JPH1182093A - Power generation control system of electric vehicle - Google Patents

Power generation control system of electric vehicle

Info

Publication number
JPH1182093A
JPH1182093A JP24100797A JP24100797A JPH1182093A JP H1182093 A JPH1182093 A JP H1182093A JP 24100797 A JP24100797 A JP 24100797A JP 24100797 A JP24100797 A JP 24100797A JP H1182093 A JPH1182093 A JP H1182093A
Authority
JP
Japan
Prior art keywords
generator
temperature
power generation
engine
driving engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24100797A
Other languages
Japanese (ja)
Other versions
JP3454101B2 (en
Inventor
Eiji Inada
英二 稲田
Shinichiro Kitada
眞一郎 北田
Toshio Kikuchi
俊雄 菊池
Hiroyuki Hirano
弘之 平野
Takeshi Aso
剛 麻生
Ryuichi Idoguchi
隆一 井戸口
Yutaro Kaneko
雄太郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24100797A priority Critical patent/JP3454101B2/en
Priority to US09/148,701 priority patent/US6470985B1/en
Publication of JPH1182093A publication Critical patent/JPH1182093A/en
Application granted granted Critical
Publication of JP3454101B2 publication Critical patent/JP3454101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio

Abstract

PROBLEM TO BE SOLVED: To control a generator and an engine for driving the generator to their operating points that hold generated energy higher and satisfy the temperature conditions of their parts. SOLUTION: If there is a request for power generation, requested generated energy P0 is obtained at first and basic operating points (NO, TO), are set for the best fuel consumption (S101-S105). If the catalyst temperature is lower than a set point, the basic operating points are changed to operating points (Ncold, Tcold) that hold the generated energy P0 and elevate the exhaust temperature (S106-S108). If the temperature of each part is higher than a set point, it is changed to the operating points (Nheat, Theat) that hold the generated energy P0 and lower exhaust temperature (S109-S111). If the temperature of each part is nevertheless higher than the set point, it is changed to operating points (N1heat, T1heat) that lower the exhaust temperature effectively (S112-S113). This routine thus satisfies the temperature conditions of the engine and generator parts while maintaining required generated energy to thereby suppress a deterioration in fuel economy, exhaust performance and parts quality while maintaining sufficient power performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車の発電
制御装置に関し、特に、発電機駆動用エンジンと、この
エンジンの機械出力により駆動する発電機と、車両駆動
用電気モータと、駆動用電気モータへのエネルギ供給及
び発電機のエネルギを充電するためのバッテリと、さら
にこれらを制御する制御装置と、を含んで構成される所
謂ハイブリッド電気自動車の発電制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation control device for an electric vehicle, and more particularly to an engine for driving a generator, a generator driven by a mechanical output of the engine, an electric motor for driving a vehicle, and an electric motor for driving. The present invention relates to a power generation control device for a so-called hybrid electric vehicle including a battery for supplying energy to a motor and charging energy of a generator, and a control device for controlling the battery.

【0002】[0002]

【従来の技術】発電機及び発電機駆動用エンジンを搭載
した電気自動車はシリーズハイブリッド車(SHEV)
と呼ばれる。これは、発電機を搭載することにより電気
自動車(EV)の航続距離の拡大、ガソリンエンジン車
に対する燃費・排気性能の向上等を狙いとしたものであ
り、例えば、バッテリが充電状態、即ちバッテリの充電
量(SOC)が設定値以上のときはバッテリのエネルギ
のみで走行し、バッテリの充電量が少なくなった、即ち
SOCがある設定値より小さくなったときにエンジン駆
動発電機を駆動して、これのエネルギを駆動モータのエ
ネルギ若しくはバッテリの充電に使用し、充電量が所定
値に達したらエンジン駆動発電機を停止するシステム等
が知られている。
2. Description of the Related Art An electric vehicle equipped with a generator and an engine for driving the generator is a series hybrid vehicle (SHEV).
Called. This is intended to increase the cruising distance of an electric vehicle (EV) and to improve the fuel efficiency and exhaust performance of a gasoline engine vehicle by mounting a generator. For example, the battery is charged, that is, the battery is charged. When the state of charge (SOC) is equal to or higher than the set value, the vehicle runs only on the energy of the battery. When the state of charge of the battery decreases, that is, when the SOC decreases below a certain set value, the engine-driven generator is driven. There is known a system or the like that uses this energy to charge the energy of the drive motor or the battery and stops the engine drive generator when the charged amount reaches a predetermined value.

【0003】ところで、シリーズハイブリッド電気自動
車(SHEV)は、より排気有害成分排出量を低減する
ことが期待されており、これに対応した発電機及び発電
機駆動用エンジンの制御方法として、例えば、排気浄化
装置としてエンジン排気管下流に取り付けられる触媒コ
ンバータが低温時(不活性時)において排気浄化性能が
悪いことに鑑み、エンジン始動後所定時間アイドリング
運転させ、その後出力を所定値の約2倍に増加して排気
ガス流量を増加させ、これによって触媒コンバータを始
動後早期に暖機(活性化)させ排気浄化性能を高めるよ
うにする方法などが考えられている(特開平5−328
528号公報等参照)。
[0003] Incidentally, a series hybrid electric vehicle (SHEV) is expected to further reduce the emission of harmful components. For example, as a control method of a generator and a generator driving engine, for example, an exhaust gas is used. Considering that the catalytic converter attached downstream of the engine exhaust pipe as a purification device has poor exhaust purification performance when the temperature is low (inactive), the engine is operated for idling for a predetermined time after starting the engine, and then the output is increased to about twice the predetermined value. There has been proposed a method of increasing the exhaust gas flow rate and thereby warming up (activating) the catalytic converter early after starting to enhance the exhaust gas purification performance (Japanese Patent Laid-Open No. 5-328).
No. 528, etc.).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、触媒コ
ンバータの早期活性化のためにエンジン出力(換言すれ
ば発電機負荷)を所定値の約2倍に増加するような従来
の制御では、要求発電量より発電量が大きくなってしま
うため、バッテリを劣化させてしまう惧れがある。
However, in the conventional control in which the engine output (in other words, the generator load) is increased to about twice the predetermined value for the early activation of the catalytic converter, the required power generation amount is not increased. Since the amount of power generation becomes larger, the battery may be deteriorated.

【0005】また、エンジン回転数(エンジン回転速
度)が増加するため、車両停止中や車速が低い場合等に
は、エンジンノイズが際立つことになるので、運転者等
に違和感を与えると言った惧れもある。更に、排気有害
成分排出量(HC,CO,NOx 等の排出量:例えばl
/min)は、排気ガス流量(例えばl/min)×排
気有害成分濃度{HC,CO,NOx 等の濃度(pp
m)}であるから、排気ガス流量が増加されることは、
排気有害成分排出量を増加させる惧れが高くなると言っ
た問題を含んでいる。
[0005] In addition, since the engine speed (engine speed) is increased, the engine noise becomes noticeable when the vehicle is stopped or when the vehicle speed is low. There is also. Furthermore, the emission amount of harmful components of exhaust gas (emission amount of HC, CO, NOx, etc .:
/ Min) is the exhaust gas flow rate (for example, 1 / min) × the exhaust harmful component concentration {the concentration of HC, CO, NOx, etc. (pp
m) Since}, increasing the exhaust gas flow rate means
Includes the problem of increasing the risk of increasing emissions of exhaust harmful components.

【0006】本発明は、このような従来の実情に鑑みな
されたもので、発電機の発電量を制御する因子のうち、
回転速度を発電機駆動用エンジンで制御し、発電機側で
トルク又は出力及び出力電流値等の因子を制御すること
で発電量(延いてはエンジン出力)を制御するようにし
た電気自動車の発電制御装置において、要求発電量をで
きる限り維持して動力性能、騒音・振動性能の確保やバ
ッテリの劣化等を抑制しつつ、例えば触媒早期活性化を
図って排気性能を向上できたり、各部品の保護及び劣化
等を抑制等できるようにすることを目的とする。
The present invention has been made in view of such a conventional situation, and among the factors for controlling the power generation amount of the generator,
Electric power generation of an electric vehicle in which the rotation speed is controlled by a generator driving engine and the generator controls the amount of power generation (and thus the engine output) by controlling factors such as torque or output and output current value on the generator side. The control device can maintain the required power generation as much as possible to ensure power performance, noise / vibration performance, suppress battery deterioration, etc., and improve exhaust performance by, for example, early activation of the catalyst. An object of the present invention is to be able to suppress protection, deterioration, and the like.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に記
載の発明では、車両駆動用電気モータと、前記車両駆動
用電気モータへの電力供給用の充放電可能な蓄電池と、
前記車両駆動用電気モータ或いは前記蓄電池への電力供
給のために発電を行なう発電機と、前記発電機を駆動す
る発電機駆動用エンジンと、を含んで構成され、前記発
電機の発電量を制御する因子のうち、回転速度を前記発
電機駆動用エンジンで制御し、それ以外の因子を発電機
側で制御するようにした電気自動車の発電制御装置にお
いて、各部の温度条件に応じて、前記発電機駆動用エン
ジンの回転速度及び前記発電機側で制御される因子の制
御値を変更するようにした。
According to the first aspect of the present invention, there is provided an electric motor for driving a vehicle, a chargeable / dischargeable storage battery for supplying power to the electric motor for driving the vehicle,
A generator for generating electric power for supplying electric power to the vehicle driving electric motor or the storage battery; and a generator driving engine for driving the generator, and controlling a power generation amount of the generator. Of the factors to be controlled, the rotation speed is controlled by the generator driving engine, and the other factors are controlled by the generator. The rotation speed of the engine for driving the machine and the control value of the factor controlled on the generator side are changed.

【0008】請求項2に記載の発明では、図1に示すよ
うに、車両駆動用電気モータと、前記車両駆動用電気モ
ータへの電力供給用の充放電可能な蓄電池と、前記車両
駆動用電気モータ或いは前記蓄電池への電力供給のため
に発電を行なう発電機と、前記発電機を駆動する発電機
駆動用エンジンと、を含んで構成され、前記発電機の発
電量を制御する因子のうち、回転速度を前記発電機駆動
用エンジンで制御し、それ以外の因子を発電機側で制御
するようにした電気自動車の発電制御装置において、各
部の温度条件に応じて、前記発電機駆動用エンジンの回
転速度及び前記発電機側で制御される因子の制御値を変
更する変更制御手段を含んで構成した。
According to the second aspect of the present invention, as shown in FIG. 1, an electric motor for driving a vehicle, a chargeable / dischargeable storage battery for supplying power to the electric motor for driving the vehicle, and an electric motor for driving the vehicle are provided. A generator that generates power for supplying power to the motor or the storage battery, and a generator driving engine that drives the generator, among the factors that control the power generation amount of the generator, In a power generation control device for an electric vehicle in which the rotation speed is controlled by the generator driving engine and other factors are controlled by the generator side, in accordance with the temperature condition of each part, the generator driving engine The apparatus includes a change control means for changing a control value of a rotation speed and a factor controlled on the generator side.

【0009】請求項1、請求項2に記載の発明によれ
ば、発電機及び発電機駆動用エンジンの運転点(発電機
側の制御因子の制御値及び発電機駆動用エンジンの回転
速度)を、例えば、基本的には要求発電量を達成でき、
かつ、効率の良い運転点として発電(運転)を行なわせ
るようにする一方で、例えば、触媒温度が低い(活性状
態でない)或いはエンジンルーム内の部品温度が高い等
の各部の温度条件によっては、発電量(出力)をできる
限り要求発電量(要求出力)に維持しながら運転点を、
各部の温度条件に応じたより適正な運転点に変更する制
御を行なうことができるので、要求発電量をできる限り
維持しつつ、各部の温度条件をできる限り満足させるこ
と等が可能となる。従って、要求発電量をできる限り維
持して動力性能、騒音・振動性能の確保やバッテリの劣
化等を抑制しつつ、例えば触媒早期活性化を図って排気
性能を向上でき、或いは各部品の保護及び劣化等を抑制
することができることとなる。
According to the first and second aspects of the present invention, the operating point of the generator and the generator driving engine (the control value of the control factor on the generator side and the rotation speed of the generator driving engine) are determined. , For example, can basically achieve the required power generation,
In addition, while power generation (operation) is performed as an efficient operating point, for example, depending on temperature conditions of each part such as a low catalyst temperature (not in an active state) or a high component temperature in an engine room, The operating point is maintained while maintaining the required power generation (required output) as much as possible.
Since it is possible to perform control to change the operating point to a more appropriate operating point according to the temperature condition of each unit, it is possible to satisfy the temperature condition of each unit as much as possible while maintaining the required power generation amount as much as possible. Therefore, it is possible to improve the exhaust performance by, for example, early activation of the catalyst while maintaining the required power generation amount as much as possible and securing the power performance, noise / vibration performance, and suppressing the deterioration of the battery. Deterioration and the like can be suppressed.

【0010】請求項3に記載の発明では、前記各部の温
度条件が、所定の条件を満たしているときには、前記発
電機駆動用エンジンの回転速度及び前記発電機側で制御
される因子の制御値が、要求発電量を達成でき、かつ、
前記発電機駆動用エンジンの効率を高めることができる
点に設定されるようにした。かかる構成とすれば、発電
機及び発電機駆動用エンジンの運転点(発電機側の制御
因子の制御値及び発電機駆動用エンジンの回転速度)
を、前記各部の温度条件が所定の条件を満たしている間
は、要求発電量を達成でき、かつ、効率の良い運転点と
して、発電(運転)を行なわせることができるので、例
えば、要求発電量を維持して動力性能等の確保やバッテ
リの劣化等を抑制しつつ、発電機駆動用エンジンの燃料
消費を最小とすることができる。
According to the third aspect of the present invention, when the temperature condition of each section satisfies a predetermined condition, the control value of the rotation speed of the engine for driving the generator and a factor controlled on the generator side. Can achieve the required power generation, and
It is set so that the efficiency of the generator driving engine can be increased. With this configuration, the operating point of the generator and the generator driving engine (the control value of the control factor on the generator side and the rotation speed of the generator driving engine)
As long as the temperature condition of each section satisfies the predetermined condition, the required power generation amount can be achieved, and power generation (operation) can be performed as an efficient operating point. It is possible to minimize the fuel consumption of the generator driving engine while maintaining the amount and ensuring the power performance and the like and suppressing the deterioration of the battery.

【0011】請求項4に記載の発明では、前記発電機駆
動用エンジンの排気通路に介装される排気浄化触媒の温
度が設定温度以下の場合に、前記発電機駆動用エンジン
の回転速度及び前記発電機側で制御される因子の制御値
が、要求発電量を達成でき、かつ、前記発電機駆動用エ
ンジンの排気温度を高めることができる点に変更される
ようにした。
According to a fourth aspect of the present invention, when the temperature of the exhaust purification catalyst interposed in the exhaust passage of the generator driving engine is equal to or lower than a set temperature, the rotation speed of the generator driving engine and the rotation speed of the generator driving engine are controlled. The control value of the factor controlled on the generator side is changed so that the required power generation amount can be achieved and the exhaust temperature of the generator driving engine can be increased.

【0012】かかる構成とすれば、例えば、触媒温度が
低い(触媒が活性状態でない)場合には、発電機及び発
電機駆動用エンジンの運転点(発電機側の制御因子の制
御値及び発電機駆動用エンジンの回転速度)を、要求発
電量を達成でき、かつ、排気温度を高めることができる
運転点として発電(運転)を行なわせることができるの
で、要求発電量をできる限り維持して動力性能の確保や
バッテリの劣化等を抑制しつつ、最大限触媒の早期活性
化を図ることができ延いては排気性能を向上させること
ができる。
With this configuration, for example, when the catalyst temperature is low (the catalyst is not active), the operating points of the generator and the generator driving engine (the control values of the control factors on the generator side and the generator (The rotational speed of the driving engine) can be set as an operating point at which the required power generation can be achieved and the exhaust gas temperature can be increased, so that power generation (operation) can be performed. The catalyst can be activated as early as possible at the maximum while ensuring the performance and suppressing the deterioration of the battery, and the exhaust performance can be improved.

【0013】請求項5に記載の発明では、前記発電機駆
動用エンジンの排気通路に介装される排気浄化触媒の温
度と、前記設定温度と、の偏差が大きいほど、前記発電
機駆動用エンジンの回転速度及び前記発電機側で制御さ
れる因子の制御値が、前記発電機駆動用エンジンの排気
温度をより高めることができる点に変更されるようにし
た。
According to the present invention, the larger the deviation between the temperature of the exhaust gas purification catalyst interposed in the exhaust passage of the engine for driving the generator and the set temperature, the larger the engine for driving the generator. And the control values of the factors controlled on the generator side are changed so that the exhaust temperature of the generator driving engine can be further increased.

【0014】かかる構成とすれば、前記発電機駆動用エ
ンジンの排気通路に介装される排気浄化触媒の温度と、
前記設定温度と、の偏差が大きい場合は、できるだけ排
気温度を高めて早期活性化を図れると共に、前記偏差が
小さくなれば、それに連れて排気温度を低下させて効率
の良い運転点に変更等することができるので、触媒の早
期活性化と、燃費低減等と、の両立を図ること等が可能
となる。
With this configuration, the temperature of the exhaust purification catalyst interposed in the exhaust passage of the engine for driving the generator,
When the deviation from the set temperature is large, the exhaust gas temperature can be raised as much as possible to achieve early activation, and when the deviation becomes small, the exhaust gas temperature is decreased accordingly and the operating point is changed to an efficient operating point. Therefore, it is possible to achieve both early activation of the catalyst and reduction of fuel efficiency.

【0015】請求項6に記載の発明では、前記各部の温
度が、前記発電機駆動用エンジンの始動後経過時間に基
づいて推定されるようにした。かかる構成とすれば、上
記の作用効果に加えて、各部の温度をセンサ等により検
出しなくて済むので、構成の簡略化や演算処理の簡略化
が図れ延いてはコスト低減等を促進することができる。
In the invention described in claim 6, the temperature of each section is estimated based on the elapsed time after the start of the generator driving engine. With such a configuration, in addition to the above-described functions and effects, it is not necessary to detect the temperature of each unit with a sensor or the like, so that simplification of the configuration and simplification of arithmetic processing can be achieved, thereby promoting cost reduction and the like. Can be.

【0016】請求項7に記載の発明では、前記発電機駆
動用エンジンの始動後経過時間が短いほど、前記発電機
駆動用エンジンの回転速度及び前記発電機側で制御され
る因子の制御値が、前記発電機駆動用エンジンの排気温
度をより高めることができる点に変更されるようにし
た。かかる構成とすれば、前記発電機駆動用エンジンの
始動後経過時間と、排気浄化触媒の温度と、の間の相関
関係を利用することで、触媒温度をセンサ等により検出
しなくて済むので、構成の簡略化や演算処理の簡略化が
図れ延いてはコスト低減等を促進することができると共
に、始動後経過時間が短く触媒の活性度合いが低いとき
には、できるだけ排気温度を高めて早期活性化を図れる
と共に、始動後経過時間の進行に伴い触媒の活性度合い
が進むに連れて排気温度を低下させて効率の良い運転点
に変更等することができるので、簡単かつ安価な構成で
ありながら、触媒の早期活性化と、燃費低減等と、の両
立を図ることが可能となる。
According to the present invention, as the elapsed time after the start of the generator driving engine is shorter, the rotation speed of the generator driving engine and the control value of the factor controlled on the generator side are reduced. The exhaust gas temperature of the generator driving engine can be further increased. With such a configuration, by utilizing the correlation between the elapsed time after the start of the generator driving engine and the temperature of the exhaust purification catalyst, the catalyst temperature does not have to be detected by a sensor or the like. By simplifying the configuration and arithmetic processing, cost reduction can be promoted, and when the elapsed time after startup is short and the degree of activity of the catalyst is low, the exhaust gas temperature is raised as much as possible to achieve early activation. In addition to the simple and inexpensive configuration, the catalyst temperature can be changed to an efficient operating point by lowering the exhaust gas temperature as the degree of activity of the catalyst progresses with the progress of the elapsed time after the start. Early activation and reduction of fuel consumption can be achieved at the same time.

【0017】請求項8に記載の発明では、前記発電機駆
動用エンジンの回転速度を高めることで、前記発電機駆
動用エンジンの排気温度を高めるようにした。かかる構
成とすれば、発電機駆動用エンジンの回転速度を高め、
発電機側で制御される因子の制御値を下げることで、同
一発電量でも前記発電機駆動用エンジンの排気温度を高
めることができるという特性を利用して、簡単な構成で
且つ高精度に、要求発電量を維持しながら排気温度を高
めることが可能となる。
In the invention described in claim 8, the exhaust temperature of the generator driving engine is increased by increasing the rotation speed of the generator driving engine. With such a configuration, the rotation speed of the generator driving engine is increased,
By lowering the control value of the factor controlled on the generator side, the characteristic that the exhaust temperature of the generator driving engine can be increased even with the same power generation amount, with a simple configuration and high accuracy, It is possible to increase the exhaust gas temperature while maintaining the required power generation amount.

【0018】請求項9に記載の発明では、前記各部の温
度が、エンジンルーム内に配設された所定の部品の温度
を含むようにした。かかる構成とすれば、発電機及び発
電機駆動用エンジンの運転点(発電機側の制御因子の制
御値及び発電機駆動用エンジンの回転速度)を、例え
ば、基本的には要求発電量を達成でき、かつ、効率の良
い運転点として発電(運転)を行なわせるようにする一
方で、例えば、エンジンルーム内の部品温度が高く部品
の機能劣化等が生じる惧れのある条件下では、発電量
(出力)をできる限り要求発電量(要求出力)に維持し
ながら、運転点を、エンジンルーム内の部品温度に応じ
たより適正な運転点に変更する制御を行なうことができ
るので、要求発電量をできる限り維持しつつ、エンジン
ルーム内の部品の機能劣化等を抑制すること等が可能と
なる。
According to the ninth aspect of the present invention, the temperature of each part includes a temperature of a predetermined component disposed in the engine room. With this configuration, the operating point of the generator and the generator driving engine (the control value of the control factor on the generator side and the rotation speed of the generator driving engine), for example, basically achieves the required power generation. While power generation (operation) is performed as a possible and efficient operating point, for example, under conditions where the temperature of parts in the engine room is high and there is a possibility that functional deterioration of parts may occur, the amount of power generation (Output) can be controlled to change the operating point to a more appropriate operating point according to the component temperature in the engine room while maintaining the required power generation (required output) as much as possible. While maintaining as much as possible, it is possible to suppress the functional deterioration and the like of the components in the engine room.

【0019】請求項10に記載の発明では、前記エンジン
ルーム内に配設された所定の部品の温度が設定温度を越
えた場合に、前記発電機駆動用エンジンの回転速度及び
前記発電機側で制御される因子の制御値が、要求発電量
を達成でき、かつ、前記発電機駆動用エンジンの排気温
度を下げることができる点に変更されるようにした。か
かる構成とすれば、発電機及び発電機駆動用エンジンの
運転点を、例えば、基本的には要求発電量を達成でき、
かつ、効率の良い運転点として発電(運転)を行なわせ
るようにする一方で、エンジンルーム内の部品温度が高
く部品の機能劣化等が生じる惧れのある条件下では、排
気温度とエンジンルーム内温度との相関関係に基づい
て、発電量(出力)をできる限り要求発電量(要求出
力)に維持しながら排気温度を下げるようにしたので、
エンジンルーム内の部品温度を適正な温度に維持するこ
とが可能となる。従って、要求発電量をできる限り維持
しつつ、エンジンルーム内の部品の機能劣化等を抑制す
ること等が可能となる。
According to the tenth aspect of the present invention, when the temperature of a predetermined component disposed in the engine room exceeds a set temperature, the rotational speed of the generator driving engine and the rotational speed of the generator are controlled. The control value of the controlled factor is changed so that the required power generation amount can be achieved and the exhaust temperature of the generator driving engine can be reduced. With such a configuration, the operating point of the generator and the engine for driving the generator, for example, can basically achieve the required power generation amount,
In addition, while power generation (operation) is performed as an efficient operating point, under conditions where the temperature of parts in the engine room is high and there is a risk of functional deterioration of the parts, etc. Based on the correlation with the temperature, the exhaust gas temperature was reduced while maintaining the required power generation (required output) as much as possible.
It is possible to maintain the temperature of parts in the engine room at an appropriate temperature. Therefore, it is possible to suppress the functional deterioration of components in the engine room and the like while maintaining the required power generation amount as much as possible.

【0020】請求項11に記載の発明では、前記エンジン
ルーム内に配設された所定の部品の温度が設定温度を越
え、前記発電機駆動用エンジンの回転速度及び前記発電
機側で制御される因子の制御値が、要求発電量を達成で
き、かつ、前記発電機駆動用エンジンの排気温度を下げ
ることができる点に変更された後でも、前記エンジンル
ーム内に配設された所定の部品が設定温度以下にならな
い場合には、前記エンジンルーム内に配設された所定の
部品の温度が設定温度以下になるまで、前記発電機駆動
用エンジンの回転速度及び前記発電機側で制御される因
子の制御値を、同一発電量で前記発電機駆動用エンジン
の排気温度を最大限下げることができる点を通過させつ
つ発電量を低下させる方向に変更するようにした。
According to the eleventh aspect of the present invention, the temperature of a predetermined component disposed in the engine room exceeds a set temperature, and is controlled by the rotation speed of the generator driving engine and the generator side. Even after the control value of the factor has been changed to a point at which the required power generation amount can be achieved, and the exhaust temperature of the generator driving engine can be lowered, the predetermined parts disposed in the engine room are If the temperature does not fall below the set temperature, the rotation speed of the generator driving engine and the factors controlled on the generator side until the temperature of the predetermined components disposed in the engine room becomes below the set temperature. Is changed in such a direction that the power generation amount is reduced while passing through a point where the exhaust gas temperature of the generator driving engine can be reduced to the maximum at the same power generation amount.

【0021】かかる構成とすれば、前記エンジンルーム
内に配設された所定の部品の温度が設定温度を越えた場
合は、まずは、要求発電量を維持しつつ、エンジンルー
ム内温度を低下方向に運転点を変更すると共に、この運
転点で運転しても排気温度の低下が十分でなくエンジン
ルーム内部品の温度が設定温度以下にならない場合に
は、例えば同一発電量で最低排気温度となる運転点(冷
却運転点)を通過させつつ発電量を低下させるようにし
たので、最大限要求発電量(延いては動力性能)を維持
させながら、前記発電機駆動用エンジンの排気温度延い
てはエンジンルーム内部品温度を最も効果的に低下させ
ることができる。
With this configuration, when the temperature of predetermined components disposed in the engine room exceeds a set temperature, first, the temperature in the engine room is reduced in a decreasing direction while maintaining the required power generation amount. In addition to changing the operating point, if the exhaust temperature is not sufficiently lowered even if the operation is performed at this operating point and the temperature of the components in the engine room does not become lower than the set temperature, for example, the operation in which the lowest exhaust temperature is reached with the same power generation amount Point (cooling operation point), the power generation amount is reduced, so that the exhaust temperature of the generator driving engine and the engine temperature are maintained while maintaining the maximum required power generation amount (and hence power performance). The temperature of parts in the room can be reduced most effectively.

【0022】[0022]

【発明の効果】請求項1、請求項2に記載の発明によれ
ば、発電機及び発電機駆動用エンジンの運転点(発電機
側の制御因子の制御値及び発電機駆動用エンジンの回転
速度)を、例えば、基本的には要求発電量を達成でき、
かつ、効率の良い運転点として発電を行なわせるように
する一方で、例えば、触媒温度が低い(活性状態でな
い)或いはエンジンルーム内の部品温度が高い等の各部
の温度条件によっては、発電量をできる限り要求発電量
に維持しながら運転点を、各部の温度条件に応じたより
適正な運転点に変更する制御を行なうことができるの
で、要求発電量をできる限り維持しつつ、各部の温度条
件をできる限り満足させること等が可能となる。従っ
て、要求発電量をできる限り維持して動力性能、騒音・
振動性能の確保やバッテリの劣化等を抑制しつつ、例え
ば触媒早期活性化を図って排気性能を向上でき、或いは
各部品の保護及び劣化等を抑制することができる。
According to the first and second aspects of the present invention, the operating point of the generator and the generator driving engine (the control value of the control factor on the generator side and the rotation speed of the generator driving engine) ), For example, can basically achieve the required power generation,
In addition, while the power generation is performed as an efficient operating point, the power generation amount may be reduced depending on the temperature conditions of each part such as a low catalyst temperature (not in an active state) or a high component temperature in the engine room. Since it is possible to perform control to change the operating point to a more appropriate operating point according to the temperature condition of each part while maintaining the required power generation as much as possible, the temperature condition of each part can be controlled while maintaining the required power generation as much as possible. It is possible to satisfy as much as possible. Therefore, maintaining the required power generation as much as possible,
The exhaust performance can be improved by, for example, early activation of the catalyst, or the protection and deterioration of each component can be suppressed while securing the vibration performance and suppressing the deterioration of the battery.

【0023】請求項3に記載の発明によれば、発電機及
び発電機駆動用エンジンの運転点(発電機側の制御因子
の制御値及び発電機駆動用エンジンの回転速度)を、前
記各部の温度条件が所定の条件を満たしている間は、要
求発電量を達成でき、かつ、効率の良い運転点として、
発電を行なわせることができるので、例えば、要求発電
量を維持して動力性能等の確保やバッテリの劣化等を抑
制しつつ、発電機駆動用エンジンの燃料消費を最小とす
ることができる。
According to the third aspect of the present invention, the operating point of the generator and the generator driving engine (the control value of the control factor on the generator side and the rotation speed of the generator driving engine) are set to the respective parts. While the temperature condition satisfies the predetermined condition, the required power generation can be achieved, and as an efficient operating point,
Since power generation can be performed, for example, it is possible to minimize the fuel consumption of the generator driving engine while maintaining the required power generation amount, securing power performance and the like, and suppressing battery deterioration and the like.

【0024】請求項4に記載の発明によれば、例えば、
触媒温度が低い(触媒が活性状態でない)場合には、発
電機及び発電機駆動用エンジンの運転点(発電機側の制
御因子の制御値及び発電機駆動用エンジンの回転速度)
を、要求発電量を達成でき、かつ、排気温度を高めるこ
とができる運転点として発電を行なわせることができる
ので、要求発電量をできる限り維持して動力性能の確保
やバッテリの劣化等を抑制しつつ、最大限触媒の早期活
性化を図ることができ延いては排気性能を向上させるこ
とができる。
According to the invention described in claim 4, for example,
When the catalyst temperature is low (the catalyst is not active), the operating point of the generator and the generator driving engine (control values of the control factors on the generator side and the rotation speed of the generator driving engine)
Can be generated as an operating point that can achieve the required power generation and raise the exhaust gas temperature, so that the required power generation can be maintained as much as possible to ensure power performance and suppress battery deterioration, etc. In addition, early activation of the catalyst can be achieved as much as possible, so that exhaust performance can be improved.

【0025】請求項5に記載の発明によれば、前記発電
機駆動用エンジンの排気通路に介装される排気浄化触媒
の温度と、前記設定温度と、の偏差が大きい場合は、で
きるだけ排気温度を高めて早期活性化を図れると共に、
前記偏差が小さくなれば、それに連れて排気温度を低下
させて効率の良い運転点に変更等することができるの
で、触媒の早期活性化と、燃費低減等と、の両立を図る
こと等が可能となる。
According to the fifth aspect of the present invention, when the deviation between the temperature of the exhaust gas purification catalyst provided in the exhaust passage of the generator driving engine and the set temperature is large, the exhaust gas temperature is as low as possible. To be activated early by increasing
If the deviation becomes small, the exhaust gas temperature can be lowered and the operating point can be changed to an efficient operating point, so that it is possible to achieve both early activation of the catalyst and reduction of fuel consumption. Becomes

【0026】請求項6に記載の発明によれば、上記の作
用効果に加えて、各部の温度をセンサ等により検出しな
くて済むので、構成の簡略化や演算処理の簡略化が図れ
延いてはコスト低減等を促進することができる。請求項
7に記載の発明によれば、前記発電機駆動用エンジンの
始動後経過時間と、排気浄化触媒の温度と、の間の相関
関係を利用することで、触媒温度をセンサ等により検出
しなくて済むので、構成の簡略化や演算処理の簡略化が
図れ延いてはコスト低減等を促進することができると共
に、始動後経過時間が短く触媒の活性度合いが低いとき
には、できるだけ排気温度を高めて早期活性化を図れる
と共に、始動後経過時間の進行に伴い触媒の活性度合い
が進むに連れて排気温度を低下させて効率の良い運転点
に変更等することができるので、簡単かつ安価な構成で
ありながら、触媒の早期活性化と、燃費低減等と、の両
立等を図ることができる。
According to the sixth aspect of the present invention, in addition to the above-mentioned effects, the temperature of each part does not have to be detected by a sensor or the like, so that the configuration can be simplified and the arithmetic processing can be simplified. Can promote cost reduction and the like. According to the invention described in claim 7, the catalyst temperature is detected by a sensor or the like by utilizing the correlation between the elapsed time after the start of the generator driving engine and the temperature of the exhaust purification catalyst. Since it is not necessary, the structure can be simplified and the arithmetic processing can be simplified, which can promote cost reduction, etc., and when the elapsed time after startup is short and the degree of activity of the catalyst is low, the exhaust gas temperature should be raised as much as possible. A simple and inexpensive configuration because the exhaust gas temperature can be lowered and the operating point can be changed to an efficient operating point as the degree of activation of the catalyst progresses with the progress of the elapsed time after start-up. However, it is possible to achieve both early activation of the catalyst and reduction of fuel consumption.

【0027】請求項8に記載の発明によれば、発電機駆
動用エンジンの回転速度を高め、発電機側で制御される
因子の制御値を下げることで、同一発電量でも前記発電
機駆動用エンジンの排気温度を高めることができるとい
う特性を利用して、簡単な構成で且つ高精度に、要求発
電量を維持しながら排気温度を高めることができる。請
求項9に記載の発明によれば、発電機及び発電機駆動用
エンジンの運転点(発電機側の制御因子の制御値及び発
電機駆動用エンジンの回転速度)を、例えば、基本的に
は要求発電量を達成でき、かつ、効率の良い運転点とし
て発電を行なわせるようにする一方で、例えば、エンジ
ンルーム内の部品温度が高く部品の機能劣化等が生じる
惧れのある条件下では、発電量をできる限り要求発電量
に維持しながら、運転点を、エンジンルーム内の部品温
度に応じたより適正な運転点に変更する制御を行なうこ
とができるので、要求発電量をできる限り維持しつつ、
エンジンルーム内の部品の機能劣化等を抑制すること等
ができる。
According to the eighth aspect of the present invention, the rotational speed of the generator driving engine is increased and the control value of the factor controlled on the generator side is reduced, so that the generator driving engine can be driven at the same power generation amount. By utilizing the characteristic that the exhaust temperature of the engine can be increased, the exhaust temperature can be increased with a simple configuration and with high accuracy while maintaining the required power generation amount. According to the ninth aspect of the present invention, the operating point of the generator and the generator driving engine (the control value of the control factor on the generator side and the rotation speed of the generator driving engine) are basically set, for example, While it is possible to achieve the required power generation amount and to generate power as an efficient operating point, for example, under conditions where the temperature of parts in the engine room is high and functional deterioration of parts may occur, It is possible to perform control to change the operating point to a more appropriate operating point according to the temperature of the components in the engine room while maintaining the required power generation as much as possible. ,
It is possible to suppress functional deterioration of components in the engine room, and the like.

【0028】請求項10に記載の発明によれば、発電機及
び発電機駆動用エンジンの運転点を、例えば、基本的に
は要求発電量を達成でき、かつ、効率の良い運転点とし
て発電を行なわせるようにする一方で、エンジンルーム
内の部品温度が高く部品の機能劣化等が生じる惧れのあ
る条件下では、排気温度とエンジンルーム内温度との相
関関係に基づいて、発電量をできる限り要求発電量に維
持しながら排気温度を下げるようにしたので、エンジン
ルーム内の部品温度を適正な温度に維持することが可能
となる。従って、要求発電量をできる限り維持しつつ、
エンジンルーム内の部品の機能劣化等を抑制すること等
が可能となる。
According to the tenth aspect of the present invention, the operating point of the generator and the generator driving engine is, for example, basically the required power generation amount can be achieved and the efficient operating point is used as the operating point. On the other hand, under conditions where the temperature of the components in the engine room is high and there is a risk of causing functional deterioration of the components, the amount of power generation can be made based on the correlation between the exhaust temperature and the temperature in the engine room. Since the exhaust gas temperature is reduced while maintaining the required power generation amount as much as possible, it is possible to maintain the temperature of the components in the engine room at an appropriate temperature. Therefore, while maintaining the required power generation as much as possible,
It is possible to suppress functional deterioration and the like of components in the engine room.

【0029】請求項11に記載の発明によれば、エンジン
ルーム内に配設された所定の部品の温度が設定温度を越
えた場合は、まずは、要求発電量を維持しつつ、エンジ
ンルーム内温度を低下方向に運転点を変更すると共に、
この運転点で運転しても排気温度の低下が十分でなくエ
ンジンルーム内部品の温度が設定温度以下にならない場
合には、例えば同一発電量で最低排気温度となる運転点
(冷却運転点)を通過させつつ発電量を低下させるよう
にしたので、最大限要求発電量(延いては動力性能)を
維持しながら、前記発電機駆動用エンジンの排気温度延
いてはエンジンルーム内部品温度を最も効果的に低下さ
せることができる。
According to the eleventh aspect of the present invention, when the temperature of the predetermined components disposed in the engine room exceeds the set temperature, first, while maintaining the required power generation, the engine room temperature is maintained. Change the operating point in the downward direction,
If the exhaust temperature is not sufficiently lowered even when operating at this operating point and the temperature of the components in the engine room does not become lower than the set temperature, for example, the operating point (cooling operating point) at which the lowest exhaust temperature is reached at the same power generation amount is set. Since the amount of power generation is reduced while passing through, the exhaust gas temperature of the engine for driving the generator and the temperature of parts in the engine room are most effective while maintaining the maximum required power generation (and power performance). Can be reduced.

【0030】[0030]

【発明の実施の形態】以下、本発明の一実施形態を、添
付の図面に基づいて説明する。図2は、本発明の第1の
実施形態にかかるシリーズハイブリッド電気自動車(S
HEV)のシステム構成を示す。第1の実施形態にかか
るSHEVは、図2に示すように、発電機駆動用エンジ
ン10、電力供給に用いる発電機11、エネルギを蓄積
及び供給するバッテリ12、車両の駆動及び減速時のエ
ネルギ回生に用いられる車両駆動用モータ13、車両駆
動用モータ13の出力を駆動輪15に伝える変速機、減
速機等の駆動系14及びこれらを制御する制御装置16
から構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 2 shows a series hybrid electric vehicle (S) according to the first embodiment of the present invention.
1 shows the system configuration of HEV). As shown in FIG. 2, the SHEV according to the first embodiment includes a generator driving engine 10, a generator 11 used for power supply, a battery 12 for storing and supplying energy, and energy regeneration during driving and deceleration of the vehicle. Driving motor 13 used in the vehicle, a transmission system 14 for transmitting the output of the vehicle driving motor 13 to driving wheels 15, a reduction gear and the like, and a control device 16 for controlling these
Consists of

【0031】車両駆動用モータ13は、バッテリ12及
び発電機11のどちらか一方もしくは両者から電力の供
給を受ける。通常、車両駆動用モータ13の要求出力分
のエネルギがバッテリ12にある場合、即ち、バッテリ
12が充分な充電状態にある場合には、車両駆動用モー
タ13はバッテリ12のエネルギで駆動し、発電機駆動
用エンジン10及び発電機11は駆動しない。
The vehicle drive motor 13 receives power supply from one or both of the battery 12 and the generator 11. Normally, when the energy corresponding to the required output of the vehicle drive motor 13 is in the battery 12, that is, when the battery 12 is in a sufficiently charged state, the vehicle drive motor 13 is driven by the energy of the battery 12 to generate power. The engine 10 and the generator 11 are not driven.

【0032】バッテリ12のエネルギが、車両駆動用モ
ータ13の要求出力を満たさない出力となった場合、若
しくは所定の設定充電量を下回った場合、発電機駆動用
エンジン10を駆動し、これに機械的に直結若しくは変
速機またはベルトなどを介して取り付けられた発電機1
1により発電した電力を、車両駆動用モータ13への駆
動エネルギ供給及びバッテリ12の充電に用いる。
When the energy of the battery 12 does not satisfy the required output of the vehicle drive motor 13 or falls below a predetermined charge amount, the generator drive engine 10 is driven, and the Generator 1 directly connected via a transmission or a transmission or a belt
1 is used for supplying drive energy to the vehicle drive motor 13 and charging the battery 12.

【0033】そして、再びバッテリ12の充電量が車両
駆動用モータ13の要求出力を満たすようになった場
合、若しくはバッテリ12が所定の充電量に達した場合
には、発電機駆動用エンジン10を停止させ、発電機1
1による発電を停止する。制御装置16は、車両駆動用
モータ13の入・出力、バッテリ12の充・放電、発電
機11の出力、及び発電機駆動用エンジン10の始動・
停止、バッテリの入・出力リレー17のON−OFF、
発電機駆動用エンジン10に取り付けられ吸入空気量を
制御するスロットルバルブ等の制御を行う。
When the charged amount of the battery 12 satisfies the required output of the vehicle drive motor 13 again, or when the battery 12 reaches a predetermined charged amount, the generator driving engine 10 is turned off. Stop the generator 1
1 to stop the power generation. The control device 16 controls input / output of the vehicle drive motor 13, charging / discharging of the battery 12, output of the generator 11, and starting / starting of the generator drive engine 10.
Stop, ON / OFF of battery input / output relay 17,
It controls a throttle valve and the like that is attached to the generator driving engine 10 and controls the amount of intake air.

【0034】発電機駆動用エンジン10には、水温セン
サ18が取り付けられており、この信号は制御装置16
に読み込まれるようになっている。エンジン10の下流
の排気管には排気浄化システムである触媒19が設置さ
れており、この触媒19には温度センサ20が取り付け
られており、この温度センサ20の検出信号は制御装置
16に読み込まれるようになっている。
A water temperature sensor 18 is attached to the generator driving engine 10, and this signal is transmitted to a control device 16.
Is to be read. A catalyst 19 serving as an exhaust gas purification system is installed in an exhaust pipe downstream of the engine 10, and a temperature sensor 20 is attached to the catalyst 19, and a detection signal of the temperature sensor 20 is read into the control device 16. It has become.

【0035】図3(A)は、エンジン回転(エンジン回
転数或いはエンジン回転速度;以下、同様)とエンジン
負荷{即ち、発電機11の駆動反力(発電機駆動トル
ク)であり、発電量、出力電流値、端子電圧等に応じて
変化する。}の運転MAP上に等出力線及び等吸入空気
流量線を示したものであり、図3(B)は同一出力を維
持した時のエンジン回転数と吸入空気流量との関係に置
き換えたものである。ここに示したように、同一出力
(延いては同一発電量)を維持した場合、エンジン回転
数を変えても吸入空気流量はほぼ変わらず、同一出力
(延いては同一発電量)を維持しようとした場合には、
吸入空気流量は一定となることがわかる。
FIG. 3A shows the engine speed (the engine speed or the engine speed; the same applies hereinafter) and the engine load 駆 動, ie, the driving reaction force (generator driving torque) of the generator 11. It changes according to the output current value, terminal voltage, and the like. FIG. 3B shows an equal output line and an equal intake air flow line on the operation map}, and FIG. 3B is replaced with a relationship between the engine speed and the intake air flow when the same output is maintained. is there. As shown here, when the same output (and hence the same amount of power generation) is maintained, the intake air flow rate does not substantially change even when the engine speed is changed, and the same output (and hence the same amount of power generation) will be maintained. If
It can be seen that the intake air flow rate is constant.

【0036】図4(A)は、エンジン回転とエンジン負
荷(発電機11の駆動反力)の運転MAP上に等出力線
及び等エンジン排気温度線を示したものであり、図4
(B)は同一出力(延いては同一発電量)を維持した時
のエンジン回転数と排気温度との関係に置き換えたもの
である。ここに示したように、同一出力(延いては同一
発電量)に維持した場合、エンジン回転数を増加させる
と排気温度は上昇する傾向となるが、あるエンジン回転
数以下では回転数が減少するに従い逆に排気温度が上昇
する領域が存在することがわかる。
FIG. 4A shows an equal output line and an equal engine exhaust temperature line on the operation MAP of the engine rotation and the engine load (the driving reaction force of the generator 11).
(B) replaces the relationship between the engine speed and the exhaust temperature when the same output (and hence the same amount of power generation) is maintained. As shown here, when the engine output is maintained at the same output (and thus the same power generation amount), the exhaust temperature tends to increase when the engine speed is increased, but the engine speed decreases when the engine speed is lower than a certain engine speed. It can be seen that there is a region where the exhaust gas temperature rises in reverse.

【0037】図5(A)は、エンジン回転とエンジン負
荷(発電機11の駆動反力)の運転MAP上に等出力線
及び等エンジン燃費率線を示したものであり、図5
(B)は同一出力(延いては同一発電量)を維持した時
のエンジン回転数と燃費率との関係に置き換えたもので
ある。かかる図5(A)からもわかるように、一般的に
エンジンの燃費の良い点は、エンジン回転数2000〜
4000rpmの負荷の高い側に設定されている。
FIG. 5 (A) shows an equal output line and an equal engine fuel efficiency line on the operation MAP of the engine rotation and the engine load (the driving reaction force of the generator 11).
(B) replaces the relationship between the engine speed and the fuel efficiency when the same output (and hence the same amount of power generation) is maintained. As can be seen from FIG. 5A, generally, the good fuel economy of the engine is due to the fact that the engine speed is 2000 to 2000
It is set on the high load side of 4000 rpm.

【0038】図5(B)のように整理すると、同一出力
(延いては同一発電量)を維持しながらエンジン回転数
を増加させる(同一出力を維持するには、エンジン回転
数を増加させるに従いエンジン負荷を減少させることに
なる)と燃費は悪くなる傾向になることがわかる。な
お、ある回転数以下(ある負荷以上)になると燃費は悪
化する傾向となる領域が存在することもわかる。
When arranged as shown in FIG. 5B, the engine speed is increased while maintaining the same output (and hence the same amount of power generation). It will be understood that when the engine load is reduced, the fuel efficiency tends to deteriorate. It can also be seen that there is a region where the fuel efficiency tends to deteriorate when the rotational speed is equal to or less than a certain rotational speed (more than a certain load).

【0039】図6は、発電機11及び発電機駆動用エン
ジン10の基本運転点を示したものである。基本的に排
気や熱等による条件制約がない場合には、発電機11及
び発電機駆動用エンジン10の運転は、効率(燃費)の
良い点(APU基本運転点)で運転を行うようになって
いる。従って、出力毎の運転点(APU基本運転点)を
連ねると、図5において太実線で示されるような運転線
がMAP上に描け、発電出力要求値(要求発電量)に応
じて、この線上の点から、発電機駆動用エンジン10の
エンジン回転数、及びエンジン負荷{即ち、発電機11
の駆動反力延いては出力(発電量)に応じた電流値、端
子電圧等)}の指令値(制御値)を決めることができ
る。
FIG. 6 shows the basic operating points of the generator 11 and the generator driving engine 10. Basically, when there is no condition restriction due to exhaust gas, heat, etc., the operation of the generator 11 and the generator driving engine 10 is performed at a point of high efficiency (fuel efficiency) (APU basic operating point). ing. Therefore, when the operating points for each output (APU basic operating point) are linked, an operating line as shown by a thick solid line in FIG. 5 can be drawn on the MAP, and the operating line on the MAP can be drawn according to the required power generation output value (the required power generation amount). In view of the above, the engine speed of the generator driving engine 10 and the engine load {, that is, the generator 11
And the command value (control value) of the current reaction and the terminal voltage according to the output (power generation amount).

【0040】図7は、触媒19が排気浄化能力の低い低
温時(不活性時)の発電機11及び発電機駆動用エンジ
ン10の運転点を示したものである。要求発電出力が定
まれば、図6に示した基本運転線上におけるAPU基本
運転点は一義的に定めることができるが、触媒19の温
度が低い場合(低活性の場合)には、排気ガスが浄化さ
れず排気ガス濃度が高いため排気有害成分が多く排出さ
れるため、できるだけ早く触媒19の温度を上昇させた
い要求がある。
FIG. 7 shows the operating points of the generator 11 and the generator driving engine 10 when the catalyst 19 has a low exhaust gas purification capacity and a low temperature (inactive). If the required power generation output is determined, the APU basic operating point on the basic operating line shown in FIG. 6 can be uniquely determined, but when the temperature of the catalyst 19 is low (low activity), the exhaust gas Since the exhaust gas is not purified and the exhaust gas concentration is high, a large amount of exhaust harmful components are emitted. Therefore, there is a demand to raise the temperature of the catalyst 19 as soon as possible.

【0041】なお、早期に触媒19の温度を上昇させる
方法として、既述したような発電出力(エンジン出力)
を増加させる方法があるが、発電出力(エンジン出力)
はバッテリの充電状態等の情報から本来演算される(定
められる)べきものであるから、該バッテリの充電状態
等の情報に拘わらず無闇に発電出力(エンジン出力)を
変化させることは、バッテリの劣化や他のユニットヘ悪
影響を与える惧れがあるため、回避すべきである。
As a method of raising the temperature of the catalyst 19 at an early stage, the power generation output (engine output) as described above is used.
There is a way to increase the power generation output (engine output)
Is to be originally calculated (determined) from information such as the state of charge of the battery. Therefore, regardless of the information such as the state of charge of the battery, it is impossible to change the power generation output (engine output) indiscriminately. It should be avoided because it may cause deterioration and adverse effects on other units.

【0042】このため、本実施形態では、図4に示した
ような発電機駆動用エンジン10の排気温度特性に着目
し、即ち、エンジン回転数を増加しエンジン負荷(発電
機11の駆動トルク延いては出力電流値、端子電圧等)
を低下させて同一出力(同一発電量)を維持しながらで
も排気温度を高めることができるという特性を利用し
て、触媒19の温度が良好に浄化性能を発揮するように
なる設定温度(活性化温度)以下の場合には、図7に示
すように、その設定温度と現在の触媒温度との偏差(或
いは比など)に応じて、基本運転点Xを、等出力線上の
X’のような運転点に移行させるようにする(偏差が大
きくなるに従って、エンジン回転速度をより高めるよう
に移行させる)。
Therefore, in the present embodiment, attention is paid to the exhaust gas temperature characteristic of the generator driving engine 10 as shown in FIG. 4, that is, the engine speed is increased and the engine load (driving torque extension of the generator 11) is increased. Output current value, terminal voltage, etc.)
By using the characteristic that the exhaust gas temperature can be increased while maintaining the same output (same power generation amount) by lowering the catalyst temperature, the temperature of the catalyst 19 becomes higher than the set temperature (activation temperature) at which the catalyst 19 exhibits good purification performance. In the case below, as shown in FIG. 7, according to the deviation (or ratio or the like) between the set temperature and the current catalyst temperature, the basic operating point X is set to a value such as X ′ on the equal output line. The shift is made to the operating point (the shift is made to increase the engine rotation speed as the deviation increases).

【0043】これにより、発電要求出力(要求発電量)
を維持しながら、早期に触媒19を排気浄化温度(活性
化温度)まで上昇させることができ、以って早期に排気
浄化性能を向上させることが可能となる。そして、同じ
発電要求出力が継続し、X’で運転を続けていると、徐
々に触媒19の温度が上昇し、前記設定温度との偏差が
縮小されるので、それに従い運転点をX”へ移行させ、
更に触媒19の温度が上昇(前記偏差が縮小)したら、
それに従い運転点をX”からXに近づく運転点へと移行
させ、触媒19の温度が設定温度以上になれば、運転点
を基本運転点Xとなるように、本実施形態では、運転点
の制御を行うようになっている。
Thus, the required power generation output (required power generation)
, The catalyst 19 can be raised to the exhaust gas purification temperature (activation temperature) at an early stage, so that the exhaust gas purification performance can be improved at an early stage. Then, when the same power generation request output continues and the operation is continued at X ′, the temperature of the catalyst 19 gradually increases, and the deviation from the set temperature is reduced. Transition,
Further, when the temperature of the catalyst 19 rises (the deviation decreases),
In accordance with this, the operating point is shifted from X "to an operating point approaching X, and in the present embodiment, the operating point is set to the basic operating point X when the temperature of the catalyst 19 becomes equal to or higher than the set temperature. Control is performed.

【0044】ところで、シリーズハイブリッド電気自動
車(SHEV)には、車両駆動用モータ13、発電機1
1、発電機駆動用エンジン10、及びこれらを制御する
制御装置16や各種センサ等が備えられるが、レイアウ
ト的な問題から、これらのユニットが発電機駆動用エン
ジン10と同じ空間、例えばガソリンエンジン車で言う
エンジンルーム内に配設される場合もあり、高い雰囲気
温度に晒される状態となる惧れもある。
By the way, a series hybrid electric vehicle (SHEV) includes a vehicle drive motor 13 and a generator 1.
1, a generator driving engine 10, a control device 16 for controlling them, various sensors, etc. are provided. However, due to layout problems, these units are arranged in the same space as the generator driving engine 10, for example, a gasoline engine vehicle. In some cases, it may be disposed in an engine room, and may be exposed to a high ambient temperature.

【0045】制御装置16に用いられるマイコンや各種
センサ等は、機能保証温度があまり高くないので、これ
らの部品の温度を、機能保証温度以下に管理するように
しなければならない。エンジンルーム内の雰囲気温度
は、図9に示すように、エンジン排気温度との関係が深
く、両者はほぼ比例関係にある。従って、エンジン排気
温度を下げれば、エンジンルーム内温度を下げることが
でき、以って制御装置16に用いられるマイコンや各種
センサ等の温度を低下させることが可能となる。
Since the microcomputer and various sensors used in the control device 16 do not have a very high function guarantee temperature, the temperature of these components must be controlled to be equal to or lower than the function guarantee temperature. As shown in FIG. 9, the ambient temperature in the engine room has a deep relationship with the engine exhaust temperature, and the two are approximately proportional. Therefore, if the engine exhaust temperature is lowered, the temperature in the engine room can be lowered, and thus the temperature of the microcomputer and various sensors used in the control device 16 can be lowered.

【0046】ところで、エンジン運転領域において、図
4に示した同一出力時の最低排気温度点のエンジン回転
数と、図5に示した同一出力時の最高燃費点のエンジン
回転数と、は必ずしも一致しない。なお、図8は、基本
運転点である最高効率点(最高燃費点)のエンジン回転
数が、同一出力時の最低排気温度点のエンジン回転数よ
りも低い場合を示したものである。
In the engine operating range, the engine speed at the lowest exhaust temperature point at the same output shown in FIG. 4 does not always match the engine speed at the highest fuel efficiency point at the same output shown in FIG. do not do. FIG. 8 shows a case where the engine speed at the highest efficiency point (highest fuel efficiency point), which is the basic operating point, is lower than the engine speed at the lowest exhaust temperature point at the same output.

【0047】そこで、この図8のような特性の場合に、
本実施形態では、排気温度を効果的に下げるために、以
下のような制御を行なうようになっている。即ち、ある
発電要求出力が決まった場合、発電機11及び発電機駆
動用エンジン10の運転点は、基本運転点上のYに決ま
る。しかしながら、エンジンルーム内の温度が上昇し、
マイコン・センサ等の温度が所定の温度を超えた場合に
は、これらの温度を低下させるためにエンジンルーム内
温度を下げる必要がある。
Therefore, in the case of the characteristic shown in FIG.
In the present embodiment, the following control is performed to effectively reduce the exhaust gas temperature. That is, when a certain power generation request output is determined, the operating points of the generator 11 and the generator driving engine 10 are determined to be Y on the basic operating point. However, the temperature in the engine room rises,
When the temperature of the microcomputer / sensor or the like exceeds a predetermined temperature, it is necessary to lower the temperature in the engine room in order to lower these temperatures.

【0048】このような場合、基本運転線(最高燃費
点)に沿わせて運転点を移動させてエンジン出力(発電
出力)を下げることでエンジンルーム内温度を下げるこ
とが考えられる。しかし、かかる方法では、必ずしも、
効果的に排気温度を下げることができないので、排気温
度を十分に低下できないまま発電要求出力に対して大き
く未達となる惧れが高く、バッテリの過放電による劣化
や走行性に悪影響を与える等の惧れがある。
In such a case, it is conceivable to lower the engine room temperature by moving the operating point along the basic operating line (highest fuel efficiency point) to lower the engine output (power generation output). However, such a method does not necessarily
Since the exhaust gas temperature cannot be lowered effectively, there is a high possibility that the required output of power generation will not be sufficiently reached without sufficiently lowering the exhaust gas temperature. There is fear.

【0049】つまり、最低排気温度点のエンジン回転数
と、これと同一出力時の最高燃費点のエンジン回転数
と、が一致している場合は、基本運転線(最高燃費点)
に沿わせて運転点を移動させれば、同時に最低排気温度
点を通ることになるから最も効果的に排気温度を下げる
ことができるのであるが、既述したように、これら回転
数は必ずしも一致するものではないので、発電出力(エ
ンジン出力)を低下させた割りには、排気温度低下代を
稼げない場合があるのである。
In other words, if the engine speed at the lowest exhaust temperature point matches the engine speed at the highest fuel efficiency point at the same output, the basic operation line (highest fuel efficiency point)
If the operating point is moved along the range, the exhaust gas temperature can be reduced most effectively because it passes through the lowest exhaust gas temperature point at the same time. Therefore, there is a case where it is not possible to obtain a reduction in the exhaust gas temperature even if the power generation output (engine output) is reduced.

【0050】そこで、本実施形態では、図8のような特
性の場合には、基本運転点Yよりも若干エンジン回転数
を増してエンジン負荷(発電機負荷)を下げた同一出力
点である運転点Y’が、基本運転点Yと同一出力ながら
排気温度を低下させることができる運転点であるという
特性を利用し、温度制限がかかった場合には、まずは、
基本運転点Yを、運転点Y’に移行させる制御を行な
う。
Therefore, in the present embodiment, in the case of the characteristic as shown in FIG. 8, the operation at the same output point where the engine load (generator load) is reduced by slightly increasing the engine speed from the basic operating point Y is performed. Utilizing the characteristic that the point Y ′ is an operating point capable of lowering the exhaust gas temperature while having the same output as the basic operating point Y, when the temperature is restricted, first,
Control is performed to shift the basic operating point Y to the operating point Y '.

【0051】これにより、要求発電量を出力しつつ、エ
ンジンルーム内温度を低下方向に制御することが可能と
なる。そして、この運転点Y’で運転しても排気温度の
低下量が十分でない場合には、同一出力で最低排気温度
となる運転点を結んだ冷却運転点上においてエンジン出
力を低下させる(Y”へ移行させる)ようにする。
As a result, it is possible to control the temperature in the engine room in a decreasing direction while outputting the required power generation amount. If the decrease in exhaust gas temperature is not sufficient even at the operation point Y ', the engine output is reduced on the cooling operation point connecting the operation points having the same output and the lowest exhaust gas temperature (Y "). Shift to).

【0052】これにより、最大限要求発電量を維持しな
がら、エンジンの排気温度を最も効果的に低下させるこ
とができることになるのである。図10は、以上説明し
た本発明の考え方を取り入れた制御フローチャートであ
る。ここで、当該図10のフローチャートに従って、本
実施形態において行なわれる発電機11及びエンジン1
0の運転制御について、より詳細に説明する。
As a result, the exhaust gas temperature of the engine can be reduced most effectively while maintaining the maximum required power generation amount. FIG. 10 is a control flowchart incorporating the above-described concept of the present invention. Here, in accordance with the flowchart of FIG.
The operation control of 0 will be described in more detail.

【0053】STARTから始まり、まず、S101で
は、バッテリ12の充電容量SOC(残存容量)とバッ
テリ12の充電容量変化量△SOC等を読み込む。S1
02では、これらの情報から発電の必要性があるかどう
かを判断する。必要性がない場合は、リターンする(即
ち、図示しないメイン制御ルーチンヘ戻る)。発電の必
要ありと判断した場合は、S103へ進む。
Starting from START, first, in S101, the charged capacity SOC (remaining capacity) of the battery 12 and the charged capacity change amount 容量 SOC of the battery 12 are read. S1
In 02, it is determined from these information whether power generation is necessary. If there is no need, the process returns (ie, returns to the main control routine not shown). If it is determined that power generation is necessary, the process proceeds to S103.

【0054】S103では、発電機駆動用エンジン10
を始動させる。そして、S104では、SOCや△SO
C、車速等の状態より、発電要求量(要求発電量)P0
を決める。発電量の決め方は、従来と同様であって構わ
ない。S105では、予め制御装置16に設定してある
基本運転MAP(例えば、図5のマップ)を参照して、
発電要求量P0を達成できるエンジン回転数指令値N0
及び発電機負荷(エンジン負荷)T0を設定する(基本
運転点)。なお、発電機負荷(エンジン負荷)は、発電
機11の駆動反力に相当し、即ち要求発電量をエンジン
回転数N0で得るのに必要な発電機11の発電量制御因
子への指令値(制御値)(出力電流値や端子電圧等)に
相当するものである。
At S103, the generator driving engine 10
To start. Then, in S104, the SOC or the △ SO
C, the required power generation (required power generation) P0
Decide. The method of determining the power generation amount may be the same as the conventional method. In S105, referring to the basic operation MAP (for example, the map in FIG. 5) set in the control device 16 in advance,
Engine speed command value N0 that can achieve power generation request amount P0
And a generator load (engine load) T0 (basic operating point). The generator load (engine load) corresponds to the driving reaction force of the generator 11, that is, a command value (a power generation amount control factor of the generator 11 necessary for obtaining the required power generation amount at the engine speed N0). Control value) (output current value, terminal voltage, etc.).

【0055】S106では、触媒19の現在の温度tc
atが、触媒19が浄化性能を発揮する設定温度tcよ
り高いか低いかを判定し、高い場合には、S109へ進
む。設定温度に達していない(低い)場合は、S107
へ進み、S107において設定温度tcと触媒温度tc
atの温度差△tを演算する。つづくS108では、△
tに応じて予め出力毎に決めた運転点に、エンジン回転
数指令値N0、発電機負荷指令値T0を修正し、即ち、
エンジン回転数指令値をNcold、発電機負荷指令値
をTcoldに置き換え、S109へ進む。つまり、例
えば、図6の運転点Xを、△tに応じてX’に変更し、
その後の△tの縮小に応じてX”に運転点を変更し、更
なる△tの縮小に従って運転点を運転点Xへ徐々に戻す
ような制御が行なわれることとなる。
In step S106, the current temperature tc of the catalyst 19 is calculated.
It is determined whether at is higher or lower than the set temperature tc at which the catalyst 19 exhibits the purification performance. If it is higher, the process proceeds to S109. If the temperature has not reached the set temperature (low), S107
Then, in S107, the set temperature tc and the catalyst temperature tc
At temperature difference Δt is calculated. In the following S108, △
The engine speed command value N0 and the generator load command value T0 are corrected to an operating point determined in advance for each output according to t, that is,
The engine speed command value is replaced with Ncol, and the generator load command value is replaced with Tcol, and the process proceeds to S109. That is, for example, the operating point X in FIG. 6 is changed to X ′ according to Δt,
Control is performed such that the operating point is changed to X "in accordance with the subsequent reduction in Δt, and the operating point is gradually returned to the operating point X in accordance with the further reduction in Δt.

【0056】S109では、マイコンや各種センサなど
の各部温度ta,tb,tc,・・・・が、部品毎に機
能保証される設定温度tah,tbh,tch,・・・
・に達しているか否かを判定する。そして、達していな
い場合は、S114、Sll5へ進み、S105若しく
はS108で決めたエンジン回転数指令値及び発電機負
荷指令値を運転指令値とし、リターンする。
In step S109, the temperatures ta, tb, tc,... Of the microcomputer and various sensors are set to the set temperatures tah, tbh, tch,.
-It is determined whether or not it has reached. If not reached, the process proceeds to S114 and S115, and the engine speed command value and the generator load command value determined in S105 or S108 are set as operation command values, and the process returns.

【0057】一方、S109において、各部温度が設定
温度を超えている場合は、S110へ進む。S110で
は、現在の運転点が同一出力中の最低排気温度点、即
ち、冷却運転点で運転しているか否かを判定する。冷却
運転点でない場合は、予め出力毎に制御装置16内に記
憶してある冷却運転点であるエンジン回転数Nhea
t、発電機負荷Theatに、運転点指令値を変更す
る。つまり、例えば、図8の運転点Yを、Y’に変更す
るような制御が行なわれる。
On the other hand, if it is determined in step S109 that the temperatures of the respective parts exceed the set temperatures, the process proceeds to step S110. In S110, it is determined whether or not the current operating point is operating at the lowest exhaust temperature point during the same output, that is, the cooling operating point. If it is not the cooling operation point, the engine speed Nhea is the cooling operation point stored in advance in the control device 16 for each output.
t, The operating point command value is changed to the generator load Theat. That is, for example, control is performed to change the operating point Y in FIG. 8 to Y ′.

【0058】一方、S110で、既に冷却運転点におい
て運転されていると判定された場合は、要求発電量P0
を△Pだけ出力低下させた発電量P1に変更し、冷却運
転点においてエンジン回転数N1heat,発電機負荷
T1heatを決定する。つまり、例えば、図8の運転
点Y’を、まずY”に変更し、それでも各部温度が設定
温度を超える場合は、Y”を冷却運転点を連ねた運転線
に沿わせて出力低下させて行くような制御が行なわれる
こととなる。
On the other hand, if it is determined in S110 that the operation has already been performed at the cooling operation point, the required power generation amount P0
Is changed to the power generation amount P1 in which the output is reduced by ΔP, and the engine speed N1heat and the generator load T1heat are determined at the cooling operation point. That is, for example, the operating point Y ′ in FIG. 8 is first changed to Y ″, and if the temperature of each section still exceeds the set temperature, the output is reduced along Y ′ along the operating line connecting the cooling operating points. The control which goes is performed.

【0059】S111若しくはS113で決定された値
を、S114及びS115において運転指令値として出
力し、リターンする。このように、第1の実施形態によ
れば、発電機及び発電機駆動用エンジンの運転点を、基
本的には効率の良い運転点において要求出力(要求発電
量)に応じた運転を行なわせる一方、触媒温度が低い
(活性状態でない)等の条件下や、エンジンルーム内の
部品温度が高い等の条件下では、出力(発電量)をでき
る限り要求出力(要求発電量)に維持しながら運転点を
適正値に変更する制御を行なえるようにしたので、要求
発電量をできる限り維持しつつ、各部の温度条件をでき
る限り満足させることができる。従って、要求発電量を
できる限り維持して動力性能、騒音・振動性能の確保や
バッテリの劣化等を抑制しつつ、例えば、触媒早期活性
化を図って排気性能を向上でき、或いは各部品の保護及
び劣化等を抑制することができる。
The value determined in S111 or S113 is output as an operation command value in S114 and S115, and the routine returns. As described above, according to the first embodiment, the operating point of the generator and the generator driving engine is basically operated at the efficient operating point in accordance with the required output (required power generation amount). On the other hand, under conditions such as when the catalyst temperature is low (not in an active state) or when the temperature of parts in the engine room is high, the output (power generation amount) is maintained at the required output (required power generation amount) as much as possible. Since the control for changing the operating point to an appropriate value can be performed, the temperature condition of each part can be satisfied as much as possible while maintaining the required power generation amount as much as possible. Therefore, while maintaining the required power generation as much as possible, ensuring power performance, noise / vibration performance, and suppressing battery deterioration, it is possible to improve exhaust performance by, for example, early activation of the catalyst, or to protect each component. And deterioration and the like can be suppressed.

【0060】ところで、本実施形態では、触媒19の温
度に応じて運転点を変更すると共に、マイコンや各種セ
ンサなどの各部温度に応じて運転点を変更する構成とし
て説明したが、これに限らず、触媒19の温度、或いは
マイコンや各種センサなどの各部温度、のどちらか一方
に応じてのみ運転点を変更する構成とすることができる
ものである。即ち、図 のフローチャートのS106〜
S108の処理、或いはS109〜S113の処理、の
どちらかを省略する構成としても良いものである。
In this embodiment, the operating point is changed according to the temperature of the catalyst 19 and the operating point is changed according to the temperature of each part such as the microcomputer and various sensors. However, the present invention is not limited to this. , The operating point can be changed only in accordance with one of the temperature of the catalyst 19 and the temperature of each part such as a microcomputer and various sensors. That is, S106 to S106 in the flowchart of FIG.
It is also possible to adopt a configuration in which one of the processing in S108 and the processing in S109 to S113 is omitted.

【0061】次に、本発明の第2の実施形態について説
明する。図11は、当該第2の実施形態の制御方法を説
明するものである。当該第2の実施形態は、触媒温度が
エンジン始動からの経過時間とある程度の相関があるこ
とに鑑み、始動後、要求出力を達成でき排気温度を高め
ることができる運転点になるよう設定し、この運転点を
始動後経過時間(換言すれば触媒温度の上昇度合い)に
応じて基本運転点に近づくように制御するようにするも
のである。
Next, a second embodiment of the present invention will be described. FIG. 11 illustrates a control method according to the second embodiment. In the second embodiment, in view of the catalyst temperature has a certain correlation with the elapsed time from the start of the engine, the starting temperature is set so that the required output can be achieved and the exhaust temperature can be increased after the start, This operating point is controlled so as to approach the basic operating point in accordance with the elapsed time after starting (in other words, the degree of increase in the catalyst temperature).

【0062】なお、図11に示すように、各出力毎に始
動後経過時間に応じて設定される運転点を結ぶと、始動
後経過時間毎(t0,t1,t2・・・)の運転線が描
ける。そして、本実施形態では、例えば、始動後経過時
間t1の時は、t1の線上において要求出力が得られる
運転点(例えば、Z2)に制御することになる。
As shown in FIG. 11, when the operating points set according to the elapsed time after the start are connected for each output, the operation line for each elapsed time after the start (t0, t1, t2...) Is obtained. Can be drawn. Then, in the present embodiment, for example, at the time t1 after the start, the control is performed to the operating point (for example, Z2) at which the required output is obtained on the line of t1.

【0063】このようにすると、始動後経過時間に応じ
て、要求発電量を達成しながら早期に触媒19の浄化性
能を発揮(活性化)させることができるように排気温度
を制御することが可能となる。図12は、当該第2の実
施形態において行なわれる発電機11及びエンジン10
の運転制御を説明するフローチャートである。
In this manner, the exhaust gas temperature can be controlled in accordance with the elapsed time after the start so that the purification performance of the catalyst 19 can be exhibited (activated) at an early stage while achieving the required power generation amount. Becomes FIG. 12 shows a generator 11 and an engine 10 according to the second embodiment.
5 is a flowchart for explaining the operation control of FIG.

【0064】以下、当該図12のフローチャートについ
て説明する。なお、S201〜S204、S109以降
は、第1の実施形態にかかる図10のフローチャートの
S101〜S104、S109以降と同様であるので説
明を省略する。S205では、エンジン始動後であるの
で、始動後経過時間t0時に、制御装置16に予め設定
された各出力毎の運転点MAPを参照し、要求出力(要
求発電量)P0に対するエンジン回転数Nt0及び発電
機負荷Tt0を決定する。
Hereinafter, the flowchart of FIG. 12 will be described. Note that S201 to S204 and S109 and subsequent steps are the same as S101 to S104 and S109 and subsequent steps in the flowchart of FIG. 10 according to the first embodiment, and a description thereof will be omitted. In S205, since the engine has been started, the operating point MAP for each output preset in the control device 16 is referred to at the elapsed time t0 after the start, and the engine speed Nt0 and the required output (required power generation amount) P0 are referred to. The generator load Tt0 is determined.

【0065】S206では、エンジン始動後経過時間t
start を読み込み、S207,S208,S210等に
より現在始動後どのくらい時間が経過しているかを判定
する。そして、S209,S211,S212にて始動
後経過時間毎に、図11を参照して、要求出力(要求発
電量)に応じて予め設定されたエンジン回転数及び発電
機負荷を指令値として決める。つまり、図11に示され
るように、要求出力を満たしながら排気温度を最大限高
めることができる運転点Z1から、始動後経過時間が長
くなるに連れて、徐々に、運転点を、運転点Z2,Z
3,Zへと移行させるような制御を行なうことになる。
換言すれば、等出力線上の排気温度を最大限高められる
運転点から、始動後経過時間が長くなるに連れて(触媒
19が活性化状態に近づくに連れて)、排気温度が低く
なる運転点(Z2,Z3)へ延いては最高燃費が得られ
る運転点(Z)へ移行させることになる。
In S206, the elapsed time t after the engine is started is t
Start is read, and it is determined by S207, S208, S210 and the like how much time has elapsed since the start. Then, in S209, S211, and S212, the engine speed and the generator load set in advance according to the required output (required power generation amount) are determined as command values with reference to FIG. That is, as shown in FIG. 11, from the operating point Z1 at which the exhaust gas temperature can be maximized while satisfying the required output, the operating point is gradually changed to the operating point Z2 as the elapsed time after starting increases. , Z
Control to shift to 3, Z is performed.
In other words, from the operating point at which the exhaust gas temperature on the iso-output line is maximized, the operating point at which the exhaust gas temperature decreases as the elapsed time after startup increases (as the catalyst 19 approaches the activated state). Moving to (Z2, Z3), the operation point is shifted to the operating point (Z) where the maximum fuel efficiency is obtained.

【0066】そして、当該S207,S209,S21
1,S212の後は、第1の実施形態と同様の処理(S
109〜S115)が行なわれることになる。このよう
に、第2の実施形態によれば、発電機及び発電機駆動用
エンジンの運転点を、基本的には効率の良い運転点にお
いて要求出力(要求発電量)に応じた運転を行なわせる
一方、触媒温度が低い(活性状態でない)等の条件下
(始動後経過時間から予測する構成である)や、エンジ
ンルーム内の部品温度が高い等の条件下では、出力(発
電量)をできる限り要求出力(要求発電量)に維持しな
がら運転点を適正値に変更する制御を行なえるようにし
たので、要求発電量をできる限り維持しつつ、各部の温
度条件をできる限り満足させることができる。従って、
要求発電量をできる限り維持して動力性能、騒音・振動
性能の確保やバッテリの劣化等を抑制しつつ、例えば、
触媒早期活性化を図って排気性能を向上でき、或いは各
部品の保護及び劣化等を抑制することができる。
Then, S207, S209, S21
After S1, S212, the same processing as in the first embodiment (S
109 to S115) are performed. As described above, according to the second embodiment, the operating point of the generator and the generator driving engine is basically operated at an efficient operating point in accordance with the required output (required power generation amount). On the other hand, under conditions such as a low catalyst temperature (not in an active state) (e.g., a configuration predicted from the elapsed time after starting) or a condition such as a high component temperature in an engine room, an output (power generation amount) can be obtained. The control to change the operating point to an appropriate value while maintaining the required output (required power generation) as much as possible can be performed, so that the required power generation can be maintained as much as possible and the temperature conditions of each part can be satisfied as much as possible. it can. Therefore,
While maintaining the required power generation as much as possible and ensuring power performance, noise and vibration performance, and suppressing battery deterioration, for example,
Exhaust performance can be improved by early activation of the catalyst, or protection and deterioration of each component can be suppressed.

【0067】なお、第1の実施形態は、触媒19の温度
を検出する温度センサ20を備え、触媒温度を監視する
ことにより最も効果的に始動後の運転方法を決めるよう
にしたものであるのに対し、当該第2の実施形態は、始
動後経過時間に基づいて効果的な始動後の運転方法を決
めるようにしたものであるので、温度センサ20を廃止
することができ、コスト低減を図れ、また演算処理も単
純化することができる。
In the first embodiment, a temperature sensor 20 for detecting the temperature of the catalyst 19 is provided, and the operation method after the start is most effectively determined by monitoring the catalyst temperature. On the other hand, in the second embodiment, since the effective operation method after the start is determined based on the elapsed time after the start, the temperature sensor 20 can be eliminated, and the cost can be reduced. Also, the arithmetic processing can be simplified.

