JP2003300774A - LOW LOSS Ni-Zn BASED FERRITE - Google Patents

LOW LOSS Ni-Zn BASED FERRITE

Info

Publication number
JP2003300774A
JP2003300774A JP2002102651A JP2002102651A JP2003300774A JP 2003300774 A JP2003300774 A JP 2003300774A JP 2002102651 A JP2002102651 A JP 2002102651A JP 2002102651 A JP2002102651 A JP 2002102651A JP 2003300774 A JP2003300774 A JP 2003300774A
Authority
JP
Japan
Prior art keywords
loss
core
mol
ferrite
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002102651A
Other languages
Japanese (ja)
Other versions
JP4915889B2 (en
Inventor
Tokukazu Koyuhara
徳和 小湯原
Makoto Kadowaki
誠 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002102651A priority Critical patent/JP4915889B2/en
Publication of JP2003300774A publication Critical patent/JP2003300774A/en
Application granted granted Critical
Publication of JP4915889B2 publication Critical patent/JP4915889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a low loss Ni-Zn based ferrite with which a thinner and more compact low loss transformer can be obtained. <P>SOLUTION: The ferrite has a composition containing, as the main components, by mol, 48.5 to 50.5% Fe<SB>2</SB>O<SB>3</SB>, >3 to 12% CuO and 24 to 36% ZnO, and the balance NiO, and containing, as an assistant component, ≤0.15% (exclusive of zero) V<SB>2</SB>O<SB>5</SB>, and has the minimum value of core loss in the range of 20 to 140°C. Further, the minimum value of the above core loss measured in 50 kHz, 150 mT is ≤250 kW/m<SP>3</SP>, and saturation magnetic flux density is ≥300 mT. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、液晶バックライ
ト、スイッチング電源等のトランスに用いられる低損失
のNi−Zn系フェライトに関する。 【0002】 【従来の技術】近年、携帯機器をはじめとする電子機器
の小型化・軽量化の進展が著しく、このため、かかる電
子機器に用いられる液晶バックライト用インバータ、ス
イッチング電源等にも、より一層の薄型化・小型化・軽
量化が求められている。上記ユニットに於いてトランス
は、その体積においても、電力損失においても大きな部
分を占めており、その小型化と高効率化が強く要請され
る。一般に、トランス用コアとして求められる特性とし
ては、駆動周波数でコア損失が小さい、飽和磁束密度が
高い、キューリー温度が高い、比抵抗が高い等が挙げら
れる。駆動周波数でコア損失が小さいことが要求される
のは、コア損失が大きいと、トランスとしての効率が悪
くなるだけでなく、自己発熱による熱暴走によって電子
機器を破壊する危険も生じるからである。 【0003】また、飽和磁束密度及び透磁率が大きい方
が小型化に有利であり、透磁率及び飽和磁束密度の大き
いフェライト材料が望まれる。このフェライト材料とし
ては、Mn―Zn系フェライトとNi―Zn系フェライ
トがあるが、このような用途には、主にMn―Zn系フ
ェライトが用いられていた。その理由は、一般的にMn
―Zn系フェライトの方がNi―Zn系フェライトに対
し、飽和磁束密度が高く、高透磁率で、かつ低損失であ
るからである。 【0004】 【発明が解決しようとする課題】しかし、Mn―Zn系
フェライトのコアを用いて、特に薄型化・小型化が要求
される液晶バックライト用インバータのトランスを作る
場合、下記の課題があった。薄型化・小型化が進展する
一方の液晶バックライト用インバータのトランスにおい
て、出力電圧は増大する一方であり、Mn−Zn系フェ
ライトコアの様に体積抵抗率が10Ω・m程度と低い場
合には、コアとコイル間の絶縁空間距離、コア・端子間
の絶縁空間距離、コア・引出し線間の絶縁などを考慮
し、必要とされる絶縁耐圧を確保することが必要であっ
た。これらの課題について、図5を用いて説明する。図
5(a)は、トランスの各構成部品の展開図である。コ
ア1は、絶縁シート2を介装して巻線3を巻回配設した
ボビン4に組み込まれる。ボビン4には端子5が配設さ
れている。図5(b)は、トランスの組立て後の状態を
示す。図5(b)の図示(イ)個所はコアとコイル間の
絶縁空間距離が必要であり、その結果トランス自体が大
きくなり薄型化・小型化を阻害することを、図5(b)
の(ロ)個所はコア・端子間の絶縁空間距離も同様必要
であり、これもまた薄型化・小型化を阻害することを、
図5(b)(ハ)個所はコア・引出し線間の絶縁も同様
に必要であり薄型化・小型化を阻害することを示してい
る。絶縁距離は、高電圧によるコロナ放電、絶縁破壊に
関係し、コア形状による電界傾度も関係する。これに対
し、体積抵抗率が10Ω・m以上と高いNi−Zn系
フェライトを用いた場合、上記コアに係わる絶縁耐圧の
問題を容易に解決でき、上記の様な空間の確保の必要も
なく、トランスの薄型化・小型化が可能である。そこ
で、本発明はNi-Zn系フェライトの組成を最適化し
て低損失化し、もって低損失薄型トランスのより一層の
薄型化・小型化を図ることを目的とした。 【0005】 【課題を解決するための手段】本発明は、主成分として
Fe 48.5mol%以上50.5mol%以
下,CuO 3mol%超12mol%以下,ZnO
24mol%以上36mol%以下,残部 NiOと、
副成分としてV 0.15wt%以下(0を含ま
ず)からなり、20℃〜140℃の間にコア損失の最小
値を有し、50kHz、150mTで測定した前記コア
損失の最小値が250kW/m以下で、飽和磁束密度
が300mT以上の低損失Ni−Zn系フェライトであ
る。 【0006】 【発明の実施の形態】本発明に係るNi-Zn系フェラ
イトは、主成分組成として48.5mol%以上50.
5mol%以下,CuO 3mol%超12mol%以
下,ZnO24mol%以上36mol%以下,残部
NiOとした。主成分をかかる範囲に限定したのは以下
の理由による。Feが48.5mol%未満であ
ると、コア損失が大きくなり、また、50.5mol%
を超えると比抵抗が急激に低くなり、Ni−Zn系の特
徴である絶縁性が低くなり、不適当である。CuOが3
mol%以下だと焼結密度が低く透磁率が小さいものし
か得られず、12mol%を超えるとコア損失が大きく
なる。ZnOが24mol%未満であると、コア損失が
大きくなり、また36mol%を超えると、コア損失の
最小値を得る温度が実際に使用される温度範囲(20℃
〜140℃)で低損失とならない。コア損失が250k
W/mを超えると、例えば液晶インバータ用トランス
に用いる場合はコア損失による発熱が大きな問題とな
る。NiOは前記Fe、CuO、ZnOの残部で
あるが、NiOが少ないとコア損失の最小値を得る温度
が実際に使用される温度範囲(20℃〜140℃)で低
損失とならず、逆に多いとコア損失が大きくなってしま
う。 【0007】副成分としてV 0.15wt%以
下複合添加含有する。一般に、フェライトの損失は、ヒ
ステリシス損失、渦電流損失、残留損失の3つに大別で
きる。本発明に係るフェライトとVを含有しない
Ni−Zn系フェライトの損失を比較すると、本発明に
係るフェライトでは、上記した3つの損失のうち、主に
ヒステリシス損失が低減している結果、従来のNi−Z
n系フェライトに比べ、大きく損失が減少していること
が分った。ヒステリシス損失は磁壁の非可逆的な移動に
より発生する損失である。ヒステリシス損失を低減する
ためには、磁壁移動の障害となる介在物を減らすことが
必要である。しかしながら、介在物を極端に減らしすぎ
ると、磁壁は長い距離を移動することになり、逆にヒス
テリシス損失を増加させてしまう。Vを所定量添
加含有させることで、前記介在物を制御できその結果、
ヒステリシス損失を低減させると考えられる。 さら
に、Vの添加量が多いと飽和磁束密度(Bs)が
低下し300mT以上の飽和磁束密度が得られない。従
って、Vの添加量は、低損失と高飽和磁束密度を
得るように0.15wt%以下に規定される。また、磁
壁の枚数は平均結晶粒径に依存するから、結晶粒径は大
きいことが望ましく、平均結晶粒径が5μm以上とする
のが好ましい。高い飽和磁束密度を得るには空孔率が3
%以下とするのも好ましい。 【0008】(実施例1)Fe、NiO、Zn
O、CuOの原料粉末をFe 49.7mol
%、ZnO 32.0mol%、CuO 5.8mol
%、NiO 12.5mol%となるように所定量秤量
し、これに所定量のイオン交換水を添加したものをボー
ルミルにて4時間混合し、電気炉を用いて最高温度85
0℃で1.5時間仮焼成した後、これを炉冷し、40メ
ッシュのふるいで解砕する。しかる後、これにV
の原料粉末を0〜1wt%添加し、再び所定量のイオン
交換水を添加したものをボールミルにて6時間粉砕し、
粉砕されたスラリー状の原料を乾燥および解砕する。こ
れにバインダー(ポリビニルアルコール)を1wt%加
えて造粒し、40メッシュのふるいにて整粒した顆粒
を、乾式圧縮成形機と金型を用いて、外径29.5mm、
内径17.7mm、高さ5.9mmのリング状コアに成形圧
196MPaで成形し、これを大気中、1100℃で
1.5時間焼成した。得られた各試料の焼成密度をアル
キメデス法にて測定した後、HP製LCRメータ428
4Aを用い周波数100kHz・印可電流1mAにてイ
ンダクタンス(L)を測定し、コア定数から透磁率(μ
i)を計算した。その後、岩崎通信機製B−Hアナライ
ザSY−8232を用い周波数50kHz、磁束密度1
50mTの測定条件において20〜140℃の温度範囲
で損失(コア損失)を測定した。最後に横河電機製直流
ヒステリシスループトレーサ3257を用い印可磁界1
000A/mにて磁束密度(Bs)を測定した。なお、
コア定数の概略値は、磁路長60mm、断面積24mm
、体積1450mmである。表1及び図1に測定結
果を示す。なお表1においてコア損失Pcvの欄に記載の
コア損失は最小値であり、括弧中に記載された温度でそ
の最小値を示す。またVが本発明の範囲外で比較
例のNo.1、No.5、No.6及び7については、
その番号に括弧を付した。 【0009】 【表1】 【0010】図1は実施例1におけるVの添加量
とコア損失、飽和磁束密度Bsの関係を示す図である。
コア損失Pcvを250kW/m以下、飽和磁束密度
を300mT以上とするには、Vの添加量を0.
15wt%以下とするのが好ましいことがわかる。より
好ましい添加量は0.005〜0.1wt%であり、更
に好ましくは0.025〜0.075wt%である。ま
た、得られた焼結体の結晶組織の観察を行ったところ、
の添加量が0.15wt%を超えると結晶が肥
大化すると共に、粒内の空孔が増加し焼結密度が低下す
ることが分かった。本実施例のNo.2〜4の試料で
は、平均結晶粒径は5μm以上であり、また空孔率が3
%以下であった。 【0011】(実施例2)Fe、NiO、Zn
O、CuOの原料粉末をFe 49.8mol
%、ZnO 28.5mol%、CuO 5.8mol
%、NiO 15.9mol%となるように所定量秤量
し、これに所定量のイオン交換水を添加したものをボー
ルミルにて4時間混合し、電気炉を用いて最高温度85
0℃で1.5時間仮焼成した後、これを炉冷し、40メ
ッシュのふるいで解砕する。しかる後、これにV
の原料粉末を0〜1wt%添加し、再び所定量のイオン
交換水を添加したものをボールミルにて6時間粉砕し、
粉砕されたスラリー状の原料を乾燥および解砕する。こ
れにバインダー(ポリビニルアルコール)を1wt%加
えて造粒し、40メッシュのふるいにて整粒した顆粒
を、乾式圧縮成形機と金型を用いて、外径29.5mm、
内径17.7mm、高さ5.9mmのリング状コアに成形圧
196MPaで成形し、これを大気中、1100℃で
1.5時間焼成した。得られた各試料の焼成密度をアル
キメデス法にて測定した後、HP製LCRメータ428
4Aを用い周波数100kHz・印可電流1mAにてイ
ンダクタンス(L)を測定し、コア定数から透磁率(μ
i)を計算した。その後、岩崎通信機製B−Hアナライ
ザSY−8232を用い周波数50kHz、磁束密度1
50mTの測定条件において20〜140℃の温度範囲
で損失(コア損失)を測定した。最後に横河電機製直流
ヒステリシスループトレーサ3257を用い印可磁界1
000A/mにて磁束密度(Bs)を測定した。なお、
コア定数の概略値は、磁路長60mm、断面積24mm
、体積1450mmである。表2及び図2に測定結
果を示す。なお表2においてコア損失Pcvの欄に記載の
コア損失は最小値であり、括弧中に記載された温度でそ
の最小値を示す。またVが本発明の範囲外で比較
例のNo.8、No.12、No.13及び14につい
ては、その番号に括弧を付した。 【0012】 【表2】 【0013】図2は実施例2におけるVの添加量
とコア損失、飽和磁束密度Bsの関係を示す図である。
コア損失Pcvを250kW/m以下、飽和磁束密度
を300mT以上とするには、Vの添加量を0.
15wt%以下とするのが好ましいことがわかる。より
好ましい添加量は0.005〜0.1wt%であり、更
に好ましくは0.025〜0.075wt%である。ま
た、得られた焼結体の結晶組織の観察を行ったところ、
の添加量が0.15wt%を超えると結晶が肥
大化すると共に、粒内の空孔が増加し焼結密度が低下す
ることが分かった。本実施例のNo.9〜10の試料で
は、平均結晶粒径は5μm以上であり、また空孔率が3
%以下であった。 【0014】本発明のNi−Zn系フェライトを用いて
構成した横型トランスの構造例を図3に示す。更に、図
4には縦型トランスにして改良した構造を示す。どちら
の場合であってもMn−Zn系フェライトを用いる場合
よりも小型化することが出来た。 【0015】 【発明の効果】本発明のNi−Zn系フェライトは低損
失でかつ高飽和磁束密度であるので、従来主にMn−Z
n系フェライトが用いられてきた液晶バックライト用イ
ンバータ、スイッチング電源等のトランスを低損失でか
つ薄型化・小型化を図ることができる。 【0016】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss Ni--Zn ferrite used for a transformer such as a liquid crystal backlight or a switching power supply. 2. Description of the Related Art In recent years, there has been a remarkable progress in miniaturization and weight reduction of electronic devices such as portable devices. For this reason, inverters for liquid crystal backlights, switching power supplies, and the like used in such electronic devices have been developed. There is a demand for further reduction in thickness, size, and weight. In the above unit, the transformer occupies a large part in both volume and power loss, and there is a strong demand for downsizing and high efficiency. In general, characteristics required for a transformer core include a small core loss at a driving frequency, a high saturation magnetic flux density, a high Curie temperature, and a high specific resistance. The reason why the core loss is required to be small at the drive frequency is that if the core loss is large, not only efficiency as a transformer is deteriorated, but also there is a risk that electronic equipment is destroyed due to thermal runaway due to self-heating. [0003] Further, a larger saturation magnetic flux density and a higher magnetic permeability are advantageous for miniaturization, and a ferrite material having a large magnetic permeability and a high saturation magnetic flux density is desired. As this ferrite material, there are a Mn-Zn-based ferrite and a Ni-Zn-based ferrite. For such a purpose, the Mn-Zn-based ferrite has been mainly used. The reason is generally that Mn
This is because -Zn based ferrite has higher saturation magnetic flux density, higher magnetic permeability, and lower loss than Ni-Zn based ferrite. [0004] However, in the case of using a Mn-Zn ferrite core to make a transformer for an inverter for a liquid crystal backlight, which is particularly required to be thin and small, the following problems arise. there were. On the other hand, the output voltage of a transformer for a liquid crystal backlight inverter, which is becoming thinner and smaller, is increasing, and when the volume resistivity is as low as about 10 Ω · m like a Mn—Zn ferrite core, In consideration of the insulation space distance between the core and the coil, the insulation space distance between the core and the terminal, and the insulation between the core and the lead wire, it is necessary to secure a required withstand voltage. These problems will be described with reference to FIG. FIG. 5A is a development view of each component of the transformer. The core 1 is incorporated into a bobbin 4 on which a winding 3 is wound with an insulating sheet 2 interposed therebetween. A terminal 5 is provided on the bobbin 4. FIG. 5B shows a state after the transformer is assembled. FIG. 5 (b) shows that the location (a) in FIG. 5 (b) requires an insulating space distance between the core and the coil, and as a result, the transformer itself becomes large, which hinders thinning and miniaturization.
(B) also requires the insulation space distance between the core and the terminal, which also hinders thinning and miniaturization.
5 (b) and (c) show that the insulation between the core and the lead wire is also required, which hinders the reduction in thickness and size. The insulation distance relates to corona discharge and dielectric breakdown due to high voltage, and also relates to the electric field gradient due to the core shape. On the other hand, when a Ni—Zn-based ferrite having a volume resistivity as high as 10 6 Ω · m or more is used, the problem of the dielectric strength with respect to the core can be easily solved, and it is necessary to secure the space as described above. Therefore, the transformer can be made thinner and smaller. Therefore, an object of the present invention is to reduce the loss by optimizing the composition of the Ni—Zn-based ferrite, and to further reduce the thickness and size of the low-loss thin transformer. SUMMARY OF THE INVENTION The present invention is directed to a method for producing a semiconductor device, comprising, as main components, 48.5 mol% or more and 50.5 mol% or less of Fe 2 O 3, more than 3 mol% of CuO and 12 mol% or less of ZnO.
24 mol% or more and 36 mol% or less, with the balance being NiO,
As subcomponent V 2 O 5 0.15wt% or less made (not including 0), has a minimum value of core loss between 20 ° C. to 140 ° C., 50 kHz, the minimum value of the core loss measured at 150mT Is 250 kW / m 3 or less, and a low-loss Ni—Zn ferrite having a saturation magnetic flux density of 300 mT or more. The Ni—Zn ferrite according to the present invention has a main component composition of 48.5 mol% or more and 50.50 mol% or more.
5 mol% or less, CuO more than 3 mol%, 12 mol% or less, ZnO 24 mol% to 36 mol%, balance
NiO was used. The main component was limited to such a range for the following reason. When Fe 2 O 3 is less than 48.5 mol%, the core loss becomes large, and 50.5 mol%
If it exceeds, the specific resistance is sharply reduced, and the insulating property, which is a characteristic of Ni-Zn series, is lowered, which is inappropriate. CuO is 3
If it is less than mol%, only a sintered material having a low sintering density and a small magnetic permeability can be obtained, and if it exceeds 12 mol%, the core loss increases. If ZnO is less than 24 mol%, the core loss increases, and if it exceeds 36 mol%, the temperature at which the minimum value of the core loss is obtained is set in a temperature range (20 ° C.
To 140 ° C.). 250k core loss
When it exceeds W / m 3 , for example, when it is used for a transformer for a liquid crystal inverter, heat generation due to core loss becomes a serious problem. NiO is the balance of the above-mentioned Fe 2 O 3 , CuO and ZnO. However, if the amount of NiO is small, the temperature at which the minimum value of the core loss is obtained does not become low in the temperature range in which the core is actually used (20 ° C. to 140 ° C.) On the contrary, if the number is large, the core loss increases. [0007] As an auxiliary component, 0.15 wt% or less of V 2 O 5 is added as a composite. In general, ferrite loss can be broadly classified into three types: hysteresis loss, eddy current loss, and residual loss. Comparing the loss of the ferrite according to the present invention and the loss of the Ni—Zn-based ferrite containing no V 2 O 5 , the ferrite according to the present invention mainly shows that the hysteresis loss is reduced among the above three losses. Conventional Ni-Z
It was found that the loss was greatly reduced as compared with the n-type ferrite. The hysteresis loss is a loss generated by irreversible movement of the domain wall. In order to reduce the hysteresis loss, it is necessary to reduce inclusions that hinder domain wall movement. However, if the number of inclusions is excessively reduced, the domain wall moves over a long distance, and conversely increases the hysteresis loss. By adding and including a predetermined amount of V 2 O 5 , the inclusions can be controlled, and as a result,
It is believed that the hysteresis loss is reduced. Furthermore, when the added amount of V 2 O 5 is large, the saturation magnetic flux density (Bs) decreases, and a saturation magnetic flux density of 300 mT or more cannot be obtained. Therefore, the added amount of V 2 O 5 is specified to be 0.15 wt% or less so as to obtain low loss and high saturation magnetic flux density. Since the number of magnetic domain walls depends on the average crystal grain size, the crystal grain size is preferably large, and the average crystal grain size is preferably 5 μm or more. To obtain a high saturation magnetic flux density, the porosity is 3
% Is also preferable. (Example 1) Fe 2 O 3 , NiO, Zn
Raw material powder of O and CuO is 49.7 mol of Fe 2 O 3
%, ZnO 32.0 mol%, CuO 5.8 mol
%, NiO 12.5 mol%, and a predetermined amount of ion-exchanged water was added thereto and mixed with a ball mill for 4 hours.
After calcining at 0 ° C. for 1.5 hours, this is cooled in a furnace and crushed with a 40-mesh sieve. After a while, V 2 O 5
The raw material powder of 0 to 1% by weight was added, and again a predetermined amount of ion-exchanged water was added and pulverized by a ball mill for 6 hours.
The pulverized slurry material is dried and crushed. 1 wt% of a binder (polyvinyl alcohol) was added to the mixture, and the mixture was granulated. The granules sized with a 40-mesh sieve were dried using a dry compression molding machine and a metal mold to an outer diameter of 29.5 mm.
A ring-shaped core having an inner diameter of 17.7 mm and a height of 5.9 mm was molded at a molding pressure of 196 MPa, and baked at 1100 ° C. for 1.5 hours in the air. After measuring the fired density of each of the obtained samples by the Archimedes method, an LCR meter 428 made by HP was used.
The inductance (L) was measured at a frequency of 100 kHz and an applied current of 1 mA using 4 A, and the magnetic permeability (μ
i) was calculated. Thereafter, using a BH analyzer SY-8232 manufactured by Iwasaki Communication Equipment, frequency 50 kHz, magnetic flux density 1
The loss (core loss) was measured in a temperature range of 20 to 140 ° C. under a measurement condition of 50 mT. Finally, the applied magnetic field 1 was measured using a DC hysteresis loop tracer 3257 manufactured by Yokogawa Electric Corporation.
The magnetic flux density (Bs) was measured at 000 A / m. In addition,
The approximate values of the core constant are as follows: magnetic path length 60 mm, cross-sectional area 24 mm
2 , volume 1450 mm 3 . Table 1 and FIG. 1 show the measurement results. Note that the core loss described in the column of core loss Pcv in Table 1 is a minimum value, and the minimum value is indicated by the temperature described in parentheses. In addition, V 2 O 5 is out of the range of the present invention, and No. 5 of the comparative example. 1, No. 5, no. For 6 and 7,
The numbers are in parentheses. [Table 1] FIG. 1 is a diagram showing the relationship between the added amount of V 2 O 5 , the core loss, and the saturation magnetic flux density Bs in the first embodiment.
In order to set the core loss Pcv to 250 kW / m 3 or less and the saturation magnetic flux density to 300 mT or more, the addition amount of V 2 O 5 is set to 0.
It is understood that the content is preferably set to 15 wt% or less. A more preferable addition amount is 0.005 to 0.1 wt%, and further preferably 0.025 to 0.075 wt%. Also, when the crystal structure of the obtained sintered body was observed,
It was found that when the added amount of V 2 O 5 exceeds 0.15 wt%, the crystal enlarges, the pores in the grains increase, and the sintering density decreases. No. of this embodiment. In samples 2 to 4, the average crystal grain size was 5 μm or more and the porosity was 3 μm.
% Or less. (Example 2) Fe 2 O 3 , NiO, Zn
49.8 mol of Fe 2 O 3 as raw material powder of O and CuO
%, ZnO 28.5 mol%, CuO 5.8 mol
% And NiO 15.9 mol% are weighed and mixed with a predetermined amount of ion-exchanged water in a ball mill for 4 hours.
After calcining at 0 ° C. for 1.5 hours, this is cooled in a furnace and crushed with a 40-mesh sieve. After a while, V 2 O 5
The raw material powder of 0 to 1% by weight was added, and again a predetermined amount of ion-exchanged water was added and pulverized by a ball mill for 6 hours.
The pulverized slurry material is dried and crushed. 1 wt% of a binder (polyvinyl alcohol) was added to the mixture, and the mixture was granulated. The granules sized with a 40-mesh sieve were dried using a dry compression molding machine and a metal mold to an outer diameter of 29.5 mm.
A ring-shaped core having an inner diameter of 17.7 mm and a height of 5.9 mm was molded at a molding pressure of 196 MPa, and baked at 1100 ° C. for 1.5 hours in the air. After measuring the fired density of each of the obtained samples by the Archimedes method, an LCR meter 428 made by HP was used.
The inductance (L) was measured at a frequency of 100 kHz and an applied current of 1 mA using 4 A, and the magnetic permeability (μ
i) was calculated. Thereafter, using a BH analyzer SY-8232 manufactured by Iwasaki Communication Equipment, frequency 50 kHz, magnetic flux density 1
The loss (core loss) was measured in a temperature range of 20 to 140 ° C. under a measurement condition of 50 mT. Finally, the applied magnetic field 1 was measured using a DC hysteresis loop tracer 3257 manufactured by Yokogawa Electric Corporation.
The magnetic flux density (Bs) was measured at 000 A / m. In addition,
The approximate values of the core constant are as follows: magnetic path length 60 mm, cross-sectional area 24 mm
2 , volume 1450 mm 3 . Table 2 and FIG. 2 show the measurement results. In Table 2, the core loss described in the column of core loss Pcv is a minimum value, and the minimum value is indicated by the temperature described in parentheses. In addition, V 2 O 5 is out of the range of the present invention, and No. 5 of the comparative example. 8, No. 12, No. For 13 and 14, the numbers are in parentheses. [Table 2] FIG. 2 is a diagram showing the relationship between the added amount of V 2 O 5 , the core loss, and the saturation magnetic flux density Bs in the second embodiment.
In order to set the core loss Pcv to 250 kW / m 3 or less and the saturation magnetic flux density to 300 mT or more, the addition amount of V 2 O 5 is set to 0.
It is understood that the content is preferably set to 15 wt% or less. A more preferable addition amount is 0.005 to 0.1 wt%, and further preferably 0.025 to 0.075 wt%. Also, when the crystal structure of the obtained sintered body was observed,
It was found that when the added amount of V 2 O 5 exceeds 0.15 wt%, the crystal enlarges, the pores in the grains increase, and the sintering density decreases. No. of this embodiment. Samples 9 to 10 have an average crystal grain size of 5 μm or more and a porosity of 3
% Or less. FIG. 3 shows an example of the structure of a horizontal transformer constituted by using the Ni—Zn ferrite of the present invention. FIG. 4 shows an improved structure of a vertical transformer. In either case, the size could be reduced as compared with the case of using Mn-Zn based ferrite. The Ni-Zn ferrite of the present invention has a low loss and a high saturation magnetic flux density.
Transformers such as inverters for liquid crystal backlights, switching power supplies, and the like in which n-based ferrite has been used can be reduced in loss and made thinner and smaller. [0016]

【図面の簡単な説明】 【図1】 本発明に係る一実施例における、V
加量とコア損失、飽和磁磁束密度との関係を示す特性図
である。 【図2】 本発明に係る一実施例における、V
加量とコア損失、飽和磁磁束密度との関係を示す特性図
である。 【図3】 本発明に係るNi−Zn系フェライトを用い
たトランスの一実施例を示す図である。 【図4】 本発明に係るNi−Zn系フェライトを用い
たトランスの他の実施例を示す図である。 【図5】 従来のMn−Zn系フェライトを用いたトラ
ンスの構造例を示す図である。 【符号の説明】 1 コア 2 絶縁シート 3 巻線 4 ボビン 5 ボビン端子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram showing a relationship between an added amount of V 2 O 5 , a core loss, and a saturation magnetic flux density in one example according to the present invention. FIG. 2 is a characteristic diagram showing a relationship between an added amount of V 2 O 5 , a core loss, and a saturation magnetic flux density in one example according to the present invention. FIG. 3 is a diagram showing one embodiment of a transformer using a Ni—Zn-based ferrite according to the present invention. FIG. 4 is a view showing another embodiment of the transformer using the Ni—Zn ferrite according to the present invention. FIG. 5 is a diagram illustrating a structural example of a transformer using a conventional Mn—Zn-based ferrite. [Description of Signs] 1 core 2 insulating sheet 3 winding 4 bobbin 5 bobbin terminal

Claims (1)

【特許請求の範囲】 【請求項1】 主成分としてFe 48.5mo
l%以上50.5mol%以下,CuO 3mol%超
12mol%以下,ZnO 24mol%以上36mo
l%以下,残部 NiOと、副成分としてV
0.15wt%以下(0を含まず)からなり、20℃〜
140℃の間にコア損失の最小値を有し、50kHz、
150mTで測定した前記コア損失の最小値が250k
W/m以下で、飽和磁束密度が300mT以上である
ことを特徴とする低損失Ni−Zn系フェライト。
Claims: 1. A Fe 2 O 3 as a main component 48.5mo
1% to 50.5mol%, CuO more than 3mol% to 12mol%, ZnO 24mol% to 36mo
1% or less, balance NiO and V 2 O 5
0.15 wt% or less (excluding 0)
With a minimum of core loss between 140 ° C., 50 kHz,
The minimum value of the core loss measured at 150 mT is 250 k
A low-loss Ni-Zn based ferrite having a saturation magnetic flux density of 300 mT or more at W / m 3 or less.
JP2002102651A 2002-04-04 2002-04-04 Low loss Ni-Zn ferrite Expired - Lifetime JP4915889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102651A JP4915889B2 (en) 2002-04-04 2002-04-04 Low loss Ni-Zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002102651A JP4915889B2 (en) 2002-04-04 2002-04-04 Low loss Ni-Zn ferrite

Publications (2)

Publication Number Publication Date
JP2003300774A true JP2003300774A (en) 2003-10-21
JP4915889B2 JP4915889B2 (en) 2012-04-11

Family

ID=29389000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102651A Expired - Lifetime JP4915889B2 (en) 2002-04-04 2002-04-04 Low loss Ni-Zn ferrite

Country Status (1)

Country Link
JP (1) JP4915889B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453508A (en) * 1987-08-25 1989-03-01 Mitsubishi Electric Corp High-resistivity and low-loss oxide magnetic material
JPH04361501A (en) * 1991-06-08 1992-12-15 Hitachi Ferrite Ltd Low loss oxide magnetic material for magnetic element used for high frequency power source
JPH08310856A (en) * 1995-03-10 1996-11-26 Hitachi Metals Ltd Nickel-copper-zinc ferrite sintered compact
JPH107454A (en) * 1996-06-19 1998-01-13 Hitachi Metals Ltd Nickel-copper-zinc-based ferrite sintered compact having high magnetic flux and low loss and transformer for direct current-direct current converter
JP2000306719A (en) * 1999-04-23 2000-11-02 Tokin Corp Low-loss oxide magnetic material
JP2001015322A (en) * 1994-03-16 2001-01-19 Hitachi Metals Ltd LOW LOSS Ni-BASED FERRITE SINTERED BODY AND MAGNETIC CORE USING THE SAME
JP2001044016A (en) * 1999-07-29 2001-02-16 Kyocera Corp Ferrite material of high saturation-magnetic-flux density, and ferrite core using the material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453508A (en) * 1987-08-25 1989-03-01 Mitsubishi Electric Corp High-resistivity and low-loss oxide magnetic material
JPH04361501A (en) * 1991-06-08 1992-12-15 Hitachi Ferrite Ltd Low loss oxide magnetic material for magnetic element used for high frequency power source
JP2001015322A (en) * 1994-03-16 2001-01-19 Hitachi Metals Ltd LOW LOSS Ni-BASED FERRITE SINTERED BODY AND MAGNETIC CORE USING THE SAME
JP2001015321A (en) * 1994-03-16 2001-01-19 Hitachi Metals Ltd MANUFACTURE OF Ni-BASED FERRITE SINTERED BODY
JPH08310856A (en) * 1995-03-10 1996-11-26 Hitachi Metals Ltd Nickel-copper-zinc ferrite sintered compact
JPH107454A (en) * 1996-06-19 1998-01-13 Hitachi Metals Ltd Nickel-copper-zinc-based ferrite sintered compact having high magnetic flux and low loss and transformer for direct current-direct current converter
JP2000306719A (en) * 1999-04-23 2000-11-02 Tokin Corp Low-loss oxide magnetic material
JP2001044016A (en) * 1999-07-29 2001-02-16 Kyocera Corp Ferrite material of high saturation-magnetic-flux density, and ferrite core using the material

Also Published As

Publication number Publication date
JP4915889B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
CA2835115C (en) Magnetic grain boundary engineered ferrite core materials
JPWO2008133152A1 (en) Low loss ferrite and electronic parts using the same
US7892446B2 (en) Ferrite material
JP2003321272A (en) Oxide magnetic material, ferrite core, and electronic component
JP4302904B2 (en) Choke coil and power transformer
JPH06310320A (en) Oxide magnetic substance material
JP2003300774A (en) LOW LOSS Ni-Zn BASED FERRITE
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JP5760431B2 (en) Ferrite composition and electronic component
JP5716538B2 (en) Ferrite composition and electronic component
JP3487243B2 (en) Mn-Zn ferrite material
JP2002321971A (en) Ni-BASED FERRITE
JP2004269316A (en) Ferrite material and ferrite core using the same
JPH11233330A (en) High-saturation magnetic flux density ferrite material and ferrite core using the same
JP5810629B2 (en) Ferrite composition and electronic component
JP5817118B2 (en) Ferrite composition and electronic component
JP2005109356A (en) Ferrite sintered structure, and manufacturing method thereof
JP5834408B2 (en) Ferrite composition and electronic component
JP2004018304A (en) LOW-LOSS NICKEL-ZINC-COPPER (Ni-Zn-Cu) SYSTEM OXIDE MAGNETIC MATERIAL AND ITS MANUFACTURING METHOD
JPH0897025A (en) Chip transformer magnetic material and chip transformer
JPH08148323A (en) Production of oxide magnetic material and molding
JP2006273610A (en) Ferrite sintered compact
JP2008230941A (en) LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE
JP2004319636A (en) Oxide magnetic material for resin mold electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term