JPH1173999A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH1173999A
JPH1173999A JP9247799A JP24779997A JPH1173999A JP H1173999 A JPH1173999 A JP H1173999A JP 9247799 A JP9247799 A JP 9247799A JP 24779997 A JP24779997 A JP 24779997A JP H1173999 A JPH1173999 A JP H1173999A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte
magnesium
aqueous secondary
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9247799A
Other languages
Japanese (ja)
Other versions
JP4362152B2 (en
Inventor
Takao Noda
孝男 野田
Akihiko Shirakawa
彰彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24779997A priority Critical patent/JP4362152B2/en
Publication of JPH1173999A publication Critical patent/JPH1173999A/en
Application granted granted Critical
Publication of JP4362152B2 publication Critical patent/JP4362152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery comprising a positive active material containing a lithium-contained composite oxide and an electrolyte chloride containing lithium and fluorine, wherein an initial discharge capacity is large and decrease in discharge capacity is small, even if charging/discharging is repeated. SOLUTION: A nonaqueous secondary battery comprises a positive active material composed of at least one kind which is selected among the kinds of a Li-Co composite oxide, a Li-Ni composite oxide, and a Li-Mn composite oxide, and an electrolyte consists of at least one kind of electrolytic salt containing lithium and fluorine. In the battery, Mg containing metal oxide particles whose BET specific surface area is equal to 30 m<2> /g or more and the moisture content (Karl Fischer value) is equal to 3000 ppm or less are set to exit therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Li・Co系複合
酸化物、Li・Ni系複合酸化物、Li・Mn系複合酸
化物から選ばれた少なくとも1種の正極活物質と、フッ
素を含有する少なくとも1種の電解質塩を含む非水二次
電池に係わり、特に充放電サイクル特性に優れた非水二
次電池に関する。
[0001] The present invention relates to a positive electrode active material selected from the group consisting of Li / Co-based composite oxides, Li-Ni-based composite oxides, and Li-Mn-based composite oxides, and a fluorine-containing active material. The present invention relates to a non-aqueous secondary battery containing at least one electrolyte salt, and more particularly to a non-aqueous secondary battery having excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】近年、非水二次電池の正極活物質とし
て、LiCoO2 、LiNiO2 、LiMn24 など
を使用した非水二次電池が、4V級の高電圧を取り出す
ことが可能であることから注目されている。その際、電
解質塩としてリチウム塩が用いられるが、この場合電気
伝導率、電気化学的な安定性及び安全性などの観点から
フッ素を含有するリチウム塩が電解質塩として好んで用
いられている。しかしながら、これらの正極活物質とリ
チウム塩を用いた場合、初期放電容量はかなり大きいも
のの、充放電を繰り返すと比較的少数回の繰り返しによ
り放電容量が低下してしまうという問題がある。
2. Description of the Related Art In recent years, a non-aqueous secondary battery using LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like as a positive electrode active material of a non-aqueous secondary battery can extract a high voltage of 4V class. Attention has been paid to this. At this time, a lithium salt is used as the electrolyte salt. In this case, a lithium salt containing fluorine is preferably used as the electrolyte salt from the viewpoints of electric conductivity, electrochemical stability, safety and the like. However, when these positive electrode active materials and lithium salts are used, although the initial discharge capacity is considerably large, there is a problem that the discharge capacity is reduced by relatively small number of repetitions when charge and discharge are repeated.

【0003】かかる問題を解決するためにいくつかの提
案がなされている。例えばLi・Mn複合酸化物とアル
ミナからなる複合体粒子を用いる方法がある(特開平8
−31407公報)。しかしながら、アルミナの作用に
よりLi・Mn系複合酸化物の分解が抑制され電解液の
分解が起こりにくくなり充放電に伴う放電容量の低下が
小さくなるものとの推定がなされているが、充放電を繰
り返すと放電容量の低下を充分に抑制することができな
い。またこれとは目的が異なるが、特開平3−9826
3公報には有機電解液にマグネシア、アルミナ、チタニ
ア等の粉末を多量に添加し流動性を低下させ、液漏れを
解決する方法が提案されている。
Several proposals have been made to solve such a problem. For example, there is a method using composite particles composed of a Li-Mn composite oxide and alumina (Japanese Unexamined Patent Application Publication No.
-31407 gazette). However, it has been estimated that the action of alumina suppresses the decomposition of the Li-Mn-based composite oxide, makes it difficult for the electrolyte to decompose, and reduces the decrease in discharge capacity due to charge and discharge. When repeated, the decrease in the discharge capacity cannot be sufficiently suppressed. Although the purpose is different from this,
Japanese Patent Application Laid-Open Publication No. H11-15064 proposes a method of adding a large amount of a powder of magnesia, alumina, titania, or the like to an organic electrolytic solution to reduce the fluidity and solve the liquid leakage.

【0004】[0004]

【本発明が解決しようとする課題】本発明は、リチウム
含有複合酸化物からなる正極活物質とリチウムとフッ素
を含有する電解質塩を含む非水二次電池において、初期
放電容量が大きく、かつ充放電を繰り返しても放電容量
が低下の少ない非水二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention relates to a non-aqueous secondary battery containing a positive electrode active material comprising a lithium-containing composite oxide and an electrolyte salt containing lithium and fluorine, having a large initial discharge capacity and a high charge capacity. It is an object of the present invention to provide a non-aqueous secondary battery in which the discharge capacity is less reduced even when the discharge is repeated.

【0005】[0005]

【課題を解決するための手段】本発明は、(1) 非水
二次電池において、正極活物質がLi・Co系複合酸化
物、Li・Ni系複合酸化物、Li・Mn系複合酸化物
から選ばれた少なくとも1種からなり、電解質がリチウ
ムとフッ素を含有する少なくとも1種の電解質塩を含む
電解質からなり、かつ電池内にBET比表面積が30m
2 /g以上、含水量(カールフィッシャー値)が300
0 ppm以下であるマグネシウム含有金属酸化物粒子
を存在させたことを特徴とする非水二次電池、(2)
電解質塩がLiPF6 、LiBF4 、LiN(CF3
2) 2、LiAsF6 、LiCF3 SO3 、LiC4
9 SO3 の少なくとも一種である(1)記載の非水二次
電池、(3) マグネシウム含有金属酸化物がMgO及
び/又はハイドロタルサイト類化合物である(1)記載
の非水二次電池、(4) 正極が、正極活物質とマグネ
シウム含有金属酸化物粒子との混合物から構成された
(1)記載の非水二次電池、及び(5) 電解液が、リ
チウムとフッ素を含有する電解質塩及び有機溶媒からな
る電解質とマグネシウム含有金属酸化物粒子との複合電
解液が使用されている(1)記載の非水二次電池を開発
することにより上記の目的を達成した。
According to the present invention, there is provided (1) a non-aqueous secondary battery, wherein the positive electrode active material is a Li / Co-based composite oxide, a Li / Ni-based composite oxide, or a Li-Mn-based composite oxide. Wherein the electrolyte comprises an electrolyte containing at least one electrolyte salt containing lithium and fluorine, and has a BET specific surface area of 30 m in the battery.
2 / g or more, water content (Karl Fischer value) 300
Non-aqueous secondary battery characterized by having 0 ppm or less of magnesium-containing metal oxide particles, (2)
The electrolyte salt is LiPF 6 , LiBF 4 , LiN (CF 3 S
O 2 ) 2 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F
Is at least one 9 SO 3 (1) a non-aqueous secondary battery according, (3) magnesium-containing metal oxide is MgO and / or hydrotalcite compound (1) a non-aqueous secondary battery according, (4) The nonaqueous secondary battery according to (1), wherein the positive electrode is composed of a mixture of a positive electrode active material and magnesium-containing metal oxide particles, and (5) the electrolyte salt, wherein the electrolyte solution contains lithium and fluorine. The above object has been achieved by developing a nonaqueous secondary battery according to (1), wherein a composite electrolyte of an electrolyte composed of an organic solvent and magnesium-containing metal oxide particles is used.

【0006】[0006]

【発明の実施の形態】本発明の非水二次電池とは、正極
活物質がLi・Co系複合酸化物、Li・Ni系複合酸
化物、Li・Mn系複合酸化物から選ばれた少なくとも
1種からなり、電解質がリチウムとフッ素を含有する少
なくとも1種の電解質塩を含む電解質からなるリチウム
二次電池である。このリチウム二次電池内においてマグ
ネシウム含有金属酸化物粒子は、正極活物質となるリチ
ウム系複合酸化物粒子及び/またはリチウムとフッ素を
含有する電解質塩を含む電解液に添加して、電池の正極
および/または複合電解液としてそれぞれ使用できる。
また該マグネシウム含有金属酸化物粒子は負極活物質と
の複合体としても使用可能であるが、リチウム金属やカ
ーボンのように還元作用の強いものを負極活物質とする
場合は、正極活物質又は電解液と混合又は添加する方が
より好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous secondary battery of the present invention is characterized in that the positive electrode active material is at least one selected from the group consisting of a Li.Co-based composite oxide, a Li.Ni-based composite oxide, and a Li.Mn-based composite oxide. The lithium secondary battery is composed of one kind, and the electrolyte is composed of an electrolyte containing at least one kind of electrolyte salt containing lithium and fluorine. In the lithium secondary battery, the magnesium-containing metal oxide particles are added to an electrolyte containing lithium-based composite oxide particles and / or an electrolyte salt containing lithium and fluorine as a positive electrode active material, and the positive electrode of the battery and And / or each can be used as a composite electrolyte.
The magnesium-containing metal oxide particles can also be used as a composite with a negative electrode active material. However, when a material having a strong reducing action such as lithium metal or carbon is used as the negative electrode active material, the positive electrode active material or the electrolytic It is more preferable to mix or add with the liquid.

【0007】本発明の非水二次電池において、正極活物
質としてはLi・Co複合酸化物、Li・Ni複合酸化
物及びLi・Mn複合酸化物の少なくとも1種を用い
る。この場合において、これら複合酸化物中のCo、N
iまたはMnの一部を他の金属元素で置換した複合酸化
物を用いることも自由である。特にLi・Mn複合酸化
物あるいはMnの一部を他の金属元素で置換したLi・
Mn系複合酸化物の場合は、充放電繰り返し時の放電容
量の低下抑制効果が顕著である。Li・Mn複合酸化物
としては、スピネル型LiMn24 、LiMnO2
Li2 MnO3 とMnO2 との複合体粒子などが挙げら
れる。
In the non-aqueous secondary battery of the present invention, at least one of a Li.Co composite oxide, a Li.Ni composite oxide, and a Li.Mn composite oxide is used as a positive electrode active material. In this case, Co, N in these composite oxides
It is also free to use a composite oxide in which i or Mn is partially replaced by another metal element. Particularly, Li.Mn composite oxide or Li.Mn in which a part of Mn is replaced by another metal element.
In the case of a Mn-based composite oxide, the effect of suppressing a decrease in discharge capacity upon repeated charge / discharge is remarkable. Examples of the Li.Mn composite oxide include spinel type LiMn 2 O 4 , LiMnO 2 ,
Composite particles of Li 2 MnO 3 and MnO 2 are exemplified.

【0008】電解液に使用する電解質塩としては、フッ
素を含有するリチウム塩であればいずれの場合でも充放
電繰り返し時の放電容量の低下抑制効果が発現される。
たとえば、LiPF6 、LiBF4 、LiN(CF3
2) 2、LiAsF6、LiCF3 SO3 、LiC49
SO3 などが使用できるが、本発明のマグネシウム含
有金属酸化物を使用した場合において、特に電池内に持
ち込まれた水分と反応しやすいLiPF6 の場合にその
効果が顕著である。
In any case, as the electrolyte salt used in the electrolytic solution, a lithium salt containing fluorine exhibits an effect of suppressing a decrease in discharge capacity upon repeated charge and discharge.
For example, LiPF 6 , LiBF 4 , LiN (CF 3 S
O 2 ) 2 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9
Although SO 3 and the like can be used, when the magnesium-containing metal oxide of the present invention is used, the effect is remarkable particularly in the case of LiPF 6 which easily reacts with moisture brought into the battery.

【0009】電解液の非水溶媒としては、電解質塩を溶
解し、化学的及び電気化学的に安定で、非プロトン性で
ある等、電池の非水溶媒として使用できるものであれば
特に制約はない。たとえば、炭酸ジメチル、炭酸プロピ
レン、炭酸エチレンなどの炭酸エステルが使用できる。
The non-aqueous solvent of the electrolytic solution is not particularly limited as long as it can be used as a non-aqueous solvent for a battery, for example, it dissolves an electrolyte salt, is chemically and electrochemically stable, and is aprotic. Absent. For example, carbonates such as dimethyl carbonate, propylene carbonate and ethylene carbonate can be used.

【0010】本発明の非水二次電池に使用する負極活物
質としては、リチウムを可逆的に吸蔵放出可能なもので
あれば特に制約はなく、通常リチウム二次電池に使用さ
れているもの、たとえば、金属リチウム、リチウム合
金、炭素材料、金属カルコゲン化合物などを使用でき
る。正極及び負極の集電体としては、電子伝導性で電気
化学的に耐食性があり、比表面積の大きい材料が望まし
く、一般に使用されている集電体が使用できる。たとえ
ば、アルミニウム、銅などの金属が挙げられる。
The negative electrode active material used in the non-aqueous secondary battery of the present invention is not particularly limited as long as it is capable of reversibly inserting and extracting lithium. For example, lithium metal, a lithium alloy, a carbon material, a metal chalcogen compound, and the like can be used. As the current collector for the positive electrode and the negative electrode, a material having electron conductivity, electrochemical corrosion resistance, and a large specific surface area is preferable, and a generally used current collector can be used. For example, metals such as aluminum and copper can be used.

【0011】本発明の非水二次電池に使用するマグネシ
ウム含有金属酸化物粒子としては、BET比表面積が3
0m2 /g以上かつ含水量(カールフィッシャー値)が
3000ppm以下であることが必要である。本発明者
らは、充放電繰り返し時の放電容量の低下原因は、正極
活物質中のCo、Ni、Mnの溶出による電池活性の低
下であるものと推定し、マグネシウム含有金属酸化物を
添加することによりこの溶出を防止しようと試み、反応
の機構はまだ十分な解明はできていないが放電容量の低
下を防止できた。充電時にフッ素を含有する電解質塩が
電池内に持ち込まれた微量な水分と反応して分解し、フ
ッ素又はフッ酸が生成し、正極活物質中のCo、Niま
たはMnを溶出してしまうのが放電容量低下の主な原因
であろう。本発明者らは、この溶出抑制方法を鋭意検討
し、電池内の水分とフッ素又はフッ酸の両方をトラップ
できる化合物としてマグネシウム含有金属酸化物粒子を
選び、これを電池内に存在させることにより、充放電繰
り返し時の放電容量の低下を抑制できたものと考えてい
る。
The magnesium-containing metal oxide particles used in the non-aqueous secondary battery of the present invention have a BET specific surface area of 3
It is necessary that the water content is not less than 0 m 2 / g and the water content (Karl Fischer value) is not more than 3000 ppm. The present inventors presume that the cause of the decrease in discharge capacity during repeated charge / discharge is a decrease in battery activity due to elution of Co, Ni, and Mn in the positive electrode active material, and a magnesium-containing metal oxide is added. Thus, an attempt was made to prevent this elution, and although the mechanism of the reaction had not yet been sufficiently elucidated, it was possible to prevent a decrease in discharge capacity. At the time of charging, the electrolyte salt containing fluorine reacts with a minute amount of water brought into the battery and decomposes to generate fluorine or hydrofluoric acid, which elutes Co, Ni or Mn in the positive electrode active material. It may be the main cause of the decrease in discharge capacity. The present inventors have intensively studied this elution suppression method, selected magnesium-containing metal oxide particles as a compound capable of trapping both moisture and fluorine or hydrofluoric acid in the battery, and by allowing this to be present in the battery, It is considered that a decrease in the discharge capacity at the time of repeated charge and discharge was suppressed.

【0012】電池内の水分と、反応により副生するフッ
素またはフッ酸を充分にトラップするには、配合するマ
グネシウム含有金属酸化物粒子はBET比表面積が30
2/g以上であることが必要である。好ましくは、B
ET比表面積が50m2 /g以上、さらに好ましくは1
00m2 /g以上である。BET比表面積が30m2
gよりも小さいと、電池内の水分と、副生するフッ素又
はフッ酸のトラップ能力が低下するものと考えられる。
また、充放電繰り返しによる放電容量の低下を招かない
ためには、マグネシウム含有金属酸化物粒子の含水量は
3000ppm以下であることが必要である。好ましく
は、2000ppm以下、さらに好ましくは、1000
ppm以下である。マグネシウム金属酸化物粒子の含水
量が3000ppmよりも多いと、電池内での水分のト
ラップ能力が低下してマグネシウム含有金属酸化物配合
の効果が発揮できない。マグネシウム含有金属酸化物粒
子の含水量を低減する方法としてはどのような方法でも
よいが、300℃以上に加熱処理し、露点−30℃以下
の雰囲気下で冷却し、取り出す方法が簡便である。
To sufficiently trap moisture in the battery and fluorine or hydrofluoric acid by-produced by the reaction, the magnesium-containing metal oxide particles to be blended have a BET specific surface area of 30%.
It is necessary to be at least m 2 / g. Preferably, B
ET specific surface area of 50 m 2 / g or more, more preferably 1
00 m 2 / g or more. BET specific surface area is 30m 2 /
If it is smaller than g, it is considered that the ability to trap moisture in the battery and fluorine or hydrofluoric acid as a by-product decreases.
In addition, in order not to cause a decrease in discharge capacity due to repeated charge and discharge, the water content of the magnesium-containing metal oxide particles needs to be 3000 ppm or less. Preferably, it is 2000 ppm or less, more preferably, 1000 ppm
ppm or less. If the water content of the magnesium metal oxide particles is more than 3000 ppm, the effect of blending the magnesium-containing metal oxide cannot be exerted because the water trapping ability in the battery is reduced. As a method for reducing the water content of the magnesium-containing metal oxide particles, any method may be used, but a method of performing heat treatment at 300 ° C. or higher, cooling in an atmosphere having a dew point of −30 ° C. or lower, and taking out is simple.

【0013】本発明において、マグネシウム含有金属酸
化物粒子の添加量としては特に制約はないが、正極活物
質、電解液又は負極活物質に対して実用上50wt%を
上限に添加又は混合することができる。マグネシウム含
有金属酸化物の添加量が多すぎると二次電池の重量当た
りの放電容量が小さくなってしまうので、好ましくは
0.1〜30wt%、さらに好ましくは0.1〜10w
t%である。本発明に使用するマグネシウム含有金属酸
化物粒子の遠心沈降平均粒子径(二次粒子径)は、好ま
しくは10μm以下、さらに好ましくは5μm以下であ
る。遠心沈降粒子径が10μmよりも大きいと、電池内
の水分とフッ素又はフッ酸のトラップ効率が低下してし
まうからと考えられる。
In the present invention, the addition amount of the magnesium-containing metal oxide particles is not particularly limited, but may be practically added or mixed with the upper limit of 50 wt% with respect to the positive electrode active material, the electrolytic solution or the negative electrode active material. it can. If the addition amount of the magnesium-containing metal oxide is too large, the discharge capacity per weight of the secondary battery becomes small, so it is preferably 0.1 to 30 wt%, more preferably 0.1 to 10 w%.
t%. The centrifugal sedimentation average particle diameter (secondary particle diameter) of the magnesium-containing metal oxide particles used in the present invention is preferably 10 μm or less, more preferably 5 μm or less. It is considered that if the centrifugal sedimentation particle diameter is larger than 10 μm, the efficiency of trapping moisture and fluorine or hydrofluoric acid in the battery is reduced.

【0014】本発明におけるマグネシウム含有金属酸化
物は、BET比表面積が30m2 /g以上あり、含水量
が3000ppm以下であって、フッ素との結合力が強
いマグネシウムを含有し、水分を放出しないマグネシウ
ム含有金属酸化物粒子であれば使用できる。該マグネシ
ウム含有金属酸化物の製造方法については特に制約はな
く、上記の条件を満たすものであればいずれの方法で得
られたものでもよい。これらの金属酸化物としては、た
とえば酸化マグネシウム、ハイドロタルサイト類化合
物、MgAl24 、MgCr24 、Mg2 SiO4
等が挙げられる。特に好ましいのは酸化マグネシウムと
ハイドロタルサイト類化合物である。これらはともに電
気化学的に安定であって、水分とフッ素又はフッ酸をト
ラップして安定化する作用があり、本発明の目的には有
効な金属酸化物であると考えられる。
The magnesium-containing metal oxide of the present invention has a BET specific surface area of 30 m 2 / g or more, a water content of 3000 ppm or less, contains magnesium having a strong bonding force with fluorine, and does not release magnesium. Any metal oxide particles can be used. The method for producing the magnesium-containing metal oxide is not particularly limited, and any method may be used as long as it satisfies the above conditions. Examples of these metal oxides include magnesium oxide, hydrotalcite compounds, MgAl 2 O 4 , MgCr 2 O 4 , Mg 2 SiO 4
And the like. Particularly preferred are magnesium oxide and hydrotalcite compounds. These are both electrochemically stable, have the effect of trapping and stabilizing moisture and fluorine or hydrofluoric acid, and are considered to be effective metal oxides for the purpose of the present invention.

【0015】ここで言うハイドロタルサイト類化合物と
は、酸化マグネシウムにアルミナが固溶したもので、一
般式Mgx Al1-x1.5-0.5x・nH2 O(0<X<
1)で表されるものである。特に好ましいのは結晶水を
含有しないMg0.7 Al0.31.15である。Mg0.7
0.31.15は、ハロゲンと水を吸着するだけでなく、
それ以外にアルカリ金属を除く金属もトラップすること
ができるので金属不純物除去の役割も果たす。
The term "hydrotalcite compound" as used herein means a solid solution of alumina in magnesium oxide, and has the general formula Mg x Al 1 -x O 1.5-0.5x · nH 2 O (0 <X <
This is represented by 1). Particularly preferred is Mg 0.7 Al 0.3 O 1.15 containing no water of crystallization. Mg 0.7 A
l 0.3 O 1.15 not only adsorbs halogen and water,
In addition, since metals other than alkali metals can also be trapped, they also serve to remove metal impurities.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明する。 [正極]炭酸リチウムと二酸化マンガンをLi:Mnの
モル比1:2で混合し、空気中750℃で20時間焼成
してスピネル型LiMn24 粉末を得た。得られたL
iMn24 粉末単独又はマグネシウム含有金属酸化物
粒子との混合粉末と、導電剤としてアセチレンブラック
と、結着剤としてフッ素樹脂粉末を重量比8:1:1の
割合で混合し、この混合物をアルミニウムエクスパンド
メタルからなる集電体上に加圧成形し正極とした。 [負極活物質]厚み0.6mmの金属リチウムを使用し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. [Positive electrode] Lithium carbonate and manganese dioxide were mixed at a molar ratio of Li: Mn of 1: 2, and calcined in air at 750 ° C. for 20 hours to obtain a spinel type LiMn 2 O 4 powder. L obtained
iMn 2 O 4 powder alone or mixed powder with magnesium-containing metal oxide particles, acetylene black as a conductive agent, and fluororesin powder as a binder are mixed at a weight ratio of 8: 1: 1, and this mixture is mixed. A positive electrode was formed by pressure molding on a current collector made of aluminum expanded metal. [Negative electrode active material] Metallic lithium having a thickness of 0.6 mm was used.

【0017】[電解液]炭酸プロピレンと炭酸ジメチル
を体積比1:2の割合で混合した混合液に、LiPF6
を1モル/リットルの濃度で溶解した電解液又はこの電
解液にマグネシウム含有金属酸化物粒子を添加した複合
電解液を使用した。 [金属酸化物粒子]BET比表面積105m2 /g、遠
心沈降平均粒子径3.1μmの酸化マグネシウム粒子
(協和化学製ミクロマグ3−150)、BET比表面積
33m2 /g、遠心沈降平均粒子径5.0μmの酸化マ
グネシウム粒子(協和化学製ミクロマグ3−30)、B
ET比表面積135m2 /g、遠心沈降平均粒子径6.
5μmのハイドロタルサイト類化合物粒子Mg0.7 Al
0.31.15(協和化学製KW−2000)を用いた。な
おマグネシウム含有金属酸化物粒子は、400℃〜80
0℃の温度で加熱処理して含水量を調整し、露点−50
℃の雰囲気で常温まで冷却してから使用した。 [充放電サイクル試験]正極、負極、ポリプロピレン製
セパレーター、電解液を用いて、2016型コインセル
を作製し、電流密度0.5mA/cm2 、作動電圧4.
4V〜3.0Vで充放電を繰り返し、初期と30サイク
ル後の放電容量を測定した。
[Electrolyte] LiPF 6 was added to a mixture of propylene carbonate and dimethyl carbonate at a volume ratio of 1: 2.
Was dissolved at a concentration of 1 mol / liter or a composite electrolyte obtained by adding magnesium-containing metal oxide particles to this electrolyte. [Metal oxide particles] Magnesium oxide particles (Micromag 3-150, manufactured by Kyowa Chemical Co., Ltd.) having a BET specific surface area of 105 m 2 / g and a centrifugal sedimentation average particle diameter of 3.1 μm, a BET specific surface area of 33 m 2 / g, and a centrifugal sedimentation average particle diameter of 5 0.0 μm magnesium oxide particles (Micromag 3-30 manufactured by Kyowa Chemical Industry Co., Ltd.), B
5. ET specific surface area 135 m 2 / g, centrifugal sedimentation average particle size
5 μm hydrotalcite compound particles Mg 0.7 Al
0.3 O 1.15 (KW-2000 manufactured by Kyowa Chemical Industry Co., Ltd.) was used. Note that the magnesium-containing metal oxide particles have a temperature of 400 ° C to 80 ° C.
The water content was adjusted by heating at a temperature of 0 ° C, and the dew point was -50.
It was used after cooling to room temperature in an atmosphere of ° C. [Charge / Discharge Cycle Test] A 2016 type coin cell was prepared using a positive electrode, a negative electrode, a polypropylene separator, and an electrolytic solution, and had a current density of 0.5 mA / cm 2 and an operating voltage of 4.
The charge / discharge was repeated at 4 V to 3.0 V, and the discharge capacity at the initial stage and after 30 cycles was measured.

【0018】(実施例1)正極としてスピネル型LiM
24 粉末に対してミクロマグ3−150(含水量2
000ppm)を10wt%添加したものを、負極とし
ては金属リチウムを、電解液としては炭酸プロピレンと
炭酸ジメチルを体積比1:2の割合で混合した混合液に
LiPF6 を1モル/リットルの濃度で溶解したものを
使用した。 (実施例2)正極にミクロマグ3−150(含水量20
00ppm)を10wt%に代え、30wt%使用した
以外は実施例1と同様に実施した。 (実施例3)ミクロマグ3−150(含水量2000p
pm)を5wt%添加したこと以外は実施例1と同様に
実施した。
(Example 1) Spinel type LiM as a positive electrode
Mikuromagu against n 2 O 4 powder 3-150 (water content 2
LiPF 6 at a concentration of 1 mol / liter in a mixed solution obtained by adding metallic lithium as a negative electrode and propylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 as an electrolytic solution. The dissolved one was used. (Example 2) Micromag 3-150 (water content 20
(00 ppm) was replaced with 10 wt%, and the same operation as in Example 1 was performed except that 30 wt% was used. (Example 3) Micromag 3-150 (water content 2000p)
pm), except that 5 wt% was added.

【0019】(実施例4)正極としてスピネル型LiM
24 粉末に対してミクロマグ3−150(含水量2
000ppm)を5wt%添加したものを、負極として
は金属リチウムを、電解液としてはミクロマグ3−15
0(含水量2000ppm)を5wt%添加した複合電
解液を使用した以外は実施例1と同様に実施した。 (実施例5)ミクロマグ3−150(含水量2000p
pm)を15wt%使用したこと以外は実施例1と同様
に実施した。 (実施例6)炭酸リチウム、二酸化マンガン、水酸化ニ
ッケルをLi:Mn:Niのモル比を1:1.8:0.
2で混合し、空気中750℃で20時間焼成してLiM
1. 8 Ni0.24 粉末を得た。正極活物質として、こ
のLiMn1.8 Ni0.24粉末を使用した以外は実施
例1と同様に実施した。 (実施例7)ミクロマグ3−30(含水量800pp
m)を使用したこと以外は実施例1と同様に実施した。
(Example 4) Spinel type LiM as a positive electrode
Mikuromagu against n 2 O 4 powder 3-150 (water content 2
000 ppm), metallic lithium as the negative electrode, and micromag 3-15 as the electrolytic solution.
0 (water content: 2000 ppm) was carried out in the same manner as in Example 1 except that a composite electrolytic solution to which 5 wt% was added was used. (Example 5) Micromag 3-150 (water content 2000p)
pm) except that 15 wt% was used. (Example 6) Lithium carbonate, manganese dioxide, and nickel hydroxide were prepared at a molar ratio of Li: Mn: Ni of 1: 1.8: 0.
2 and calcined in air at 750 ° C. for 20 hours.
n 1. was obtained 8 Ni 0.2 O 4 powder. The operation was performed in the same manner as in Example 1 except that this LiMn 1.8 Ni 0.2 O 4 powder was used as the positive electrode active material. (Example 7) Micromag 3-30 (water content 800 pp)
m) was carried out in the same manner as in Example 1 except that m) was used.

【0020】(実施例8)KW−2000(含水量18
00ppm)を使用したこと以外は実施例1と同様に実
施した。 (実施例9)正極としてLiMn24 粉末、導電剤、
結着剤からなるものを、負極としては金属リチウムを使
用した。また電解液に対してミクロマグ3−150(含
水量2000ppm)を5wt%添加した複合電解液を
使用した。 (実施例10)ミクロマグ3−150(含水量1000
ppm)を使用したこと以外、実施例9と同様に実施し
た。 (実施例11)KW−2000(含水量1800pp
m)を使用したこと以外、実施例9と同様に実施した。 (実施例12)電解質塩としてLiBF4 を使用したこ
と以外、実施例1と同様に実施した。
Example 8 KW-2000 (water content: 18)
(00 ppm) was used in the same manner as in Example 1. (Example 9) LiMn 2 O 4 powder, conductive agent,
A material composed of a binder was used, and metallic lithium was used as a negative electrode. Also, a composite electrolyte solution was used in which 5 wt% of Micromag 3-150 (water content: 2000 ppm) was added to the electrolyte solution. (Example 10) Micromag 3-150 (water content: 1000)
ppm) was used in the same manner as in Example 9. (Example 11) KW-2000 (water content: 1800 pp)
m) was performed in the same manner as in Example 9 except that m) was used. (Example 12) The same operation as in Example 1 was performed except that LiBF 4 was used as an electrolyte salt.

【0021】(比較例1)正極としてはLiMn24
粉末、導電剤、結着剤からなるものを、負極としては金
属リチウムを、電解液としては炭酸プロピレンと炭酸ジ
メチルを体積比1:2の割合で混合した混合液にLiP
6 を1モル/リットルの濃度で溶解したものを使用し
た。 (比較例2)BET比表面積150m2 /g、含水量2
200ppmのアルミナを使用したこと以外、実施例1
と同様に実施した。 (比較例3)ミクロマグ3−150(含水量4000p
pm)を使用したこと以外、実施例1と同様に実施し
た。
Comparative Example 1 LiMn 2 O 4
A mixture comprising powder, a conductive agent and a binder, lithium metal as a negative electrode, and propylene carbonate and dimethyl carbonate as electrolytes mixed in a volume ratio of 1: 2 by LiP
The F 6 was used after dissolved at a concentration of 1 mole / liter. (Comparative Example 2) BET specific surface area 150 m 2 / g, water content 2
Example 1 except that 200 ppm alumina was used.
Was performed in the same manner as described above. (Comparative Example 3) Micromag 3-150 (water content 4000p)
pm), except that pm) was used.

