JP2008230941A - LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE - Google Patents

LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE Download PDF

Info

Publication number
JP2008230941A
JP2008230941A JP2007076532A JP2007076532A JP2008230941A JP 2008230941 A JP2008230941 A JP 2008230941A JP 2007076532 A JP2007076532 A JP 2007076532A JP 2007076532 A JP2007076532 A JP 2007076532A JP 2008230941 A JP2008230941 A JP 2008230941A
Authority
JP
Japan
Prior art keywords
based ferrite
sintered body
loss
core loss
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076532A
Other languages
Japanese (ja)
Inventor
Teruo Yasuoka
照夫 安岡
Tadakuni Sato
忠邦 佐藤
Kenichi Chatani
健一 茶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007076532A priority Critical patent/JP2008230941A/en
Publication of JP2008230941A publication Critical patent/JP2008230941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low core loss Ni-Cu-Zn-based ferrite having a reduced rise in core loss due to a temperature change under an excitation condition of 1 to 5 MHz. <P>SOLUTION: The Ni-Cu-Zn-based ferrite comprises, as the main components, 45 to 50.5 mol% Fe<SB>2</SB>O<SB>3</SB>, 14 to 24 mol% ZnO, 19.4 to 39 mol% NiO and 2 to 18.6 mol% CuO, and comprises, as auxiliary components, 0.01 to 0.6 wt.% V<SB>2</SB>O<SB>5</SB>, wherein the ratio of NiO/CuO is 1.2 to 19. The temperature change of core loss when an alternating current magnetic field of 1 to 5 MHz is applied to a sintered compact is continuously ≤+0.1%/°C (including negative value) at 25 to 60°C. Alternatively, the above Ni-Cu-Zn-based ferrite has a C content of ≤450 ppm, sintered density of ≤5.30 g/cc, and an average crystal grain size of 0.3 to 5 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高周波パワーデバイス用低損失スピネル型フェライトに関し、特に1〜5MHzで駆動するトランス、パワー用チョークコイルに適した高周波パワーデバイス用低損失スピネル型フェライトに関する。   The present invention relates to a low-loss spinel ferrite for high-frequency power devices, and more particularly to a low-loss spinel ferrite for high-frequency power devices suitable for transformers and power choke coils driven at 1 to 5 MHz.

携帯電話やPDA等の電子機器は高周波化、小型化の傾向にあり、近年では、1MHz以上で駆動するチョークコイルが電源回路素子として使用されている。さらに、電源回路全体の高効率化は環境的側面から考慮しても重要であり、チョークコイルのコア材であるフェライトの低損失化が求められる。   Electronic devices such as mobile phones and PDAs tend to have higher frequencies and smaller sizes, and in recent years, choke coils that are driven at 1 MHz or higher are used as power supply circuit elements. Furthermore, high efficiency of the entire power supply circuit is important from the environmental viewpoint, and low loss of ferrite, which is a core material of the choke coil, is required.

従来のパワー用Ni−Cu−Zn系フェライトは、500kHz以下の比較的周波数の低い励磁条件下における使用が主であったため、500kHz以下における低損失化が行われてきた(例えば特許文献1〜5)。上記の低周波用低損失Ni−Cu−Zn系フェライトを高周波励磁条件下で使用した場合、低損失とならないばかりか、温度上昇とともに損失が増加する傾向となる。従って、新たな高周波パワーデバイス用低損失Ni−Cu−Zn系フェライトの開発が必要である。   Conventional Ni-Cu-Zn ferrites for power have mainly been used under excitation conditions with a relatively low frequency of 500 kHz or less, and therefore, loss reduction at 500 kHz or less has been performed (for example, Patent Documents 1 to 5). ). When the above-described low-frequency low-loss Ni—Cu—Zn-based ferrite is used under high-frequency excitation conditions, not only does the loss become low, but the loss tends to increase as the temperature rises. Therefore, it is necessary to develop a new low-loss Ni—Cu—Zn ferrite for high-frequency power devices.

特開2004−224634号公報JP 2004-224634 A 特開2004−064057号公報JP 2004-064057 A 特開2001−015322号公報JP 2001-015322 A 特開平10−007454号公報JP-A-10-007454 特開平07−307212号公報Japanese Patent Application Laid-Open No. 07-307212

フェライト焼結体は金属系の圧粉体に比べて大きなμの値を有するため、電源回路上のトランスやインダクタ等に多く用いられている。特にNi−Cu−Zn系フェライトはMn−Zn系フェライトに比べて、大きな比抵抗を有することから、直巻線構造や積層構造によるパワー用小型インダクタや信号系の高周波用チョークコイルとして用いられている。従って、Ni−Cu−Zn系フェライト材料開発はパワーデバイス用途においては低周波領域における低ロス化、信号用では、高周波領域における高μ化が行われてきた。   Ferrite sintered bodies have a large μ value compared to metal green compacts, and are therefore often used for transformers and inductors on power supply circuits. In particular, Ni-Cu-Zn-based ferrites have a larger specific resistance than Mn-Zn-based ferrites, so they are used as small inductors for power using a direct-winding structure or a laminated structure, and as high-frequency choke coils for signal systems. Yes. Accordingly, Ni-Cu-Zn-based ferrite materials have been developed with low loss in the low frequency region for power device applications and high μ in the high frequency region for signals.

しかし、近年の電子機器の高周波化、小型化により、これまでの低周波パワーデバイス用途向けではなく、高周波パワーデバイス用途向けに開発されたNi−Cu−Zn系フェライトが有用となっている。また、従来の低周波パワーデバイス用途向けのNi−Cu−Zn系フェライト低ロス材を高周波励磁条件下において使用した場合、コアロスの値が高く、且つ、その値は温度上昇とともに増加してしまうという問題がある。   However, due to the recent increase in frequency and size of electronic equipment, Ni—Cu—Zn based ferrites developed for high frequency power device applications are becoming useful instead of conventional low frequency power device applications. In addition, when a conventional Ni-Cu-Zn ferrite low-loss material for low-frequency power device applications is used under high-frequency excitation conditions, the value of core loss is high, and the value increases with increasing temperature. There's a problem.

本発明の目的は、1MHz〜5MHzの励磁条件下において、温度変化に伴うコアロスの上昇が少ない高周波パワーデバイス用低損失Ni−Cu−Zn系フェライトを提供することである。   An object of the present invention is to provide a low-loss Ni—Cu—Zn-based ferrite for a high-frequency power device with little increase in core loss due to temperature change under excitation conditions of 1 MHz to 5 MHz.

上記の問題に対して、スピネル型Ni−Cu−Zn系フェライトにおいて、特定の主成分配合比及び添加物からなる原料粉末を、特定の平均結晶粒径、磁区構造を有する焼結体に焼成し、その焼結体のC含有量を抑えることで、その焼結体は1MHz〜5MHzの高周波励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて連続的に+0.1%/℃以下と小さいことを見出し、本発明に至ったものである。   In response to the above problem, in the spinel type Ni—Cu—Zn ferrite, the raw material powder composed of a specific main component blending ratio and additives is fired into a sintered body having a specific average crystal grain size and a magnetic domain structure. By suppressing the C content of the sintered body, the temperature change of core loss under high frequency excitation conditions of 1 MHz to 5 MHz is continuously + 0.1% / ° C. or less from 25 ° C. to 60 ° C. Thus, the present invention has been found.

詳述すれば、x(NiO(1−a)・CuOa)O・yZnO・zFe23、x+y+z=100と表されるNi−Cu−Zn系フェライトにおいて、Fe23含有量が45mol%以下の場合、飽和磁束密度が明らかに減少するので、パワーデバイス用途として望ましくない。また、Fe23含有量が50.5mol%を超えた場合、比抵抗の値が明らかに減少する傾向となるため望ましくない。ZnO含有量が14mol%未満の場合、1MHz〜5MHzにおけるコアロスの値が明らかに増加する傾向にあるため望ましくない。また、ZnO含有量が24mol%を超えた場合、1MHz〜5MHzの励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて+0.1%/℃を超える上昇傾向を示すため望ましくない。NiO/CuO比に関しては、NiO/CuO比が19を超えると、焼結温度が上昇し、1MHz〜5MHzの励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて+0.1%/℃を超えるため望ましくない。また、NiO/CuO比が1.2未満の場合、1MHz〜5MHzの励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて+0.1%/℃を超えるため望ましくない。 More specifically, in a Ni—Cu—Zn-based ferrite expressed as x (NiO (1-a) · CuO a ) O · yZnO · zFe 2 O 3 , x + y + z = 100, Fe 2 O 3 When the content is 45 mol% or less, the saturation magnetic flux density is clearly reduced, which is not desirable for power device applications. On the other hand, when the Fe 2 O 3 content exceeds 50.5 mol%, the specific resistance tends to decrease clearly, which is not desirable. When the ZnO content is less than 14 mol%, the value of the core loss at 1 MHz to 5 MHz tends to increase obviously, which is not desirable. Further, when the ZnO content exceeds 24 mol%, the core loss temperature change under excitation conditions of 1 MHz to 5 MHz shows an increasing tendency exceeding + 0.1% / ° C. from 25 ° C. to 60 ° C., which is not desirable. Regarding the NiO / CuO ratio, when the NiO / CuO ratio exceeds 19, the sintering temperature rises, and the temperature change of the core loss under the excitation condition of 1 MHz to 5 MHz is + 0.1% / ° C. from 25 ° C. to 60 ° C. Is not desirable. Further, when the NiO / CuO ratio is less than 1.2, the core loss temperature change under excitation conditions of 1 MHz to 5 MHz exceeds + 0.1% / ° C. from 25 ° C. to 60 ° C., which is not desirable.

添加物において、V25は、0.01wt%以上添加することにより、1〜5MHzの励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて+0.1%/℃以下となる。また、V25添加量が0.6wt%を超える場合、1〜5MHzの励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて+0.1%/℃を超える上昇傾向を示すため望ましくない。 In the additive, when V 2 O 5 is added in an amount of 0.01 wt% or more, the temperature change of the core loss under the excitation condition of 1 to 5 MHz becomes + 0.1% / ° C. or less from 25 ° C. to 60 ° C. In addition, when the V 2 O 5 addition amount exceeds 0.6 wt%, the temperature change of the core loss under the excitation condition of 1 to 5 MHz shows a rising tendency exceeding + 0.1% / ° C. from 25 ° C. to 60 ° C. Not desirable.

以上の組成を選択し、焼結密度が5.30g/cc以下であり、平均結晶粒径が0.3〜5μm以下、さらには、1つの結晶粒内に存在する磁壁の数が3以下、Cの含有量が450ppm以下となる焼結体を形成することにより、1〜5MHzの励磁条件下におけるコアロスの温度変化が、25℃から60℃にかけて+0.1%/℃以下であるNi−Cu−Zn系フェライト焼結体を得ることができる。   The above composition is selected, the sintered density is 5.30 g / cc or less, the average crystal grain size is 0.3 to 5 μm or less, and the number of domain walls existing in one crystal grain is 3 or less, By forming a sintered body having a C content of 450 ppm or less, the temperature change of core loss under excitation conditions of 1 to 5 MHz is + 0.1% / ° C. or less from 25 ° C. to 60 ° C. A Zn-based ferrite sintered body can be obtained.

本発明によれば、組成の選択、C含有量、焼結密度及び平均結晶粒径の調整によりコアロスの温度変化の小さなNi−Cu−Zn系フェライトを得ることが出来る。また、かかるNi−Cu−Zn系フェライトを用いることにより、高周波パワーデバイス用途向けの電子部品の提供が可能となる。   According to the present invention, a Ni—Cu—Zn-based ferrite having a small core loss temperature change can be obtained by selecting the composition, adjusting the C content, the sintered density, and the average crystal grain size. In addition, by using such Ni—Cu—Zn based ferrite, it is possible to provide an electronic component for high frequency power device applications.

本発明に係わるNi−Cu−Zn系フェライト焼結体は例えば次のような粉末冶金的方法により製造することができる。主成分として、Fe2345〜50.5mol%、ZnO14〜24mol%、NiO19.4〜39mol%、CuO2〜18.6mol%からなり、副成分としてV250.01〜0.6重量%を含み、且つNiO/CuO比が1.2〜19となるようにNi−Cu−Zn系フェライト原料粉末を湿式混合し、800℃〜1000℃で2〜8hの仮焼を行う。その後、粉砕造粒し、所要形状に成形し、900℃〜1040℃の大気中で焼結する。 The Ni—Cu—Zn-based ferrite sintered body according to the present invention can be manufactured, for example, by the following powder metallurgical method. As the main component, Fe 2 O 3 45~50.5mol%, ZnO14~24mol%, NiO19.4~39mol%, consists CuO 2 ~18.6mol%, V 2 O 5 0.01~0 as a sub-component. Ni—Cu—Zn based ferrite raw material powder is wet-mixed so that the NiO / CuO ratio is 1.2 to 19 including 6 wt%, and calcining is performed at 800 ° C. to 1000 ° C. for 2 to 8 hours. Then, it grind | pulverizes and granulates, shape | molds in a required shape, and sinters in 900 degreeC-1040 degreeC air | atmosphere.

以下、本発明を実施例で具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

主成分がFe2348.9mol%、ZnO20mol%、残部がNiOとCuOからなり、その成分比が表1で表され、さらに主成分総重量に対してV25を0.20wt%配合し、湿式混合後、大気中で800〜1000℃、2h〜8hの仮焼を行ったのち粉砕した。その後、バインダーを加え、2ton/cmで成型し、外径19mm、内径13mm、高さ5mmのトロイダル状圧粉体を得た。得られた圧粉体を脱バインダー処理の後、大気雰囲気中900℃〜1040℃にて焼成した。 Main components Fe 2 O 3 48.9mol%, ZnO20mol %, the balance being NiO and CuO, the component ratio is represented in table 1, further V 2 O 5 with respect to the main component of the total weight 0.20 wt% After blending and wet mixing, the mixture was calcined in air at 800 to 1000 ° C. for 2 to 8 hours and then pulverized. Thereafter, a binder was added and molded at 2 ton / cm to obtain a toroidal green compact having an outer diameter of 19 mm, an inner diameter of 13 mm, and a height of 5 mm. The obtained green compact was fired at 900 ° C. to 1040 ° C. in an air atmosphere after the binder removal treatment.

得られた焼結体に1次側及び2次側にそれぞれ3ターンの巻線を施し、3MHz、 20mTで励磁し25℃〜140℃におけるコアロスを測定した。NiO/CuO比に対するコアロス温度変化を表1に示す。   The obtained sintered body was wound with three turns on the primary side and the secondary side, respectively, excited at 3 MHz and 20 mT, and the core loss at 25 ° C. to 140 ° C. was measured. Table 1 shows the core loss temperature change with respect to the NiO / CuO ratio.

Figure 2008230941
Figure 2008230941

表1の結果より、NiO/CuO比が2〜16の範囲において、コアロスの温度変化は25℃から60℃にかけて負の傾向を示している。また、NiO/CuO比が1.2〜19のとき、コアロスの温度変化が、25℃から60℃にかけて+0.1%/℃以下である。従って、NiO/CuO比が1.2〜19の範囲が有用となる。   From the results of Table 1, the temperature change of the core loss shows a negative tendency from 25 ° C. to 60 ° C. in the range of NiO / CuO ratio of 2-16. Further, when the NiO / CuO ratio is 1.2 to 19, the temperature change of the core loss is + 0.1% / ° C. or less from 25 ° C. to 60 ° C. Accordingly, a NiO / CuO ratio in the range of 1.2 to 19 is useful.

主成分がFe2348.9mol%、ZnO20mol%、残部がNiOとCuOからなり、その成分比がNiO/CuO比=2.34となるように秤量し、この主成分総重量に対してV25を0.20wt%配合し、実施例1と同様の工程により焼結体を得た。 The main component is 48.9 mol% Fe 2 O 3, 20 mol% ZnO, the balance is NiO and CuO, and the component ratio is NiO / CuO ratio = 2.34. V 2 O 5 was mixed at 0.20 wt%, and a sintered body was obtained by the same process as in Example 1.

得られた焼結体を鏡面研磨の後、130℃のリン酸中でエッチング処理した焼結体表面を光学顕微鏡により観察し、その光学顕微鏡写真上に任意の直線を引き、結晶粒30個分の切片長を平均したものを平均結晶粒径とした。得られた平均結晶粒径とコアロス温度変化の関係を図1に示す。   The obtained sintered body was mirror-polished, and the surface of the sintered body etched in 130 ° C. phosphoric acid was observed with an optical microscope, and an arbitrary straight line was drawn on the optical microscope photograph to obtain 30 crystal grains. The average crystal grain size was obtained by averaging the slice lengths. The relationship between the obtained average crystal grain size and the core loss temperature change is shown in FIG.