【0068】ところで、本実施形態では、始動後経過時
間に応じて{触媒19の温度(活性状態)に応じて}運
転点を変更すると共に、マイコンや各種センサなどの各
部温度に応じて運転点を変更する構成として説明した
が、これに限らず、始動後経過時間のみに応じて運転点
を変更する構成とすることができるものである。即ち、
図12のフローチャートのS206〜S212の後のS
109〜S113の処理を省略する構成としても良いも
のである。
In the present embodiment, the operating point is changed according to the elapsed time after the start-up, {operating point} according to the temperature of the catalyst 19 (active state), and operating point according to the temperature of each part such as a microcomputer and various sensors. However, the present invention is not limited to this, and the operating point can be changed only in accordance with the elapsed time after the start. That is,
S after S206 to S212 in the flowchart of FIG.
A configuration in which the processes of 109 to S113 are omitted may be adopted.

【0069】なお、上記各実施形態では、各部の温度条
件として、排気浄化触媒の温度条件(かかる温度条件
は、発電機駆動用エンジンの温度条件とも言うことがで
きる)と、エンジンルーム内の部品(マイコンや各種セ
ンサなど)の温度条件を代表的に説明してきたが、これ
に限るものではなく、本発明は、例えば発電量を極力維
持しながらエンジン水温に応じてエンジン暖機特性を変
更できるように運転点を変更させるような場合にも適用
できるし、発電量を極力維持しながらエンジン水温や駆
動モータ温度を所定温度以下に制限するべく運転点を変
更させるような場合にも適用できるものである。
In each of the above embodiments, the temperature conditions of each part include the temperature condition of the exhaust purification catalyst (the temperature condition can be referred to as the temperature condition of the generator driving engine) and the components in the engine room. Although the temperature conditions of the microcomputer (various sensors, etc.) have been representatively described, the present invention is not limited to this. For example, the present invention can change the engine warm-up characteristics according to the engine water temperature while maintaining the power generation amount as much as possible. The method can be applied to the case where the operating point is changed as described above, or the case where the operating point is changed to limit the engine water temperature or the drive motor temperature to a predetermined temperature or less while maintaining the power generation amount as much as possible. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の第1の実施形態にかかるシステム構成
図。
FIG. 2 is a system configuration diagram according to the first embodiment of the present invention.

【図3】(A)は、横軸をエンジン回転速度,縦軸をエ
ンジン負荷として等出力線及び等吸入空気流量線を示し
た図である。(B)は、(A)に基づいて、出力毎のエ
ンジン回転速度と吸入空気流量の関係を示した図であ
る。
FIG. 3A is a diagram showing an equal output line and an equal intake air flow line with the horizontal axis representing the engine speed and the vertical axis representing the engine load. (B) is a diagram showing a relationship between the engine rotation speed and the intake air flow rate for each output based on (A).

【図4】(A)は、横軸をエンジン回転速度,縦軸をエ
ンジン負荷として等出力線及び等排気温度線を示した図
である。(B)は、(A)に基づいて、出力毎のエンジ
ン回転速度と排気温度の関係を示した図である。
FIG. 4A is a diagram showing an equal output line and an equal exhaust temperature line with the horizontal axis representing the engine rotation speed and the vertical axis representing the engine load. (B) is a diagram showing a relationship between the engine speed and the exhaust temperature for each output based on (A).

【図5】(A)は、横軸をエンジン回転速度,縦軸をエ
ンジン負荷として等出力線及び等燃費線を示した図であ
る。(B)は、(A)に基づいて、出力毎のエンジン回
転速度と燃費率の関係を示した図である。
FIG. 5A is a diagram showing an equal output line and an equal fuel consumption line with the horizontal axis representing the engine speed and the vertical axis representing the engine load. (B) is a diagram showing a relationship between the engine speed and the fuel efficiency for each output based on (A).

【図6】横軸をエンジン回転速度,縦軸をエンジン負荷
として、出力毎の最良燃費となる運転点(APU基本運
転点)を結んだ曲線を示した図である。
FIG. 6 is a diagram showing a curve connecting operating points (APU basic operating points) at which the best fuel efficiency is obtained for each output, with the horizontal axis representing the engine speed and the vertical axis representing the engine load.

【図7】触媒が排気浄化能力の低い低温時(不活性時)
における発電機11及び発電機駆動用エンジン10の運
転点の変更例(X’→X”→X)を示した図である。
FIG. 7: When the catalyst has a low exhaust gas purification ability at low temperatures (inactive)
FIG. 7 is a diagram showing a modified example (X ′ → X ″ → X) of the operating points of the generator 11 and the generator driving engine 10 in FIG.

【図8】排気温度を効果的に下げるための発電機11及
び発電機駆動用エンジン10の運転点の変更例(Y→
Y’→Y”)を示した図である。
FIG. 8 shows an example of changing the operating points of the generator 11 and the generator driving engine 10 for effectively lowering the exhaust gas temperature (Y →
Y ′ → Y ″).

【図9】エンジン排気温度とエンジンルーム内温度の相
関関係を示した図である。
FIG. 9 is a diagram showing a correlation between an engine exhaust temperature and an engine room temperature.

【図10】本発明の第1の実施形態にかかる制御フローチ
ャートである。
FIG. 10 is a control flowchart according to the first embodiment of the present invention.

【図11】各出力毎に始動後経過時間に応じて設定される
運転点を説明するための図である。
FIG. 11 is a diagram for explaining an operating point set for each output in accordance with the elapsed time after starting.

【図12】本発明の第2の実施形態にかかる制御フローチ
ャートである。
FIG. 12 is a control flowchart according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 発電機駆動用エンジン 11 発電機 12 バッテリ 13 車両駆動用電気モータ 16 制御装置 18 水温センサ 19 触媒 20 触媒温度センサ DESCRIPTION OF SYMBOLS 10 Engine for driving a generator 11 Generator 12 Battery 13 Electric motor for driving a vehicle 16 Controller 18 Water temperature sensor 19 Catalyst 20 Catalyst temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 弘之 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 麻生 剛 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 井戸口 隆一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 金子 雄太郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Hirano 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Tsuyoshi Aso 2 Takaracho, Kanagawa-ku, Yokohama City, Kanagawa Nissan Motor Co., Ltd. 72) Inventor Ryuichi Wellguchi, Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Yutaro Kaneko, 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture, Nissan Motor Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】車両駆動用電気モータと、 前記車両駆動用電気モータへの電力供給用の充放電可能
な蓄電池と、 前記車両駆動用電気モータ或いは前記蓄電池への電力供
給のために発電を行なう発電機と、 前記発電機を駆動する発電機駆動用エンジンと、 を含んで構成され、 前記発電機の発電量を制御する因子のうち、回転速度を
前記発電機駆動用エンジンで制御し、それ以外の因子を
発電機側で制御するようにした電気自動車の発電制御装
置において、 各部の温度条件に応じて、前記発電機駆動用エンジンの
回転速度及び前記発電機側で制御される因子の制御値を
変更するようにしたことを特徴とする電気自動車の発電
制御装置。
1. An electric motor for driving a vehicle, a chargeable / dischargeable storage battery for supplying electric power to the electric motor for driving a vehicle, and an electric power generation for supplying electric power to the electric motor for driving the vehicle or the storage battery. A generator, and a generator driving engine for driving the generator, wherein a rotation speed is controlled by the generator driving engine among the factors for controlling the power generation amount of the generator. In the power generation control device for an electric vehicle, wherein factors other than the above are controlled on the generator side, control of the rotation speed of the generator driving engine and the factors controlled on the generator side in accordance with the temperature conditions of each part. A power generation control device for an electric vehicle, wherein the value is changed.
【請求項2】車両駆動用電気モータと、 前記車両駆動用電気モータへの電力供給用の充放電可能
な蓄電池と、 前記車両駆動用電気モータ或いは前記蓄電池への電力供
給のために発電を行なう発電機と、 前記発電機を駆動する発電機駆動用エンジンと、 を含んで構成され、 前記発電機の発電量を制御する因子のうち、回転速度を
前記発電機駆動用エンジンで制御し、それ以外の因子を
発電機側で制御するようにした電気自動車の発電制御装
置において、 各部の温度条件に応じて、前記発電機駆動用エンジンの
回転速度及び前記発電機側で制御される因子の制御値を
変更する変更制御手段を含んで構成したことを特徴とす
る電気自動車の発電制御装置。
2. An electric motor for driving a vehicle, a chargeable / dischargeable storage battery for supplying power to the electric motor for driving a vehicle, and a power generator for supplying electric power to the electric motor for driving the vehicle or the storage battery. A generator, and a generator driving engine for driving the generator, wherein a rotation speed is controlled by the generator driving engine among the factors for controlling the power generation amount of the generator. In the power generation control device for an electric vehicle, wherein factors other than the above are controlled on the generator side, control of the rotation speed of the generator driving engine and the factors controlled on the generator side in accordance with the temperature conditions of each part. A power generation control device for an electric vehicle, comprising change control means for changing a value.
【請求項3】前記各部の温度条件が、所定の条件を満た
しているときには、前記発電機駆動用エンジンの回転速
度及び前記発電機側で制御される因子の制御値が、要求
発電量を達成でき、かつ、前記発電機駆動用エンジンの
効率を高めることができる点に設定されるようにしたこ
とを特徴とする請求項1又は請求項2に記載の電気自動
車の発電制御装置。
3. When a temperature condition of each section satisfies a predetermined condition, a control value of a rotation speed of the generator driving engine and a control value of a factor controlled on the generator side achieve a required power generation amount. 3. The power generation control device for an electric vehicle according to claim 1, wherein the power generation control device is configured to be configured to be able to increase the efficiency of the generator driving engine. 4.
【請求項4】前記発電機駆動用エンジンの排気通路に介
装される排気浄化触媒の温度が設定温度以下の場合に、
前記発電機駆動用エンジンの回転速度及び前記発電機側
で制御される因子の制御値が、要求発電量を達成でき、
かつ、前記発電機駆動用エンジンの排気温度を高めるこ
とができる点に変更されるようにしたことを特徴とする
請求項1〜請求項3の何れか1つに記載の電気自動車の
発電制御装置。
4. When the temperature of an exhaust purification catalyst interposed in an exhaust passage of the generator driving engine is equal to or lower than a set temperature,
The control value of the rotation speed of the generator driving engine and a factor controlled on the generator side can achieve the required power generation amount,
The power generation control device for an electric vehicle according to any one of claims 1 to 3, wherein the power generation control device is configured to be able to increase the exhaust temperature of the generator driving engine. .
【請求項5】前記発電機駆動用エンジンの排気通路に介
装される排気浄化触媒の温度と、前記設定温度と、の偏
差が大きいほど、前記発電機駆動用エンジンの回転速度
及び前記発電機側で制御される因子の制御値が、前記発
電機駆動用エンジンの排気温度をより高めることができ
る点に変更されるようにしたことを特徴とする請求項4
に記載の電気自動車の発電制御装置。
5. The rotational speed of the generator driving engine and the generator as the deviation between the temperature of the exhaust purification catalyst interposed in the exhaust passage of the generator driving engine and the set temperature increases. The control value of a factor controlled on the side is changed to a point at which the exhaust temperature of the generator driving engine can be further increased.
A power generation control device for an electric vehicle according to Claim 1.
【請求項6】前記各部の温度が、前記発電機駆動用エン
ジンの始動後経過時間に基づいて推定されることを特徴
とする請求項1〜請求項4の何れか1つに記載の電気自
動車の発電制御装置。
6. The electric vehicle according to claim 1, wherein the temperature of each section is estimated based on an elapsed time after a start of the generator driving engine. Power generation control device.
【請求項7】前記発電機駆動用エンジンの始動後経過時
間が短いほど、前記発電機駆動用エンジンの回転速度及
び前記発電機側で制御される因子の制御値が、前記発電
機駆動用エンジンの排気温度をより高めることができる
点に変更されるようにしたことを特徴とする請求項6に
記載の電気自動車の発電制御装置。
7. As the elapsed time after the start of the generator driving engine is shorter, the rotation speed of the generator driving engine and the control value of a factor controlled on the generator side are increased. 7. The power generation control device for an electric vehicle according to claim 6, wherein the temperature of the exhaust gas can be further increased.
【請求項8】前記発電機駆動用エンジンの回転速度を高
めることで、前記発電機駆動用エンジンの排気温度を高
めることを特徴とする請求項4〜請求項7の何れか1つ
に記載の電気自動車の発電制御装置。
8. The generator according to claim 4, wherein an exhaust gas temperature of the generator driving engine is increased by increasing a rotation speed of the generator driving engine. Power generation control device for electric vehicles.
【請求項9】前記各部の温度が、エンジンルーム内に配
設された所定の部品の温度を含むことを特徴とする請求
項1〜請求項8の何れか1つに記載の電気自動車の発電
制御装置。
9. The electric vehicle according to claim 1, wherein the temperature of each part includes a temperature of a predetermined component disposed in an engine room. Control device.
【請求項10】前記エンジンルーム内に配設された所定の
部品の温度が設定温度を越えた場合に、前記発電機駆動
用エンジンの回転速度及び前記発電機側で制御される因
子の制御値が、要求発電量を達成でき、かつ、前記発電
機駆動用エンジンの排気温度を下げることができる点に
変更されるようにしたことを特徴とする請求項9に記載
の電気自動車の発電制御装置。
10. A control value of a rotation speed of the generator driving engine and a factor controlled on the generator side when a temperature of a predetermined component disposed in the engine room exceeds a set temperature. The power generation control device for an electric vehicle according to claim 9, wherein the power generation control device is configured to be able to achieve a required power generation amount and to reduce an exhaust temperature of the generator driving engine. .
【請求項11】前記エンジンルーム内に配設された所定の
部品の温度が設定温度を越え、前記発電機駆動用エンジ
ンの回転速度及び前記発電機側で制御される因子の制御
値が、要求発電量を達成でき、かつ、前記発電機駆動用
エンジンの排気温度を下げることができる点に変更され
た後でも、前記エンジンルーム内に配設された所定の部
品が設定温度以下にならない場合には、 前記エンジンルーム内に配設された所定の部品の温度が
設定温度以下になるまで、前記発電機駆動用エンジンの
回転速度及び前記発電機側で制御される因子の制御値
を、同一発電量で前記発電機駆動用エンジンの排気温度
を最大限下げることができる点を通過させつつ発電量を
低下させる方向に変更するようにしたことを特徴とする
請求項9に記載の電気自動車の発電制御装置。
11. The temperature of a predetermined component disposed in the engine room exceeds a set temperature, and a control value of a rotation speed of the generator driving engine and a control value of a factor controlled on the generator side are required. Even if it is possible to achieve the power generation amount, and even after being changed to the point that the exhaust temperature of the generator driving engine can be lowered, if the predetermined parts disposed in the engine room do not become lower than the set temperature. Until the temperature of predetermined components disposed in the engine room becomes equal to or lower than a set temperature, the rotation speed of the generator driving engine and the control value of the factor controlled on the generator side are the same power generation. 10. The electric power generation system according to claim 9, wherein the power generation amount is changed in a direction in which the power generation amount is reduced while passing through a point at which the exhaust temperature of the generator driving engine can be reduced as much as possible. Control device.
JP24100797A 1997-09-05 1997-09-05 Electric vehicle power generation control device Expired - Fee Related JP3454101B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24100797A JP3454101B2 (en) 1997-09-05 1997-09-05 Electric vehicle power generation control device
US09/148,701 US6470985B1 (en) 1997-09-05 1998-09-04 Generator control device for an electrical automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24100797A JP3454101B2 (en) 1997-09-05 1997-09-05 Electric vehicle power generation control device

