JPH1174129A - Low-loss composite magnetic core - Google Patents

Low-loss composite magnetic core

Info

Publication number
JPH1174129A
JPH1174129A JP9249319A JP24931997A JPH1174129A JP H1174129 A JPH1174129 A JP H1174129A JP 9249319 A JP9249319 A JP 9249319A JP 24931997 A JP24931997 A JP 24931997A JP H1174129 A JPH1174129 A JP H1174129A
Authority
JP
Japan
Prior art keywords
loss
core
magnet
low
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9249319A
Other languages
Japanese (ja)
Inventor
Koichi Kondo
幸一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP9249319A priority Critical patent/JPH1174129A/en
Publication of JPH1174129A publication Critical patent/JPH1174129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size and weight of a low-loss composite magnetic core which is used at a high frequency by arranging a permanent magnet on the surface of a coil, using an Mn-Zn ferrite with the S-pole of the magnet at one end of the surface of the magnet perpendicular to the magnetic path of the ferrite and the N-pole at the other end of the surface. SOLUTION: After 53.0 mol.% Fe2 O3 , 38.0 mol.% Mn3 O4 , and 19.0 mol.% ZnO are mixed together and kneaded wet for 20 minutes, the mixture is dried, granulated, and calcined at 800 deg.C. Then, after adding 0.04 wt.% SiO2 , 0.04 wt.% CaO, and 0.10 wt.% ZrO2 to the calcined product, the product is pulverized wet for 120 minutes and the powder is dried, granulated, and pressed. A permanent magnet 1 having a different surface magnetic flux in the direction of magnetization is arranged on one surface of a coil 5, which is formed by winding an exciting winding 4 around a ferrite core 2 composed of the sintered body obtained in this way, and the magnet 1 is fixed with a resin 3. Therefore, the loss of the magnet 1 other than the hysteresis loss is reduced, when the surface magnetic flux of the magnet 1 falls within a range of 100 to 1,000 G.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波で使用する
トランス用のフェライトからなる低損失複合磁心に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss composite core made of ferrite for a transformer used at a high frequency.

【0002】[0002]

【従来の技術】電源用トランス材料としては、比較的飽
和磁束密度が高く、電力損失が小さいMn−Znフェラ
イトコアが用いられている。例えば、リングコア、EE
コア、EIコア等があり、その大きさも様々である。
2. Description of the Related Art As a power transformer material, an Mn-Zn ferrite core having a relatively high saturation magnetic flux density and a small power loss is used. For example, ring core, EE
There are a core, an EI core, and the like, and their sizes also vary.

【0003】トランス材料の電力損失が大きいと、発熱
により故障や誤動作の原因となる。
[0003] If the power loss of the transformer material is large, heat generation may cause a failure or malfunction.

【0004】一般に、Mn−Znフェライトでは、主成
分組成、添加物、粉体特性、および焼成条件の検討によ
り、低損失化が図られているが、近年の電気製品の小型
化・軽量化に伴い、電源用トランスの高周波化が進んで
おり、それに伴いフェライトコアの更なる低損失化が求
められている。
[0004] Generally, in Mn-Zn ferrite, the loss is reduced by examining the main component composition, additives, powder characteristics, and firing conditions. However, in recent years, miniaturization and weight reduction of electric products have been attempted. Accordingly, the frequency of power transformers has been increasing, and accordingly, further reduction in loss of ferrite cores has been required.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、小型
化・軽量化した低損失の高周波で使用するトランス用の
フェライトからなる低損失複合磁心を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a low-loss composite core made of ferrite for a transformer used at a high frequency with low loss and reduced in size and weight.

【0006】[0006]

【課題を解決するための手段】本発明は、Mn−Znフ
ェライト磁心の表面に永久磁石を配置し、前記Mn−Z
nフェライト磁心の磁路に垂直な面の一端がS極に、そ
の対極がN極を持つようにした低損失複合磁心である。
According to the present invention, a permanent magnet is arranged on the surface of a Mn-Zn ferrite core, and the Mn-Z ferrite core is provided with a permanent magnet.
This is a low-loss composite core in which one end of a surface perpendicular to the magnetic path of the n-ferrite core has an S pole and its counter electrode has an N pole.

