated with the quality information to be obtained. Receiving measurement light having a measurement wavelength including a cancellation wavelength consisting of a wavelength at which the amount of light decreases when the attached kernels are mixed with the sample, and based on the received measurement light, the quality information is obtained. A grain quality measurement device that is configured to seek.
【請求項7】 前記計測手段が、試料からの反射光又は
透過光を、前記計測用波長を含んだ設定波長範囲内にお
いて分光して分光スペクトルを得て、その分光スペクト
ルに基づいて、前記計測用波長の計測用光を得るように
構成されている請求項6記載の穀物の品質計測装置。
7. The measuring means obtains a spectral spectrum by separating reflected light or transmitted light from a sample within a set wavelength range including the measuring wavelength, and obtains the measurement based on the spectral spectrum. The grain quality measuring device according to claim 6, wherein the quality measuring device is configured to obtain measurement light having a measurement wavelength.
JP23806097A 1997-09-03 1997-09-03 Grain quality measuring method and quality measuring device Expired - Fee Related JP3354844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23806097A JP3354844B2 (en) 1997-09-03 1997-09-03 Grain quality measuring method and quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23806097A JP3354844B2 (en) 1997-09-03 1997-09-03 Grain quality measuring method and quality measuring device

Publications (2)

Publication Number Publication Date
JPH1183735A JPH1183735A (en) 1999-03-26
JP3354844B2 true JP3354844B2 (en) 2002-12-09

Family

ID=17024568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23806097A Expired - Fee Related JP3354844B2 (en) 1997-09-03 1997-09-03 Grain quality measuring method and quality measuring device

Country Status (1)

Country Link
JP (1) JP3354844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245260A (en) * 1999-03-02 2000-09-12 Satake Eng Co Ltd Quality estimation for grain and apparatus for the same
GB0907526D0 (en) * 2009-04-30 2009-06-10 Buhler Sortex Ltd The measurement of a quality of granular product in continuous flow
CN106771277A (en) * 2016-11-27 2017-05-31 阿贝力特科技(北京)有限公司 A kind of grain automatic on-line checking system
JP7326026B2 (en) * 2019-05-23 2023-08-15 株式会社トプコン Rice component measuring device, combine harvester, and rice component measuring method

Also Published As

Publication number Publication date
JPH1183735A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
RU2195644C2 (en) Monitor for estimation of grain quality
US10168310B2 (en) System and method for fluorescence and absorbance analysis
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
US5751421A (en) Near infrared spectrometer used in combination with a combine for real time grain analysis
EP0743513B1 (en) Spectrometry and Optical Measuring Method and Apparatus
CA1123222A (en) Infrared analyzer
EP2078951B1 (en) Apparatus for analysing milk
Finney et al. Determination of moisture in corn kernels by near-infrared transmittance measurements
JPH0643030A (en) Portable spectrophotometer
JP2003513236A (en) Built-in optical probe for spectroscopic analysis
JP2008539417A (en) Spectroscopy for determining the amount of analyte in a mixture of analytes.
EP1063878B1 (en) Near infrared spectrometer used in combination with a combine for real time grain analysis
WO2022050322A1 (en) Gas analyzer
JP2003510560A (en) Built-in optical block for spectroscopic analysis
JP3354844B2 (en) Grain quality measuring method and quality measuring device
Smeesters et al. Non-destructive detection of mycotoxins in maize kernels using diffuse reflectance spectroscopy
Miyamoto et al. Classification of high acid fruits by partial least squares using the near infrared transmittance spectra of intact satsuma mandarins
JP3423587B2 (en) Grain quality measuring method and quality measuring device
JP7212049B2 (en) How to calibrate the integrating cavity
JP3012450B2 (en) Spectrometer
JP3191340B2 (en) Rice quality judgment device
JP2989459B2 (en) Spectrometer
JPH0829337A (en) Wheat quality judging apparatus
JPH1183733A (en) Grade measuring instrument for grain
JPH06313754A (en) Constituent quantitative analysis device and taste evaluation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees