JP2000306719A - Low-loss oxide magnetic material - Google Patents

Low-loss oxide magnetic material

Info

Publication number
JP2000306719A
JP2000306719A JP11116622A JP11662299A JP2000306719A JP 2000306719 A JP2000306719 A JP 2000306719A JP 11116622 A JP11116622 A JP 11116622A JP 11662299 A JP11662299 A JP 11662299A JP 2000306719 A JP2000306719 A JP 2000306719A
Authority
JP
Japan
Prior art keywords
mol
loss
low
zno
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116622A
Other languages
Japanese (ja)
Inventor
Yasuki Takashima
康樹 鷹島
Koichi Kondo
幸一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11116622A priority Critical patent/JP2000306719A/en
Publication of JP2000306719A publication Critical patent/JP2000306719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for a bobbin because of not only low loss but also high specific resistance and to make a power source small-sized, lightweight, and low-cost. SOLUTION: This material consists principally of 48 to 50 mol% (where <50 mol% is excluded) Fe2O3, 20 to 32 mol% ZnO, 3 to 7 mol% CuO, and the balance for NiO. 0 to 5 mol% (where 0 is excluded) of ZnO is substituted for MgO and the mean crystal particle size of a sinter is 5 μm or larger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スイッチング電源
用トランスやチョークコイル等の磁心に使用される低損
失酸化物磁性に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss oxide magnetism used for a magnetic core such as a transformer for a switching power supply and a choke coil.

【0002】[0002]

【従来の技術】従来、スイッチング電源用トランスやチ
ョークコイル等の磁心材料としては、主に比較的飽和磁
束密度が高く電力損失が小さいMn−Zn系フェライト
が用いられてきた。
2. Description of the Related Art Conventionally, Mn-Zn ferrites having relatively high saturation magnetic flux density and low power loss have been mainly used as magnetic core materials for transformers for switching power supplies and choke coils.

【0003】しかし、エレクトロニクス機器の小型化、
軽量化、高性能化に伴ない、それら機器に使用される部
品への要求も、一段と厳しいものとなり、Mn−Zn系
フェライトでは、これらの要求に応えられなくなってき
ている。即ち、Mn−Zn系フェライトの直流比抵抗が
10〜10Ωcmと低いため、短絡等の不具合をな
くすためには、通常、これらの磁心にボビンを介して巻
線を行う必要があり、小型化、軽量化、および低コスト
化を進める上での障害となっている。
[0003] However, miniaturization of electronic equipment,
As the weight and performance have been reduced, the requirements for components used in such devices have become even more severe, and Mn-Zn based ferrites have become unable to meet these requirements. That is, since the DC specific resistance of the Mn-Zn-based ferrite is as low as 10 1 to 10 3 Ωcm, it is usually necessary to wind these magnetic cores through a bobbin in order to eliminate defects such as short circuits. This is an obstacle to miniaturization, weight reduction, and cost reduction.

【0004】そこで、一般に、直流比抵抗が10〜1
10Ωcmと高く、巻線を行なう際に、ボビンを必要
としないNi−Zn系フェライトの実用化が検討されて
きた。
Therefore, in general, the DC specific resistance is 10 6 to 1
Practical application of Ni—Zn based ferrite, which is as high as 0 10 Ωcm and does not require a bobbin when performing winding, has been studied.

【0005】[0005]

【発明が解決しようとする課題】しかし、Ni−Zn系
フェライトの磁心には、ヒステリシス損失に起因する電
力損失が大きいという欠点があり、小型化、軽量化、高
性能化、及び低コスト化が難しいという問題があった。
However, the magnetic core of the Ni-Zn ferrite has a drawback that the power loss due to the hysteresis loss is large, and the miniaturization, weight reduction, high performance and cost reduction are required. There was a problem that it was difficult.

【0006】従って、本発明は、上記課題を解決する低
損失酸化物磁性材料を提供することにある。
Accordingly, an object of the present invention is to provide a low-loss oxide magnetic material that solves the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】本発明は、主成分組成が
48〜50mol%(但し、50mol%を含まず)の
Fe、20〜32mol%のZnO、3〜7mo
l%のCuO、残部NiOからなり、ZnOの0〜5m
ol%(但し、0を含まず)をMgOで置換した焼結体
からなる低損失酸化物磁性材料である。
The present invention SUMMARY OF] is, 48~50Mol% principal component composition (not inclusive of 50 mol%) of Fe 2 O 3, 20~32mol% of ZnO, 3~7Mo
1% CuO, balance NiO, ZnO 0-5m
It is a low-loss oxide magnetic material made of a sintered body in which ol% (excluding 0) is substituted with MgO.

【0008】また、本発明は、前記焼結体の平均結晶粒
径が5μm以上の低損失酸化物磁性材料である。
Further, the present invention is a low-loss oxide magnetic material having an average crystal grain size of the sintered body of 5 μm or more.

【0009】フェライトの損失は、大別して、ヒステリ
シス損失、渦電流損失、および残留損失からなる。Ni
−Zn系フェライトは、一般に、直流比抵抗が10
10 10Ωcmと高く、渦電流損失は無視できるほど小
さいが、ヒステリシス損失は大きい。ヒステリシス損失
は、磁気異方性により発生する損失である。磁気異方性
のうち結晶磁気異方性は、主として酸素イオンを介する
磁性イオン間の交換相互作用により生じると考えられ
る。
[0009] Ferrite loss is roughly classified into hysteresis.
It consists of cis loss, eddy current loss, and residual loss. Ni
-Zn ferrite generally has a DC specific resistance of 106~
10 10High Ωcm, negligible eddy current loss
However, the hysteresis loss is large. Hysteresis loss
Is a loss caused by magnetic anisotropy. Magnetic anisotropy
Of the crystalline magnetic anisotropy is mainly through oxygen ions
Probably caused by exchange interaction between magnetic ions
You.

【0010】従って、Ni−Zn系フェライト中のZn
2+の0〜5mol%(但し、0を含まず)をZn2+
よりもイオン半径が小さいMg2+で置換することによ
り、ヒステリシス損失を低減できる。置換されるイオン
を非磁性のZn2+としたのは、Zn2+イオンとMg
2+イオンの置換は、非磁性イオン同士の置換であり、
非磁性イオンの数が変わらないため、飽和磁束密度(B
s)およびキュリー温度(Tc)の低下が少ないからで
ある。
Therefore, Zn in the Ni—Zn ferrite
0 + 5 mol% (but not including 0) of 2+
Hysteresis loss can be reduced by substituting Mg 2+ having a smaller ionic radius than that. Non-magnetic Zn 2+ was used as the ion to be replaced because Zn 2+ ion and Mg 2+
Substitution of 2+ ions is substitution between non-magnetic ions,
Since the number of non-magnetic ions does not change, the saturation magnetic flux density (B
s) and the Curie temperature (Tc) are small.

【0011】ZnOをMgOで置換する量を5mol%
以下としたのは、置換量が5mol%より多いと、スピ
ネル中に固溶することができないMg2+がスピネル以
外の構造を持つ相として析出し、損失(Pcv)、飽和
磁束密度(Bs)、およびキュリー温度(Tc)を著し
く劣化させるためである。
The amount of replacing ZnO with MgO is 5 mol%
If the substitution amount is more than 5 mol%, Mg 2+ which cannot be dissolved in the spinel precipitates as a phase having a structure other than the spinel, and the loss (Pcv), the saturation magnetic flux density (Bs), And the Curie temperature (Tc) is significantly deteriorated.

【0012】また、ZnOをMgOで置換する量を0m
ol%以上(但し、0を含まず)としたのは、Ni−Z
n系フェライト中へのMgOの微量添加は、一般的では
なく、磁性イオン間の距離を大きくし、磁気異方性を低
減する効果があるためである。
The amount of ZnO to be replaced by MgO is 0 m.
ol% or more (however, 0 is not included) is because Ni-Z
This is because the addition of a small amount of MgO to the n-type ferrite is not general and has an effect of increasing the distance between magnetic ions and reducing magnetic anisotropy.

【0013】主成分組成を48〜50mol%(但し、
50mol%を含まず)のFe 、20〜32mo
l%のZnO、3〜7mol%のCuO、残部をNiO
としたのは、Feを48mol%以下とすると、
常温の磁気損失が著しく増加して、50mol%以上と
すると、Fe2+の発生により、比抵抗が著しく小さく
なるためである。
When the main component composition is 48 to 50 mol% (however,
50 mol% is not included) Fe2O 3, 20-32mo
1% ZnO, 3-7 mol% CuO, balance NiO
The reason is that Fe2O3Is 48 mol% or less,
The magnetic loss at room temperature increases significantly, to over 50 mol%
Then, Fe2+Causes the resistivity to be extremely low
It is because it becomes.

【0014】ZnOが20mol%未満では、常温の損
失が大きくなり、32mol%を超えると、Bs、Tc
の低下を招いてしまう。また、CuOが7mol%を超
えると、異常粒が発生し、損失の増加を招き、CuOを
3mol%未満とすると、平均結晶粒径が5μm未満と
なり、損失が大きくなる。
If ZnO is less than 20 mol%, the loss at room temperature becomes large, and if it exceeds 32 mol%, Bs, Tc
Will be reduced. When CuO exceeds 7 mol%, abnormal grains are generated, causing an increase in loss. When CuO is less than 3 mol%, the average crystal grain size becomes less than 5 μm, and the loss increases.

【0015】平均結晶粒径を5μm以上としたのは、5
μm以下では損失が大きくなってしまうためである。
The reason why the average crystal grain size is set to 5 μm or more is as follows.
This is because the loss is increased below μm.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0017】(第1の実施の形態)Fe,Ni
O、ZnO、MgO、及びCuOを表1の1〜8に示す
組成となるように秤量し、湿式で20分間混合し、乾燥
・造粒後、800℃の大気中で仮焼し、得られた粉末を
湿式で120分間粉砕し、乾燥・造粒し、プレスした。
その後、大気中で1200℃で120分間焼成した。
(First Embodiment) Fe 2 O 3 , Ni
O, ZnO, MgO, and CuO are weighed so as to have the compositions shown in Tables 1 to 8, mixed in a wet system for 20 minutes, dried, granulated, and calcined in the air at 800 ° C. to obtain The powder thus obtained was pulverized by a wet method for 120 minutes, dried, granulated, and pressed.
Then, it baked at 1200 degreeC for 120 minutes in air | atmosphere.

【0018】[0018]

【表1】 [Table 1]

【0019】そうして得られた焼結体(寸法:15mm
φ−10mmφ−5mm、比抵抗:10Ωcm、平均
結晶粒径:14μm)のPcv、Ph、Bs、およびT
cを測定した。
The sintered body thus obtained (dimensions: 15 mm
Pcv, Ph, Bs, and T of φ-10 mmφ-5 mm, specific resistance: 10 8 Ωcm, and average crystal grain size: 14 μm)
c was measured.

【0020】表1に、各測定結果を示す。発明品2,
3,4は、比較品1と比較すると、Pcv、Phが低
く、MgOの添加量が多いものほどPcv、Phが減少
している。これは、Ni−Zn系フェライト中のZn
2+をZn2+よりもイオン半径が小さいMg2+で置
換することにより、結晶磁気異方性が減少し、ヒステリ
シス損失が減少したことによると考えられる。
Table 1 shows the results of each measurement. Invention 2,
Pcv and Ph are lower in Comparative Examples 3 and 4 than in Comparative Product 1, and Pcv and Ph decrease as the amount of added MgO increases. This is because Zn in Ni—Zn ferrite
It is considered that the substitution of 2+ with Mg 2+ having an ionic radius smaller than that of Zn 2+ reduced the crystal magnetic anisotropy and reduced the hysteresis loss.

【0021】また、発明品2,3,4は、比較品1と比
較して、TcおよびBsの低下もごくわずかである。比
較品5は、発明品4よりも置換量が多いが、Pcvは増
大し、BsおよびTcは低下している。これは、スピネ
ル中に固溶することができないMg2+がスピネル以外
の構造を持つ相として析出しているためと考えられる。
The invention products 2, 3, and 4 also have a very small decrease in Tc and Bs as compared with the comparison product 1. The comparative product 5 has a larger substitution amount than the inventive product 4, but has an increased Pcv and decreased Bs and Tc. This is considered to be because Mg 2+ which cannot be dissolved in the spinel is precipitated as a phase having a structure other than the spinel.

【0022】比較品6,7,8は、磁性イオンであるN
2+を非磁性イオンであるMg で置換しているた
め、従来品1に比べて、BsおよびTcの低下が著し
い。
Comparative products 6, 7, and 8 are magnetic ions of N
Due to the substitution with Mg 2 + a i 2+ is a non-magnetic ions, as compared with the conventional product 1, reduction of Bs and Tc is remarkable.