【0007】又、本発明は、Mn−Znフェライト磁心
を用いたコイルの表面に永久磁石を配置し、前記Mn−
Znフェライト磁心の磁路に垂直な面の一端がS極に、
その対極がN極を持つようにした低損失複合磁心であ
る。
[0007] The present invention also relates to a Mn-Zn ferrite core in which a permanent magnet is disposed on the surface of a coil using the Mn-Zn ferrite core.
One end of the surface perpendicular to the magnetic path of the Zn ferrite core is the S pole,
This is a low-loss composite magnetic core whose counter electrode has an N pole.

【0008】又、本発明は、上記永久磁石の着磁方向の
表面磁束が100〜1000Gである低損失複合磁心で
ある。
Further, the present invention is a low-loss composite core having a surface magnetic flux of 100 to 1000 G in the magnetizing direction of the permanent magnet.

【0009】[0009]

【発明の実施の形態】本発明の低損失複合磁心について
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A low loss composite magnetic core according to the present invention will be described.

【0010】本発明は、Mn−Znフェライト磁心の表
面またはMn−Znフェライト磁心を用いたコイルの表
面に着磁方向の表面磁束が100〜1000Gである永
久磁石を配置させ、Mn−Znフェライト磁心の磁路に
垂直な面の一端がS極に、その対極がN極を持つ低損失
複合磁心を用いることにより、前記課題を解決するもの
である。
According to the present invention, a permanent magnet having a surface magnetic flux of 100 to 1000 G in a magnetizing direction is arranged on the surface of a Mn-Zn ferrite core or the surface of a coil using the Mn-Zn ferrite core. The above problem is solved by using a low-loss composite magnetic core having one end of a surface perpendicular to the magnetic path as the S pole and the other pole as the N pole.

【0011】本発明の低損失複合磁心は、フェライトの
電力損失が、ヒステリシス損失、渦電流損失、及び残留
損失からなるが、永久磁石によりフェライト磁心の磁路
と垂直な方向に磁場が印加された磁壁が消失し、磁壁の
非可逆的な移動により生じる前記ヒステリシス損失と磁
壁移動により結晶粒内で局所的に生じる前記渦電流損失
が共に低減されるためと考えられる。
In the low-loss composite core of the present invention, the power loss of the ferrite is composed of hysteresis loss, eddy current loss, and residual loss. A permanent magnet applies a magnetic field in a direction perpendicular to the magnetic path of the ferrite core. It is considered that the domain wall disappears and the hysteresis loss caused by the irreversible movement of the domain wall and the eddy current loss locally generated in the crystal grain due to the domain wall movement are both reduced.

【0012】Mn−Znフェライト磁心の表面またはM
n−Znフェライト磁心を用いたコイルの表面に配置さ
せる永久磁石の着磁方向の表面磁束を100〜1000
Gとしたのは、100Gよりも小さいと、フェライト磁
心内の磁壁が残存して、損失が低減しないためである。
又、1000Gよりも大きいと、励磁方向へのスピンの
配向が容易でなく、損失が劣化するためである。
The surface of Mn--Zn ferrite core or M
The surface magnetic flux in the magnetization direction of the permanent magnet arranged on the surface of the coil using the n-Zn ferrite core is 100 to 1000.
The reason for G is that if it is smaller than 100 G, the domain wall in the ferrite core remains and the loss does not decrease.
On the other hand, if it is larger than 1000 G, the spin orientation in the excitation direction is not easy, and the loss is deteriorated.

【0013】[0013]

【実施例】本発明の実施例について下記に説明する。Embodiments of the present invention will be described below.

【0014】Fe23、Mn34、およびZnOを5
3.0Fe23−38.0MnO−残部ZnO(mol
%)となるように秤量し、湿式で20分間混合し、乾燥
・造粒後、800℃の大気中で仮焼し、得られた粉末
に、副成分として、SiO2を0.04wt%、CaOを
0.04wt%、ZrO2を0.10wt%、それぞれ添
加後、湿式で120分間粉砕し、乾燥・造粒し、プレス
した。
[0014] Fe 2 O 3 , Mn 3 O 4 and ZnO
3.0Fe 2 O 3 -38.0MnO-balance ZnO (mol
%), Mixed in a wet manner for 20 minutes, dried and granulated, and calcined in the air at 800 ° C., and 0.04 wt% of SiO 2 was added to the obtained powder as a sub-component. After adding CaO of 0.04% by weight and ZrO 2 of 0.10% by weight, each was pulverized in a wet system for 120 minutes, dried, granulated, and pressed.

【0015】その後、酸素分圧を制御した雰囲気中で1
150℃で120分間焼成した。
[0015] Then, in an atmosphere in which the oxygen partial pressure is controlled, 1
It baked at 150 degreeC for 120 minutes.

【0016】図1(a)に示すように、そうして得られ
た、寸法が25mmφ−15mmφ−5mmの焼結体の
フェライトコア2に励磁用の巻線4を施したコイル5の
片面に着磁方向の表面磁束が異なる寸法が25mmφ−
15mmφ−5mmの永久磁石1を配置させ、樹脂3で
固定したもの(構造とする)の損失を測定した。
As shown in FIG. 1 (a), on one side of a coil 5 obtained by applying a winding 4 for excitation to a ferrite core 2 of a sintered body having a size of 25 mmφ-15 mmφ-5 mm obtained as described above. The size of the surface magnetic flux in the magnetization direction is 25mmφ-
A permanent magnet 1 having a diameter of 15 mm and a diameter of 5 mm was disposed, and the loss of a structure (structure) fixed with the resin 3 was measured.

【0017】又、図1(b)に示すように、同様にして
得られた、寸法が25mmφ−15mmφ−5mmの焼
結体のフェライトコア2の片面に着磁方向の表面磁束が
異なる、寸法が25mmφ−15mmφ−5mmの永久
磁石1を配置させ、その上から励磁用の巻線4を施した
もの(構造とする)の損失を測定した。
Further, as shown in FIG. 1 (b), one side of a ferrite core 2 of a sintered body having a size of 25 mmφ−15 mmφ−5 mm obtained in the same manner has a different surface magnetic flux in the magnetization direction. Was arranged with a permanent magnet 1 having a diameter of 25 mm to 15 mm and a diameter of 5 mm.

【0018】なお、図1(a)および図1(b)の構造
および構造の模式図を図1に示す。
FIG. 1 is a schematic view of the structure and the structure of FIGS. 1A and 1B.

【0019】1MHz−500G、80℃における損失
の測定結果を表1に示す。
Table 1 shows the measurement results of the loss at 1 MHz-500 G and 80 ° C.

【0020】 励磁条件:1MHz−500G、測定温度:80℃ [0020] Excitation condition: 1MHz-500G, measurement temperature: 80 ° C

【0021】比較材として、永久磁石を配置させない場
合の測定結果も合わせて示す。なお、ヒステリシス損失
としては、直流励磁の損失に交流励磁周波数をかけ合わ
せた値を用いた。
As a comparative material, the measurement results when no permanent magnet is arranged are also shown. The value obtained by multiplying the DC excitation loss by the AC excitation frequency was used as the hysteresis loss.

【0022】その結果、下記の点が明らかになった。即
ち、構造,共に、永久磁石の表面磁束が100〜1
000Gの範囲でヒステリシス損失以外の損失(Pcv
−Ph)が、共に低減されている。
As a result, the following points became clear. That is, in both the structures, the surface magnetic flux of the permanent magnet is 100 to 1
Loss other than hysteresis loss in the range of 000G (Pcv
−Ph) are both reduced.

【0023】表面磁束50Gでは、構造,共、損失
は比較材と変わらない。又、表面磁束1200Gでは、
構造,共、損失は劣化している。これは、ヒステリ
シス損失は低減されているにもかかわらず、ヒステリシ
ス損失以外の損失、つまり渦電流損失又は残留損失が劣
化しているためである。
At the surface magnetic flux of 50 G, the structure, the loss, and the loss are the same as those of the comparative material. Also, with a surface magnetic flux of 1200G,
Both structure and loss are deteriorating. This is because the loss other than the hysteresis loss, that is, the eddy current loss or the residual loss, is degraded although the hysteresis loss is reduced.

【0024】例として、永久磁石の表面磁束が500G
の場合の損失の温度変化を図2に示す。構造はa曲
線、構造はbの曲線で示し、永久磁石を配置させない
場合についてcの曲線で示す。構造,共、常温から
120℃までの温度範囲で損失は低減されている。
As an example, the surface magnetic flux of the permanent magnet is 500 G
FIG. 2 shows the temperature change of the loss in the case (1). The structure is indicated by a curve, the structure is indicated by a curve b, and the case without a permanent magnet is indicated by a curve c. In both cases, the loss is reduced in the temperature range from normal temperature to 120 ° C.

【0025】表1のような結果となったのは、Mn−Z
nフェライト磁心の表面またはMn−Znフェライト磁
心を用いたコイルの表面に配置させる永久磁石の着磁方
向の表面磁束が100〜1000Gのり範囲では、永久
磁石によりMn−Znフェライト磁心の磁路と垂直な方
向に磁場が印加されて磁壁が消失し、磁壁の非可逆的な
移動により生じるヒステリシス損失と磁壁移動により、
結晶粒内で局所的に生じる渦電流による損失が共に低減
されるためと考えられる。
The result as shown in Table 1 is that Mn-Z
When the surface magnetic flux in the magnetization direction of the permanent magnet disposed on the surface of the n-ferrite core or the coil using the Mn-Zn ferrite core is in the range of 100 to 1000 G, the permanent magnet is perpendicular to the magnetic path of the Mn-Zn ferrite core. Magnetic field is applied in a certain direction, the domain wall disappears, and hysteresis loss and domain wall movement caused by irreversible movement of the domain wall cause
It is considered that the loss due to the eddy current locally occurring in the crystal grain is reduced together.

【0026】又、表面磁束が100Gよりも小さいと、
フェライト磁心内の磁壁が残存して損失が低減せず、
又、1000Gよりも大きいと、励磁方向へのスピンの
配向が容易でなく、ヒステリシス損失以外の損失が劣化
するためと考えられる。
When the surface magnetic flux is smaller than 100 G,
The domain wall in the ferrite core remains and the loss does not decrease,
On the other hand, if it is larger than 1000 G, it is considered that spin orientation in the excitation direction is not easy, and losses other than the hysteresis loss are deteriorated.

【0027】[0027]

【発明の効果】以上、述べたごとく、本発明によれば、
小型化、軽量化、および低コスト化した高周波で使用す
る低損失複合磁心を提供できる。
As described above, according to the present invention,
It is possible to provide a low-loss composite core used at a high frequency, which is reduced in size, weight, and cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の低損失複合磁心の構造および構造
を模式的に示す説明図。図1(a)は、本発明の低損失
複合磁心の構造を示す説明図。図1(b)は、本発明
の低損失複合磁心の構造を示す説明図。
FIG. 1 is an explanatory view schematically showing the structure and structure of a low-loss composite magnetic core of the present invention. FIG. 1A is an explanatory view showing a structure of a low-loss composite magnetic core of the present invention. FIG. 1B is an explanatory view showing the structure of the low-loss composite magnetic core of the present invention.

【図2】本発明の低損失複合磁心の構造(曲線a参
照)および構造(曲線b参照)の永久磁石の表面磁束
が500Gの場合の1MHz−500Gにおけるトータ
ル損失(Pcv)の温度変化と比較材(曲線c参照)の
同条件のトータル損失(Pcv)の温度変化を示す説明
図。
FIG. 2 is a graph showing a comparison between the temperature change of the total loss (Pcv) at 1 MHz to 500 G when the surface magnetic flux of the permanent magnet of the structure (see curve a) and the structure (see curve b) of the low-loss composite core of the present invention is 500 G Explanatory drawing which shows the temperature change of the total loss (Pcv) of the material (refer to curve c) under the same conditions.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 フェライトコア 3 樹脂 4 巻線 5 コイル DESCRIPTION OF SYMBOLS 1 Permanent magnet 2 Ferrite core 3 Resin 4 Winding 5 Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mn−Znフェライト磁心の表面に永久
磁石を配置し、前記Mn−Znフェライト磁心の磁路に
垂直な面の一端がS極に、その対極がN極を持つように
したことを特徴とする低損失複合磁心。
1. A permanent magnet is arranged on a surface of a Mn-Zn ferrite core, and one end of a surface perpendicular to a magnetic path of the Mn-Zn ferrite core has an S pole and a counter electrode has an N pole. A low-loss composite magnetic core characterized by:
【請求項2】 Mn−Znフェライト磁心を用いたコイ
ルの表面に永久磁石を配置し、前記Mn−Znフェライ
ト磁心の磁路に垂直な面の一端がS極に、その対極がN
極を持つようにしたことを特徴とする低損失複合磁心。
2. A permanent magnet is disposed on the surface of a coil using a Mn-Zn ferrite core, and one end of a surface perpendicular to the magnetic path of the Mn-Zn ferrite core is an S pole and its counter electrode is an N pole.
A low-loss composite core characterized by having poles.
【請求項3】 請求項1または2記載の低損失複合磁心
において、前記永久磁石の着磁方向の表面磁束が100
〜1000Gであることを特徴とする低損失複合磁心。
3. The low-loss composite magnetic core according to claim 1, wherein the surface magnetic flux of the permanent magnet in the magnetizing direction is 100.
A low-loss composite magnetic core characterized by being up to 1000 G.
JP9249319A 1997-08-29 1997-08-29 Low-loss composite magnetic core Pending JPH1174129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9249319A JPH1174129A (en) 1997-08-29 1997-08-29 Low-loss composite magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9249319A JPH1174129A (en) 1997-08-29 1997-08-29 Low-loss composite magnetic core

Publications (1)

Publication Number Publication Date
JPH1174129A true JPH1174129A (en) 1999-03-16

Family

ID=17191238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9249319A Pending JPH1174129A (en) 1997-08-29 1997-08-29 Low-loss composite magnetic core

Country Status (1)

Country Link
JP (1) JPH1174129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050141A1 (en) * 2000-01-04 2001-07-12 Epcos Ag Sensor for measuring a direct current and a measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050141A1 (en) * 2000-01-04 2001-07-12 Epcos Ag Sensor for measuring a direct current and a measuring method

Similar Documents

Publication Publication Date Title
EP3187475B1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
US6458286B1 (en) Manganese-zinc (Mn-Zn) based ferrite
JP2917706B2 (en) Oxide magnetic material
JP3917216B2 (en) Low loss ferrite core material
TW201840512A (en) MnZn-based ferrite sintered body
JP2003100508A (en) Low-loss oxide magnetic material
JPH06310320A (en) Oxide magnetic substance material
JPH1174129A (en) Low-loss composite magnetic core
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2855990B2 (en) Oxide magnetic material
Suh et al. Temperature dependence of power loss of Mn-Zn ferrites at high frequency
JP3790606B2 (en) Mn-Co ferrite material
JP2530769B2 (en) Low loss oxide magnetic material for magnetic elements used in high frequency power supplies
JP3597666B2 (en) Mn-Ni ferrite material
Oh et al. Effects of additives on magnetic properties of sheet Sr‐Ba ferrite magnets
JPH07130527A (en) Oxide magnetic material
JPH06349622A (en) Core for transformer or inductor
JPH10270229A (en) Mn-ni ferrite material
JPH06333727A (en) Mn-zn ferrite
JP3023799B2 (en) Method for producing low-loss oxide magnetic material
KR102131584B1 (en) Structure or Method of Transformer Core for Saturation Flux Reduction
JP2000306719A (en) Low-loss oxide magnetic material
JPH11251132A (en) Low-loss oxide magnetic material
JP2000269017A (en) Oxide magnetic material
JP2003128458A (en) Mn-Zn FERRITE