Publications (2)

Publication Number Publication Date
JPH1182093A true JPH1182093A (en) 1999-03-26
JP3454101B2 JP3454101B2 (en) 2003-10-06

Family

ID=17067950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24100797A Expired - Fee Related JP3454101B2 (en) 1997-09-05 1997-09-05 Electric vehicle power generation control device

Country Status (2)

Country Link
US (1) US6470985B1 (en)
JP (1) JP3454101B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255947A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Control device of internal combustion engine
US8234029B2 (en) 2006-10-25 2012-07-31 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
CN103299037A (en) * 2010-10-19 2013-09-11 卡明斯公司 System, method and apparatus for enhancing aftertreatment regeneration in a hybrid power system
JP2015120400A (en) * 2013-12-24 2015-07-02 日産自動車株式会社 Control apparatus and control method for plug-in hybrid vehicle
CN109866753A (en) * 2017-12-04 2019-06-11 通用汽车环球科技运作有限责任公司 Method and apparatus for controlling internal combustion engine
WO2019116587A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Catalyst warm-up control method for hybrid vehicles and catalyst warm-up control device for hybrid vehicles
KR20200088438A (en) * 2017-12-15 2020-07-22 닛산 지도우샤 가부시키가이샤 Method for controlling catalyst warm-up in hybrid vehicle and apparatus for controlling catalyst warm-up in hybrid vehicle
JP2021151833A (en) * 2020-03-24 2021-09-30 トヨタ自動車株式会社 Control device of series hybrid vehicle

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694725B2 (en) * 2002-05-10 2004-02-24 General Electric Company Method and apparatus for reducing combustion engine emissions
US7007460B2 (en) * 2003-08-11 2006-03-07 General Motors Corporation Apparatus and method for accelerated exhaust system component heating
DE102004021370A1 (en) * 2004-04-30 2005-11-17 Robert Bosch Gmbh Method and device for operating a hybrid vehicle
US7472008B2 (en) * 2004-07-23 2008-12-30 Caterpillar Inc. Systems and methods for controlling mobile machine power
JP4254762B2 (en) * 2005-08-25 2009-04-15 トヨタ自動車株式会社 Power output apparatus, automobile equipped with the same, and control method of power output apparatus
US7605493B1 (en) * 2005-11-09 2009-10-20 Joseph P. Boudreaux Electrically powered vehicle engine
US20080078166A1 (en) * 2006-09-29 2008-04-03 Charles Rose Hybrid engine exhaust gas temperature control system
US20080203734A1 (en) * 2007-02-22 2008-08-28 Mark Francis Grimes Wellbore rig generator engine power control
DE102008010103A1 (en) * 2008-02-20 2009-08-27 Robert Bosch Gmbh Method and device for controlling a drive train of a vehicle
EP2362840A1 (en) * 2008-09-26 2011-09-07 Arb Greenpower, Llc Hybrid energy conversion system
DE102010003000A1 (en) * 2010-03-18 2011-09-22 Bayerische Motoren Werke Aktiengesellschaft Method for controlling range-extender in electric vehicle, involves determining power rating according to required drive torque, where range-extender is controlled according to power rating
WO2012064617A1 (en) 2010-11-09 2012-05-18 Aram Novikov Multi-core electric machines
US8742701B2 (en) 2010-12-20 2014-06-03 Cummins Inc. System, method, and apparatus for integrated hybrid power system thermal management
EP2674340B1 (en) * 2011-02-08 2016-05-25 Toyota Jidosha Kabushiki Kaisha Vehicle
US8301358B2 (en) 2011-06-21 2012-10-30 Ford Global Technologies, Llc Method of engine starting
DE102011105618A1 (en) * 2011-06-28 2013-01-03 Audi Ag Method of controlling a range extension device and range extension device
US9175661B2 (en) * 2011-10-11 2015-11-03 Ford Global Technologies, Llc Glow plug heater control
US8875505B2 (en) * 2012-04-05 2014-11-04 GM Global Technology Operations LLC Internal combustion engine and method for controlling internal combustion engine speed
US20140013726A1 (en) * 2012-07-11 2014-01-16 Ford Global Technologies, Llc Ammonia storage control
KR101395335B1 (en) * 2012-07-27 2014-05-16 주식회사 효성 Method for operating an emergency generator using energy storage device
DE102013013860A1 (en) * 2013-08-20 2015-02-26 Audi Ag Vehicle drive control
US9458782B2 (en) * 2014-04-08 2016-10-04 Komatsu America Corp. Selective catalyst reduction heat management method and system
EP4083407A1 (en) 2021-04-29 2022-11-02 Volvo Car Corporation Method of reducing cold start emissions in hybrid electric vehicles
CN115214609B (en) * 2022-02-18 2023-11-21 广州汽车集团股份有限公司 Vehicle driving method, vehicle driving device, apparatus, and storage medium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930648B1 (en) * 1969-12-12 1974-08-15
JPS55127221A (en) * 1979-03-20 1980-10-01 Daihatsu Motor Co Ltd Driving system of vehicle
JPS6098253A (en) * 1983-10-31 1985-06-01 Mazda Motor Corp Electronic control type stepless speed change gear
JPS62104403A (en) * 1985-10-29 1987-05-14 Isuzu Motors Ltd Driving device for vehicle
JP2932607B2 (en) * 1990-05-23 1999-08-09 日産自動車株式会社 Electric car
JP2827568B2 (en) * 1991-04-30 1998-11-25 トヨタ自動車株式会社 Hybrid vehicle drive system
KR0136743B1 (en) * 1992-05-15 1998-04-24 나까무라 히로까즈 Operating method for a hybrid vehicle
JP3047621B2 (en) 1992-05-25 2000-05-29 トヨタ自動車株式会社 Control device for engine-driven generator of hybrid vehicle
US5264764A (en) * 1992-12-21 1993-11-23 Ford Motor Company Method for controlling the operation of a range extender for a hybrid electric vehicle
DE4430447C2 (en) * 1994-08-27 1997-10-16 Deere & Co Method and control device for controlling the drive train of a work vehicle
JP3409523B2 (en) * 1995-08-02 2003-05-26 アイシン・エィ・ダブリュ株式会社 Control device for vehicle drive unit
US5821706A (en) * 1995-09-28 1998-10-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus and method for initiating power generation for hybrid electric automobile

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234029B2 (en) 2006-10-25 2012-07-31 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
JP2008255947A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Control device of internal combustion engine
CN103299037A (en) * 2010-10-19 2013-09-11 卡明斯公司 System, method and apparatus for enhancing aftertreatment regeneration in a hybrid power system
JP2015120400A (en) * 2013-12-24 2015-07-02 日産自動車株式会社 Control apparatus and control method for plug-in hybrid vehicle
CN109866753A (en) * 2017-12-04 2019-06-11 通用汽车环球科技运作有限责任公司 Method and apparatus for controlling internal combustion engine
CN109866753B (en) * 2017-12-04 2022-04-15 通用汽车环球科技运作有限责任公司 Method and device for controlling an internal combustion engine
JPWO2019116589A1 (en) * 2017-12-15 2020-12-17 日産自動車株式会社 Hybrid vehicle catalyst warm-up control method and hybrid vehicle catalyst warm-up control device
KR20200088438A (en) * 2017-12-15 2020-07-22 닛산 지도우샤 가부시키가이샤 Method for controlling catalyst warm-up in hybrid vehicle and apparatus for controlling catalyst warm-up in hybrid vehicle
KR20200087840A (en) * 2017-12-15 2020-07-21 닛산 지도우샤 가부시키가이샤 Method for controlling catalyst warm-up in hybrid vehicle, and apparatus for controlling catalyst warm-up in hybrid vehicle
RU2739098C1 (en) * 2017-12-15 2020-12-21 Ниссан Мотор Ко., Лтд. Catalyst heating control method for hybrid vehicle and catalyst heating control device for hybrid vehicle
JPWO2019116587A1 (en) * 2017-12-15 2021-01-14 日産自動車株式会社 Hybrid vehicle catalyst warm-up control method and hybrid vehicle catalyst warm-up control device
US11285937B2 (en) 2017-12-15 2022-03-29 Nissan Motor Co., Ltd. Catalyst warm-up control method for hybrid vehicle and catalyst warm-up control apparatus for hybrid vehicle
WO2019116587A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Catalyst warm-up control method for hybrid vehicles and catalyst warm-up control device for hybrid vehicles
US11434798B2 (en) 2017-12-15 2022-09-06 Nissan Motor Co., Ltd. Catalyst warm-up control method for hybrid vehicle and catalyst warm-up control device for hybrid vehicle
JP2021151833A (en) * 2020-03-24 2021-09-30 トヨタ自動車株式会社 Control device of series hybrid vehicle
US11904834B2 (en) 2020-03-24 2024-02-20 Toyota Jidosha Kabushiki Kaisha Control device and control method for series hybrid vehicle

Also Published As

Publication number Publication date
US6470985B1 (en) 2002-10-29
JP3454101B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3454101B2 (en) Electric vehicle power generation control device
CN100510364C (en) Running method and running controller for vehicle engine for temperary stop
JP3832701B2 (en) Control device for engine coupled motor
JP3933096B2 (en) Battery control device and control method mounted on vehicle
JP3664118B2 (en) Control device for vehicle equipped with internal combustion engine
WO2010100748A1 (en) Hybrid vehicle control device and control method
JP4396600B2 (en) Control device for hybrid vehicle
WO2009110269A1 (en) Device and method for controlling vehicle
JP5359373B2 (en) Vehicle control device
JP2003219564A (en) Controller for storage device in vehicle
JP2002058112A (en) Controller for hybrid vehicle
JP2009275631A (en) Apparatus and method for controlling vehicle
JP2011255861A (en) Vehicle control apparatus, and vehicle control method
JP2914061B2 (en) Hybrid car
JPH09154205A (en) Hybrid vehicle
JP3266056B2 (en) Electric vehicle control device
JP3171073B2 (en) Hybrid vehicle
JP2004060526A (en) Controlling method and device for vehicle, program for embodying the method, and recording medium to record the program
JPH1089053A (en) Hybrid type vehicle
JP2914057B2 (en) Hybrid car
JP2000008837A (en) Exhaust emission control device for internal combustion engine
JP5118443B2 (en) Exhaust gas purification device for hybrid electric vehicle
JPH08168103A (en) Hybrid electric automobile
JP3106982B2 (en) Catalyst preheat control device
JP4442231B2 (en) Control device for cooling fan of power storage mechanism

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees