JPH11251132A - Low-loss oxide magnetic material - Google Patents
Low-loss oxide magnetic materialInfo
- Publication number
- JPH11251132A JPH11251132A JP10064412A JP6441298A JPH11251132A JP H11251132 A JPH11251132 A JP H11251132A JP 10064412 A JP10064412 A JP 10064412A JP 6441298 A JP6441298 A JP 6441298A JP H11251132 A JPH11251132 A JP H11251132A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- zno
- cao
- loss
- pcv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電源トランスまた
はチョークコイル用フェライト磁芯に用いられる低損失
酸化物磁性材料に関するものである。The present invention relates to a low-loss oxide magnetic material used for a power transformer or a ferrite core for a choke coil.
【0002】[0002]
【従来の技術】電源用トランスに用いられる材料として
は、主に比較的飽和磁束密度が高く、電力損失が小さい
Mn−Znフェライトが用いられている。しかし、Mn
−Znフェライトは、直流比抵抗が10〜103Ωcm
と低い。そこで、短絡等の不具合をなくすため、通常こ
れらの磁芯に、ボビンを介して巻線を行っており、小型
化、軽量化および低コスト化を進める上での障害となっ
ている。2. Description of the Related Art As a material used for a power transformer, Mn-Zn ferrite having a relatively high saturation magnetic flux density and a small power loss is mainly used. However, Mn
-Zn ferrite has a DC specific resistance of 10 to 10 3 Ωcm
And low. Therefore, in order to eliminate defects such as short circuits, these magnetic cores are usually wound through bobbins, which is an obstacle to miniaturization, weight reduction and cost reduction.
【0003】一方、Ni−Znフェライトは、一般に、
直流比抵抗が106〜1010Ωcmと高く、巻線をする
際にボビンを必要としないが、電力損失がMn−Znフ
ェライトに比べて著しく高い。On the other hand, Ni—Zn ferrite is generally
The DC specific resistance is as high as 10 6 to 10 10 Ωcm, and a bobbin is not required for winding, but the power loss is significantly higher than that of Mn-Zn ferrite.
【0004】[0004]
【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、電力損失が小さい酸化物磁性材料を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an oxide magnetic material having small power loss.
【0005】[0005]
【課題を解決するための手段】本発明の低損失酸化物磁
性材料は、Ni−Znフェライトの主成分であるZnO
の0〜5mol%(0を含まず)をCaOで置換するこ
とを特徴とする。According to the present invention, there is provided a low-loss oxide magnetic material comprising ZnO, which is a main component of Ni--Zn ferrite.
Is characterized by substituting 0 to 5 mol% (not including 0) of Ca with CaO.
【0006】即ち、本発明は、主成分としてFe2O3を
48〜50mol%、ZnOを20〜35mol%、C
uOを3〜10mol%、CaOを0〜5mol%(0
を含まず)、残部NiOからなる低損失酸化物磁性材料
である。That is, according to the present invention, as a main component, 48 to 50 mol% of Fe 2 O 3 , 20 to 35 mol% of ZnO,
3 to 10 mol% of uO and 0 to 5 mol% of CaO (0
), And a low-loss oxide magnetic material consisting of the balance NiO.
【0007】[0007]
【発明の実施の形態】フェライトの磁気損失は、ヒステ
リシス損失、渦電流損失および残留損失からなる。Ni
−Znフェライトは、一般に、直流比抵抗が106〜1
010Ωcmと高く、渦電流損失は無視できるほど小さ
い。ヒステリシス損失は、磁気異方性により発生する損
失である。磁気異方性のうち結晶磁気異方性は、主とし
て酸素イオンを介する磁性イオン間の交換相互作用によ
り生じると考えられる。BEST MODE FOR CARRYING OUT THE INVENTION Magnetic loss of ferrite consists of hysteresis loss, eddy current loss and residual loss. Ni
-Zn ferrite, generally, DC specific resistance of 10 6 to 1
It is as high as 0 10 Ωcm, and the eddy current loss is negligibly small. Hysteresis loss is loss caused by magnetic anisotropy. Among the magnetic anisotropies, the crystalline magnetic anisotropy is considered to be mainly caused by exchange interaction between magnetic ions via oxygen ions.
【0008】Ni−Znフェライト中のZn2+の0〜5
mol%(0を含まず)をZn2+よりもイオン半径が大
きいCa2+で置換することにより、磁性イオン間の距離
が大きくなり交換相互作用が弱められ、結晶磁気異方性
が減少し、ヒステリシス損失を低減できると考えられ
る。0-5 of Zn 2+ in Ni—Zn ferrite
By replacing mol% (not including 0) with Ca 2+ having an ionic radius larger than that of Zn 2+ , the distance between magnetic ions is increased, the exchange interaction is weakened, and the crystal magnetic anisotropy is reduced. It is considered that the hysteresis loss can be reduced.
【0009】置換されるイオンを非磁性のZn2+とした
のは、置換により非磁性イオンの数が変わらず、従っ
て、飽和磁束密度(Bs)およびキュリー温度(Tc)
の低下が少ないためである。The reason why the ions to be replaced are nonmagnetic Zn 2+ is that the number of nonmagnetic ions does not change due to the replacement, and therefore, the saturation magnetic flux density (Bs) and the Curie temperature (Tc)
This is because there is little decrease.
【0010】Fe2O3を48〜50mol%、ZnOを
20〜35mol%、CuOを3〜10mol%とした
のは、Fe2O3が50mol%を越えると、比抵抗が低
下し、ZnOが35mol%を越えるか、または、Fe
2O3が48mol%未満、または、CuOが10mol
%を越えると、Bsが低下するためである。The reason why the content of Fe 2 O 3 is 48 to 50 mol%, the content of ZnO is 20 to 35 mol%, and the content of CuO is 3 to 10 mol% is that when the content of Fe 2 O 3 exceeds 50 mol%, the specific resistance decreases and ZnO becomes Over 35 mol% or Fe
2 O 3 is less than 48 mol% or CuO is 10 mol
%, Bs decreases.
【0011】また、CuOが3mol%未満だと焼結温
度を高くしなければならず、比抵抗が低下するためであ
る。また、ZnOが20mol%未満だと、Pcvが大
きくなるためである。On the other hand, if CuO is less than 3 mol%, the sintering temperature must be increased, and the specific resistance decreases. Further, if ZnO is less than 20 mol%, Pcv becomes large.
【0012】また、ZnOをCaOで置換する量を0〜
5mol%(0を含まず)としたのは、置換量が5mo
l%より多いと、スピネル中に固溶することができない
Ca2+がスピネル以外の構造を持つ相として析出し、電
力損失(Pcv)、BsおよびTcを著しく劣化させる
ためである。また、ZnOをCaOで置換する量を0m
ol%以上(0を含まず)としたのは、Ni−Znフェ
ライト中にCaOを微量添加することは一般的ではない
が、置換量が微量でも、磁性イオン間の距離を大きく
し、磁気異方性を低減する効果があるためである。Further, the amount of ZnO to be replaced with CaO is 0 to
5 mol% (not including 0) is the substitution amount of 5 mo
If the content is more than 1%, Ca 2+ that cannot be dissolved in the spinel precipitates as a phase having a structure other than the spinel, and the power loss (Pcv), Bs, and Tc are significantly deteriorated. Further, the amount of ZnO to be replaced by CaO is 0 m.
% or more (not including 0), it is not general to add a small amount of CaO to the Ni—Zn ferrite, but even if the substitution amount is very small, the distance between the magnetic ions is increased and the magnetic difference is increased. This is because there is an effect of reducing anisotropy.
【0013】[0013]
【実施例】Fe2O3、NiO、ZnO、CuOおよびC
a(OH)2を、Fe2O3が49.0mol%、NiOが
11.0〜16.0mol%、ZnOが24.0〜30.0
mol%、CuOが5.0mol%、CaOが0〜5.0
mol%の組成となるように秤量し、湿式で20分間混
合し、乾燥、造粒した後、800℃の大気中で仮焼し、
得られた粉末を湿式で120分間粉砕し、乾燥、造粒
し、プレスした。その後、大気中、1200℃で120
分間焼成した。そうして得られた焼結体(寸法:15m
mφ−10mmφ−5mm)のPcv(50kHz−1
500G−80℃)、BsおよびTcを測定した。ま
た、焼結体を砕いて得られた粉末のX線回折ピークより
格子定数を算出した。なお、焼結体の比抵抗は、108
Ωcmであった。各試料についての測定結果を表1に示
す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Fe 2 O 3 , NiO, ZnO, CuO and C
a (OH) 2 is composed of 49.0 mol% of Fe 2 O 3 , 11.0 to 16.0 mol% of NiO, and 24.0 to 30.0 mol of ZnO.
mol%, CuO is 5.0 mol%, and CaO is 0 to 5.0.
The mixture was weighed so as to have a composition of mol%, mixed for 20 minutes in a wet system, dried, granulated, and calcined in the air at 800 ° C.
The obtained powder was wet-ground for 120 minutes, dried, granulated, and pressed. Then, in air at 1200 ° C. for 120
Bake for a minute. The sintered body thus obtained (dimensions: 15 m
Pcv (50 kHz-1) of mφ-10 mmφ-5 mm)
500G-80 ° C), Bs and Tc were measured. The lattice constant was calculated from the X-ray diffraction peak of the powder obtained by crushing the sintered body. The specific resistance of the sintered body was 10 8
Ωcm. Table 1 shows the measurement results for each sample.
【0014】 [0014]
【0015】表1において、試料番号と比較して、試
料番号、、は、ZnOをCaOで置換することに
より格子定数が増加し、Pcvは置換量が多いほど低下
している。これは、Ni−Znフェライト中のZn2+を
Zn2+よりもイオン半径が大きいCa2+で置換すること
により、磁性イオン間の距離が大きくなり交換相互作用
が弱められ、結晶磁気異方性が減少し、ヒステリシス損
失が低下したことによると考えられる。また、試料番号
、、は、試料番号と比較して、TcおよびBs
の低下もごくわずかである。試料番号は、試料番号
よりも置換量が多いが格子定数は変わらず、Pcvは増
大し、BsおよびTcは低下している。これはスピネル
中に固溶することができないCa2+がスピネル以外の構
造を持つ相として析出しているためと考えられる。Ni
Oを減らしてCaOを加えた試料番号、、の場合
には、ZnOを減らしてCaOを加えた試料番号に比
べて、非磁性イオンの数が増加するため、BsおよびT
cの低下が著しい。In Table 1, as compared with the sample numbers, the sample numbers and the lattice constants of the sample numbers are increased by replacing ZnO with CaO, and Pcv decreases as the substitution amount increases. This can be achieved by substituting the Zn 2+ of Ni-Zn ferrite in ionic radius larger Ca 2+ than Zn 2+, the exchange interaction is weakened distance between magnetic ions increases, the crystal magnetic anisotropy This is considered to be due to a decrease in the hysteresis loss due to a decrease in the hysteresis loss. Also, the sample number, Tc and Bs
The decline is very slight. The sample number has a larger substitution amount than the sample number, but the lattice constant does not change, Pcv increases, and Bs and Tc decrease. This is considered to be because Ca 2+ which cannot be dissolved in the spinel is precipitated as a phase having a structure other than the spinel. Ni
In the case of the sample number in which O was reduced and CaO was added, and in the case of the sample number in which ZnO was reduced and CaO was added, the number of nonmagnetic ions was increased.
The decrease of c is remarkable.
【0016】また、図1に、試料番号〜におけるP
cvとCaO置換量との関係を示した。図1より、Ca
O置換量が0〜5.0mol%(0を含まず)の範囲
で、Pcvが低減していることがわかる。FIG. 1 shows P in Sample Nos.
The relationship between cv and the amount of CaO substitution was shown. According to FIG.
It can be seen that Pcv is reduced when the O substitution amount is in the range of 0 to 5.0 mol% (not including 0).
【0017】図2に、表1中の試料番号およびにお
けるPcvの温度特性を示す。図2より、試料番号
(本発明品)は、試料番号(比較品)に比べて、室温
から120℃までのすべての範囲で損失が低減されてい
ることがわかる。FIG. 2 shows the temperature characteristics of Pcv in the sample numbers in Table 1. From FIG. 2, it can be seen that the loss of the sample number (product of the present invention) is reduced in all ranges from room temperature to 120 ° C. as compared with the sample number (comparative product).
【0018】なお、表1の組成以外でも、本発明の範囲
内であれば、その主成分であるZnOの0〜5mol%
(0を含まず)をCaOで置換することにより、同様の
効果が得られる。In addition, other than the compositions shown in Table 1, 0 to 5 mol% of ZnO, which is the main component, is within the scope of the present invention.