【0023】図1に、表1中の従来品1および発明品4
のPcvの温度特性を示す。発明品4は、比較品1に比
べて、室温から120℃までの範囲で損失が低減されて
いる。
FIG. 1 shows a conventional product 1 and an invention product 4 shown in Table 1.
3 shows the temperature characteristics of Pcv. Inventive product 4 has a reduced loss in the range from room temperature to 120 ° C. as compared to comparative product 1.

【0024】(第2の実施の形態)Fe,Ni
O、ZnO、MgO、CuOを表1の9〜20に示す組
成となるように秤量し、湿式で20分間混合し、乾燥・
造粒後、800℃の大気中で仮焼し、得られた粉末を湿
式で120分間粉砕し、乾燥・造粒し、プレスした。
(Second Embodiment) Fe 2 O 3 , Ni
O, ZnO, MgO, and CuO are weighed so as to have the compositions shown in Tables 9 to 20, mixed by a wet method for 20 minutes, and dried.
After granulation, the powder was calcined in the air at 800 ° C., and the obtained powder was wet-pulverized for 120 minutes, dried, granulated, and pressed.

【0025】その後、大気中において1200℃で12
0分間焼成した。そうして得られた焼結体(寸法:15
mmφ−10mmφ−5mm)のPcv、Bs、Tc、
平均結晶粒径、比抵抗を測定した。
Then, at 1200.degree.
Bake for 0 minutes. The sintered body thus obtained (dimensions: 15
mmφ-10mmφ-5mm) Pcv, Bs, Tc,
The average crystal grain size and specific resistance were measured.

【0026】表2に、各測定結果を示す。Table 2 shows the results of each measurement.

【0027】[0027]

【表2】 [Table 2]

【0028】Feが48〜50mol%(但し、
50mol%を含まず)の発明品10,11は、比較品
9,12と比較すると、比抵抗が高く、かつ損失が少な
い。ZnOが20〜32mol%の発明品14〜16
は、比較品13,17と比較すると、Bs、Tcがとも
に高く、かつ損失が少ない。CuOが3〜7mol%の
発明品19は、比較品18,20と比較すると損失が少
ない。
Fe 2 O 3 is 48 to 50 mol% (provided that
Inventive products 10 and 11 (not including 50 mol%) have higher specific resistance and less loss compared to comparative products 9 and 12. Inventions 14 to 16 with ZnO of 20 to 32 mol%
Has higher Bs and Tc and lower loss compared to the comparative products 13 and 17. The invention product 19 having CuO of 3 to 7 mol% has a smaller loss as compared with the comparison products 18 and 20.

【0029】(第3の実施の形態)(Third Embodiment)

【0030】49.0mol%のFe,16mo
l%のNiO、25mol%のZnO、5mol%のM
gO、5mol%のCuOとなるように秤量し、湿式で
20分間混合し、乾燥・造粒後、800℃の大気中で仮
焼し、得られた粉末を湿式で120分間粉砕し、乾燥・
造粒し、プレスした。
49.0 mol% of Fe 2 O 3 , 16 mo
1% NiO, 25 mol% ZnO, 5 mol% M
gO, weighed to 5 mol% CuO, mixed for 20 minutes in a wet system, dried and granulated, calcined in the air at 800 ° C, pulverized the obtained powder for 120 minutes in a wet system, dried and granulated.
It was granulated and pressed.

【0031】その後、発明品22は、大気中において1
200℃で120分間焼成した。また、比較品21は、
大気中で1000℃で120分間焼成した。そうして得
られた焼結体(寸法:15mmφ−10mmφ−5m
m)のPcv、Bs、Tc、平均結晶粒径、比抵抗を測
定した。
After that, the invention product 22 becomes 1 in the atmosphere.
It was baked at 200 ° C. for 120 minutes. In addition, the comparative product 21
It baked at 1000 degreeC for 120 minutes in air | atmosphere. The sintered body thus obtained (dimensions: 15 mmφ-10 mmφ-5 m
m) Pcv, Bs, Tc, average crystal grain size, and specific resistance were measured.

【0032】表3に、各測定結果を示す。Table 3 shows each measurement result.

【0033】[0033]

【表3】 [Table 3]

【0034】平均結晶粒径10μm以上の発明品22
は、比較品21と比較すると、損失が少ない。
Invention 22 having an average crystal grain size of 10 μm or more
Has a smaller loss as compared with the comparative product 21.