図1より、平均結晶粒径が小さくなるほど、コアロス温度変化は負の傾向が強くなっている。また、平均結晶粒径が0.3μm以下の焼結体は工業的には困難であり、平均結晶粒径が5μm以下であれば、+0.1%/℃以下に収まっていることから、平均結晶粒径0.3〜5μmの範囲が有用である。   From FIG. 1, the core loss temperature change is more negative as the average crystal grain size is smaller. Further, a sintered body having an average crystal grain size of 0.3 μm or less is industrially difficult, and if the average crystal grain size is 5 μm or less, it is within + 0.1% / ° C. A range of crystal grain size of 0.3-5 μm is useful.

さらに、焼結体を50μmの厚みになるように加工し、ローレンツ顕微鏡法を用いて結晶粒を観察し、その結晶粒内で最も長くなるように対角線を引き、その長さを結晶粒径とした。また、結晶粒のUnder focus像及びOver focus像を観察し、粒内に存在する磁壁の数を測定した。この結果を用いて、1つの粒内に存在する磁壁数とコアロス温度変化の関係を図2に示す。   Further, the sintered body is processed to a thickness of 50 μm, the crystal grains are observed using Lorentz microscopy, a diagonal line is drawn so as to be the longest in the crystal grains, and the length is defined as the crystal grain size. did. In addition, the under focus image and the over focus image of the crystal grains were observed, and the number of domain walls existing in the grains was measured. Using this result, the relationship between the number of domain walls present in one grain and the core loss temperature change is shown in FIG.

図2より、結晶粒1個あたりの磁壁数が2以下であればコアロスの温度変化が25℃から60℃にかけて、負の傾向である。また、結晶粒1個あたりの磁壁数が3以下であれば、コアロスの温度変化が25℃から60℃にかけて+0.1%/℃以下となる。従って、焼結体の1つの結晶粒内に存在する磁壁の数が3以下の範囲が有用である。   From FIG. 2, if the number of domain walls per crystal grain is 2 or less, the temperature change of the core loss tends to be negative from 25 ° C. to 60 ° C. If the number of domain walls per crystal grain is 3 or less, the temperature change of the core loss is + 0.1% / ° C. or less from 25 ° C. to 60 ° C. Therefore, a range in which the number of domain walls present in one crystal grain of the sintered body is 3 or less is useful.

また、焼結体のガス分析を行うことによりCの含有量を調査し、得られたCの含有量とコアロスの温度変化の関係について図3に示す。   Further, the C content was investigated by performing gas analysis of the sintered body, and the relationship between the obtained C content and core loss temperature change is shown in FIG.

図3より、Cの含有量を下げることで、25℃から60℃におけるコアロスの温度変化が改善されていることがわかる。また、Cの含有量が450ppm以下であれば、+0.1%/℃以下の傾向であることがわかる。従って、Cの含有量450ppm以下の範囲が有用である。   FIG. 3 shows that the temperature change of the core loss from 25 ° C. to 60 ° C. is improved by lowering the C content. Further, it can be seen that when the C content is 450 ppm or less, the tendency is + 0.1% / ° C. or less. Therefore, the range of C content of 450 ppm or less is useful.

主成分がFe2348.9mol%、ZnO14〜24mol%、残部がNiOとCuOからなり、その成分比がNiO/CuO比=2.34となるように秤量し、この主成分総重量に対してV25を0.20wt%配合し、実施例2と同様の工程により焼結体を得た。得られたトロイダル状の焼結体に1次側、2次側にそれぞれ3ターンの巻線を施し、3MHz、80A/mの交流磁界を印加したとき、印加磁界を横軸、焼結体に生じる磁束密度を縦軸とした直交座標系において、最大印加磁界(A/m)に対応する磁束密度(T)で表される点と原点とを結んだ直線の傾きを測定し、得られた値と25℃から60℃にかけてのコアロスの温度変化との関係を図4に示す。 The main component is 48.9 mol% Fe 2 O 3, 14 to 24 mol% ZnO, the balance is NiO and CuO, and the component ratio is NiO / CuO ratio = 2.34. On the other hand, 0.20 wt% of V 2 O 5 was blended, and a sintered body was obtained by the same process as in Example 2. The obtained toroidal sintered body is wound with 3 turns on the primary side and the secondary side, respectively, and when an alternating magnetic field of 3 MHz and 80 A / m is applied, the applied magnetic field is applied to the horizontal axis and the sintered body. It was obtained by measuring the slope of a straight line connecting a point represented by a magnetic flux density (T) corresponding to the maximum applied magnetic field (A / m) and the origin in an orthogonal coordinate system with the generated magnetic flux density as the vertical axis. The relationship between the value and the temperature change of the core loss from 25 ° C. to 60 ° C. is shown in FIG.

図4より、傾きの値が減少すると、コアロス温度変化が負の傾向に向かって改善されている。また、傾きが0.0005以下であれば、+0.1%/℃以下である。従って、焼結体に3MHz、80A/mの交流磁界を印加したとき、印加磁界を横軸、焼結体に生じる磁束密度を縦軸とした直交座標系において、最大印加磁界(A/m)に対応する磁束密度(T)で表される点と原点とを結んだ直線の傾きが0.0001以上、且つ0.0005以下の範囲が有用である。   As shown in FIG. 4, when the slope value decreases, the core loss temperature change is improved toward a negative tendency. Further, when the inclination is 0.0005 or less, it is + 0.1% / ° C. or less. Therefore, when an AC magnetic field of 3 MHz and 80 A / m is applied to the sintered body, the maximum applied magnetic field (A / m) in an orthogonal coordinate system with the applied magnetic field as the horizontal axis and the magnetic flux density generated in the sintered body as the vertical axis. A range in which the slope of the straight line connecting the point represented by the magnetic flux density (T) corresponding to and the origin is 0.0001 or more and 0.0005 or less is useful.

実施例2における平均結晶粒径とコアロス温度変化関係を示す図。The figure which shows the average crystal grain diameter in Example 2, and a core loss temperature change relationship. 実施例2における1つの粒内に存在する磁壁数とコアロス温度変化の関係を示す図。The figure which shows the relationship between the number of domain walls which exist in one grain in Example 2, and a core loss temperature change. 実施例2におけるC含有量とコアロスの温度変化の関係を示す図。The figure which shows the relationship between the C content in Example 2, and the temperature change of a core loss. 実施例3における最大印加磁界(A/m)に対応する磁束密度(T)で表される点と原点とを結んだ直線の傾きとコアロスの温度変化の関係を示す図。The figure which shows the relationship between the inclination of the straight line which connected the point represented by the magnetic flux density (T) corresponding to the largest applied magnetic field (A / m) in Example 3, and the origin, and the temperature change of a core loss.

Claims (5)

主成分として、Fe2345〜50.5mol%、ZnO14〜24mol%、NiO19.4〜39mol%、CuO2〜18.6mol%からなり、副成分としてV250.01〜0.6重量%を含み、且つNiO/CuO比が1.2〜19であるNi−Cu−Zn系フェライトであって、焼結体に1〜5MHzの交流磁界を印加したときのコアロスの温度変化が25℃から60℃にかけて連続的に+0.1%/℃以下(負も含む)であることを特徴とする高周波パワーデバイス用低損失Ni−Cu−Zn系フェライト。 As the main component, Fe 2 O 3 45~50.5mol%, ZnO14~24mol%, NiO19.4~39mol%, consists CuO2~18.6mol%, V 2 O 5 0.01~0.6 as a sub-component Ni-Cu-Zn-based ferrite having a NiO / CuO ratio of 1.2 to 19 and containing 25% by weight, the temperature change of the core loss when an AC magnetic field of 1 to 5 MHz is applied to the sintered body is 25. A low-loss Ni—Cu—Zn-based ferrite for high-frequency power devices, characterized by being continuously + 0.1% / ° C. or lower (including negative) from ℃ to 60 ° C. 焼結体の密度が5.30g/cc以下であり、且つ焼結体の平均結晶粒径が0.3〜5μmであることを特徴とする請求項1に記載の高周波パワーデバイス用低損失Ni−Cu−Zn系フェライト。   The low-loss Ni for high-frequency power devices according to claim 1, wherein the density of the sintered body is 5.30 g / cc or less and the average crystal grain size of the sintered body is 0.3 to 5 µm. -Cu-Zn based ferrite. 焼結体に磁場を印加したとき、焼結体の1つの結晶粒内に存在する磁壁の数が3以下であることを特徴とする請求項1に記載の高周波パワーデバイス用低損失Ni−Cu−Zn系フェライト。   The low-loss Ni-Cu for high-frequency power devices according to claim 1, wherein when a magnetic field is applied to the sintered body, the number of domain walls present in one crystal grain of the sintered body is 3 or less. -Zn-based ferrite. 不純物成分であるCの含有量が450ppm以下であることを特徴とする請求項1乃至3のいずれかに記載の高周波パワーデバイス用低損失Ni−Cu−Zn系フェライト。   The low-loss Ni—Cu—Zn-based ferrite for high-frequency power devices according to claim 1, wherein the content of C as an impurity component is 450 ppm or less. 空隙の無いトロイダル形状の焼結体に3MHz、80A/mの交流磁界を印加したとき、印加磁界を横軸、焼結体に生じる磁束密度を縦軸とした直交座標系において、最大印加磁界(A/m)に対応する磁束密度(T)で表される点と原点とを結んだ直線の傾きが0.0001以上、且つ0.0005以下であることを特徴とする請求項1乃至4のいずれかに記載の高周波パワーデバイス用低損失Ni−Cu−Zn系フェライト。   When an AC magnetic field of 3 MHz and 80 A / m is applied to a toroidal sintered body without voids, the maximum applied magnetic field (in the orthogonal coordinate system with the applied magnetic field as the horizontal axis and the magnetic flux density generated in the sintered body as the vertical axis, The slope of a straight line connecting a point represented by a magnetic flux density (T) corresponding to (A / m) and the origin is 0.0001 or more and 0.0005 or less. The low-loss Ni—Cu—Zn-based ferrite for high-frequency power devices according to any one of the above.
JP2007076532A 2007-03-23 2007-03-23 LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE Pending JP2008230941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076532A JP2008230941A (en) 2007-03-23 2007-03-23 LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076532A JP2008230941A (en) 2007-03-23 2007-03-23 LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE

Publications (1)

Publication Number Publication Date
JP2008230941A true JP2008230941A (en) 2008-10-02

Family

ID=39904191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076532A Pending JP2008230941A (en) 2007-03-23 2007-03-23 LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE

Country Status (1)

Country Link
JP (1) JP2008230941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141974A1 (en) * 2016-02-18 2017-08-24 Tdk株式会社 Ferrite sintered body and ferrite core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141974A1 (en) * 2016-02-18 2017-08-24 Tdk株式会社 Ferrite sintered body and ferrite core

Similar Documents

Publication Publication Date Title
CN101061080A (en) Low-loss Mn-Zn ferrite and, electronic part and switching power supply utilizing the same
CN107001150B (en) Method for producing MnZn ferrite, and MnZn ferrite
JP2009173483A (en) MnZn BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2006206347A (en) Oxide magnetic material
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2007051052A (en) LOW LOSS MnZnNi-BASED FERRITE AND ELECTRONIC COMPONENT USING IT, AND SWITCHING POWER SUPPLY
EP1925603A1 (en) Ferrite material
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP2005330161A (en) Ferrite material
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP6558505B2 (en) Ni-based ferrite sintered body, coil component, and manufacturing method of Ni-based ferrite sintered body
JP2008230941A (en) LOW CORE LOSS Ni-Cu-Zn-BASED FERRITE FOR HIGH FREQUENCY POWER DEVICE
JP5560436B2 (en) MnZnNi ferrite
JP2010111545A (en) Ferrite composition and inductor
JP2007297232A (en) Method for producing oxide magnetic material
JP6964555B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP2022059859A (en) MnZn BASED FERRITE AND MANUFACTURING METHOD OF SAME
JP6964556B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP6416808B2 (en) MnZnCo ferrite
JP2007031210A (en) Mn-Zn FERRITE
JP2004035372A (en) Low loss ferrite material
JP2010150053A (en) SINTERED COMPACT OF SPINEL TYPE Ni-Cu-Zn-BASED FERRITE
JP5952236B2 (en) Mn-Zn-Ni ferrite and method for producing the same
JP7221751B2 (en) Magnetic materials and laminated chip components
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material