The same effect can be obtained by replacing (not including 0) with CaO.
【0019】[0019]
【発明の効果】以上、述べたごとく、本発明によれば、
Ni−Znフェライトの主成分であるZnOの0〜5m
ol%(0を含まず)をCaOで置換することで、電力
損失の小さい酸化物磁性材料を提供することができる。
本発明の酸化物磁性材料は、低損失であるばかりでなく
高比抵抗でもあるため、ボビンが不要であり、電源の小
型化および低コスト化の効果が期待できる。As described above, according to the present invention,
0-5 m of ZnO, the main component of Ni-Zn ferrite
By replacing ol% (not including 0) with CaO, an oxide magnetic material with low power loss can be provided.
Since the oxide magnetic material of the present invention has not only low loss but also high specific resistance, a bobbin is not required, and the effects of reducing the size and cost of a power supply can be expected.
【図1】PcvとCaO置換量との関係を示す図。FIG. 1 is a diagram showing the relationship between Pcv and CaO substitution amount.
【図2】表1に示した試料番号と試料番号における
室温から120℃のPcvの温度特性を示す図。FIG. 2 is a diagram showing sample numbers shown in Table 1 and temperature characteristics of Pcv from room temperature to 120 ° C. in the sample numbers.
1 本発明品(試料番号) 2 比較品(試料番号) 1 inventive product (sample number) 2 comparative product (sample number)
Claims (1)
l%、ZnOを20〜35mol%、CuOを3〜10
mol%、CaOを0〜5mol%(0を含まず)、残
部NiOからなることを特徴とする低損失酸化物磁性材
料。2. A method according to claim 1, wherein the main component is Fe 2 O 3 in an amount of 48 to 50 mo.
1%, ZnO 20-35 mol%, CuO 3-10
A low-loss oxide magnetic material comprising: mol%, 0 to 5 mol% of CaO (not including 0), and the balance being NiO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10064412A JPH11251132A (en) | 1998-02-27 | 1998-02-27 | Low-loss oxide magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10064412A JPH11251132A (en) | 1998-02-27 | 1998-02-27 | Low-loss oxide magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11251132A true JPH11251132A (en) | 1999-09-17 |
Family
ID=13257565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10064412A Pending JPH11251132A (en) | 1998-02-27 | 1998-02-27 | Low-loss oxide magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11251132A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113277840A (en) * | 2021-05-10 | 2021-08-20 | 天通控股股份有限公司 | High-frequency high-working-flux-density low-loss manganese-zinc ferrite and preparation method thereof |
-
1998
- 1998-02-27 JP JP10064412A patent/JPH11251132A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113277840A (en) * | 2021-05-10 | 2021-08-20 | 天通控股股份有限公司 | High-frequency high-working-flux-density low-loss manganese-zinc ferrite and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1293994B1 (en) | Transformer with ferrite core and method for driving it | |
JP3108803B2 (en) | Mn-Zn ferrite | |
US6458286B1 (en) | Manganese-zinc (Mn-Zn) based ferrite | |
KR20010050934A (en) | NiMnZn BASED FERRITE | |
JP4523430B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JP3917216B2 (en) | Low loss ferrite core material | |
JP3108804B2 (en) | Mn-Zn ferrite | |
JPH05335132A (en) | Oxide magnetic body material | |
JP2003100508A (en) | Low-loss oxide magnetic material | |
JP3597673B2 (en) | Ferrite material | |
JP4656949B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JP2005330126A (en) | MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME | |
JPH06310320A (en) | Oxide magnetic substance material | |
JP2000124022A (en) | Low-loss oxide magnetic material | |
JP5560436B2 (en) | MnZnNi ferrite | |
JP2000299215A (en) | Low loss oxide magnetic material | |
JPH11251132A (en) | Low-loss oxide magnetic material | |
JP3597665B2 (en) | Mn-Ni ferrite material | |
JP2001006916A (en) | Low loss oxide magnetic material | |
JP3597666B2 (en) | Mn-Ni ferrite material | |
JP3790606B2 (en) | Mn-Co ferrite material | |
JPH08148322A (en) | Oxide magnetic material and switching power supply employing the same | |
JP2000269017A (en) | Oxide magnetic material | |
JP5458298B2 (en) | Mn-Zn ferrite material | |
JP2007031210A (en) | Mn-Zn FERRITE |