【0035】[0035]

【発明の効果】以上述べたごとく、本発明によれば、主
成分組成が48〜50mol%(但し、50mol%を
含まず)のFe、20〜32mol%のZnO、
3〜7mol%のCuO、残部NiOからなり、ZnO
の0〜5mol%(但し、0を含まず)をMgOで置換
することを特徴とし、かつ、焼結体の平均結晶粒径が5
μm以上とすることで、低損失酸化物磁性材料が得られ
る。本発明品は、低損失であるばかりでなく、高比抵抗
でもあるため、ボビンが不要であり、電源の小型化、軽
量化、および低コスト化の効果が期待できる.
As described above, according to the present invention, according to the present invention, Fe 2 O 3 of 48~50Mol% main component composition (not inclusive of 50mol%), 20~32mol% of ZnO,
3 to 7 mol% CuO, balance NiO, ZnO
Characterized by substituting 0 to 5 mol% (but not including 0) of MgO with MgO, and having an average crystal grain size of 5
When the thickness is at least μm, a low-loss oxide magnetic material can be obtained. Since the product of the present invention has not only low loss but also high specific resistance, a bobbin is not required, and the effects of reducing the size, weight, and cost of the power supply can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表1に示した比較品1と発明品4の室温から1
20℃のPcv(50kHz−1500G)の温度特性
を示す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows room temperature of comparative product 1 and inventive product 4 shown in Table 1
The figure which shows the temperature characteristic of 20 degreeC Pcv (50kHz-1500G).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主成分組成が48〜50mol%(但
し、50mol%を含まず)のFe、20〜32
mol%のZnO、3〜7mol%のCuO、残部Ni
Oからなり、ZnOの0〜5mol%(但し、0を含ま
ず)をMgOで置換した焼結体からなることを特徴とす
る低損失酸化物磁性材料。
1. Fe 2 O 3 having a main component composition of 48 to 50 mol% (but not including 50 mol%), 20 to 32
mol% ZnO, 3-7 mol% CuO, balance Ni
A low-loss oxide magnetic material comprising a sintered body comprising O and substituting 0 to 5 mol% (excluding 0) of ZnO with MgO.
【請求項2】 前記焼結体の平均結晶粒径が5μm以上
であることを特徴とする請求項1記載の低損失酸化物磁
性材料。
2. The low-loss oxide magnetic material according to claim 1, wherein the average crystal grain size of the sintered body is 5 μm or more.
JP11116622A 1999-04-23 1999-04-23 Low-loss oxide magnetic material Pending JP2000306719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116622A JP2000306719A (en) 1999-04-23 1999-04-23 Low-loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116622A JP2000306719A (en) 1999-04-23 1999-04-23 Low-loss oxide magnetic material

Publications (1)

Publication Number Publication Date
JP2000306719A true JP2000306719A (en) 2000-11-02

Family

ID=14691758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116622A Pending JP2000306719A (en) 1999-04-23 1999-04-23 Low-loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2000306719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300774A (en) * 2002-04-04 2003-10-21 Hitachi Metals Ltd LOW LOSS Ni-Zn BASED FERRITE
US7524433B2 (en) 2004-05-21 2009-04-28 Tdk Corporation Ferrite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300774A (en) * 2002-04-04 2003-10-21 Hitachi Metals Ltd LOW LOSS Ni-Zn BASED FERRITE
US7524433B2 (en) 2004-05-21 2009-04-28 Tdk Corporation Ferrite material

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
TW201838951A (en) Ni-based ferrite sintered body, coil component, and method for manufacturing ni-based ferrite sintered body
JP3108804B2 (en) Mn-Zn ferrite
JPH05335132A (en) Oxide magnetic body material
JP2003100508A (en) Low-loss oxide magnetic material
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP3597673B2 (en) Ferrite material
JP2002289421A (en) Oxide magnetic material, ferrite core, coil component, and transformer
JP5137275B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP5560436B2 (en) MnZnNi ferrite
JP2001044016A (en) Ferrite material of high saturation-magnetic-flux density, and ferrite core using the material
JP2000124022A (en) Low-loss oxide magnetic material
JP2000306719A (en) Low-loss oxide magnetic material
JP3597666B2 (en) Mn-Ni ferrite material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2002246221A (en) Low loss oxide magnetic material
JP3790606B2 (en) Mn-Co ferrite material
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP2007031210A (en) Mn-Zn FERRITE
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JPH10270229A (en) Mn-ni ferrite material
JP2000269017A (en) Oxide magnetic material
JPH09232124A (en) Low loss oxide magnetic material