【0022】[0022]

【発明の効果】本発明は、正極活物質がLi・Co系複
合酸化物、Li・Ni系複合酸化物、Li・Mn系複合
酸化物から選ばれた少なくとも1種からなり、電解質が
リチウムとフッ素を含有する少なくとも1種の電解質塩
を含む電解質からなる非水二次電池において、正極およ
び/または電解液中にBET比表面積が30m2 /g以
上、含水量(カールフィッシャー値)が3000ppm
以下であるマグネシウム含有金属酸化物粒子を存在させ
ることにより初期放電容量が大きくかつ充放電の繰り返
しによっても放電容量の低下の小さい非水二次電池とす
るのに成功した。これまでのリチウム系非水二次電池
が、高電圧を取り出すことが可能であったのにも係らず
少数回の充放電により放電容量の低下することが大きい
問題であり、いくつかの対応策が提案されてきたが、低
下率が小さくしたものは初期放電容量が小さく、また初
期放電容量を大きくすると放電容量の低下率が大きいと
いう問題があったのを、本発明において初期放電容量を
高く維持したまま充放電の繰り返しによる放電容量の低
下の小さい非水二次電池を開発したものである。
According to the present invention, the positive electrode active material comprises at least one selected from the group consisting of a Li-Co-based composite oxide, a Li-Ni-based composite oxide, and a Li-Mn-based composite oxide. In a nonaqueous secondary battery comprising an electrolyte containing at least one electrolyte salt containing fluorine, the positive electrode and / or the electrolyte have a BET specific surface area of 30 m 2 / g or more and a water content (Karl Fischer value) of 3000 ppm.
The presence of the following magnesium-containing metal oxide particles succeeded in producing a nonaqueous secondary battery having a large initial discharge capacity and a small decrease in discharge capacity even after repeated charge and discharge. Despite the fact that conventional lithium-based non-aqueous rechargeable batteries were capable of extracting high voltage, a major problem was that the discharge capacity was reduced by a small number of charges and discharges. Although the decrease rate has been proposed, the decrease in the initial discharge capacity is small in the case where the rate of decrease is small, and the problem that the rate of decrease in the discharge capacity is large when the initial discharge capacity is increased. A non-aqueous secondary battery having a small decrease in discharge capacity due to repetition of charge and discharge while maintaining the same has been developed.

【表1】 [Table 1]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 6/18 H01M 6/18 // C01F 5/02 C01F 5/02 7/14 7/14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 6/18 H01M 6/18 // C01F 5/02 C01F 5/02 7/14 7/14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非水二次電池において、正極活物質がL
i・Co系複合酸化物、Li・Ni系複合酸化物、Li
・Mn系複合酸化物から選ばれた少なくとも1種からな
り、電解質がリチウムとフッ素を含有する少なくとも1
種の電解質塩を含む電解質からなり、かつ電池内にBE
T比表面積が30m2 /g以上、含水量(カールフィッ
シャー値)が3000 ppm以下であるマグネシウム
含有金属酸化物粒子を存在させたことを特徴とする非水
二次電池。
In a non-aqueous secondary battery, the positive electrode active material is L
i-Co-based composite oxide, Li-Ni-based composite oxide, Li
At least one selected from Mn-based composite oxides, wherein the electrolyte contains lithium and fluorine;
Consisting of an electrolyte containing various kinds of electrolyte salts, and having BE
A non-aqueous secondary battery comprising magnesium-containing metal oxide particles having a T specific surface area of 30 m 2 / g or more and a water content (Karl Fischer value) of 3000 ppm or less.
【請求項2】 電解質塩がLiPF6 、LiBF4 、L
iN(CF3 SO2)2、LiAsF6 、LiCF3 SO3
、LiC49 SO3 の少なくとも一種である請求項
1記載の非水二次電池。
2. An electrolyte salt comprising LiPF 6 , LiBF 4 , L
iN (CF 3 SO 2 ) 2 , LiAsF 6 , LiCF 3 SO 3
2. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is at least one of LiC 4 F 9 SO 3 .
【請求項3】 マグネシウム含有金属酸化物がMgO及
び/又はハイドロタルサイト類化合物である請求項1記
載の非水二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the magnesium-containing metal oxide is MgO and / or a hydrotalcite compound.
【請求項4】 正極が、正極活物質とマグネシウム含有
金属酸化物粒子との混合物から構成された請求項1記載
の非水二次電池。
4. The non-aqueous secondary battery according to claim 1, wherein the positive electrode comprises a mixture of a positive electrode active material and magnesium-containing metal oxide particles.
【請求項5】 電解液が、リチウムとフッ素を含有する
電解質塩及び有機溶媒からなる電解質とマグネシウム含
有金属酸化物粒子との複合電解液が使用されている請求
項1記載の非水二次電池。
5. The non-aqueous secondary battery according to claim 1, wherein the electrolyte is a composite electrolyte of an electrolyte comprising an electrolyte salt containing lithium and fluorine and an organic solvent and magnesium-containing metal oxide particles. .
JP24779997A 1997-08-28 1997-08-28 Non-aqueous secondary battery Expired - Lifetime JP4362152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24779997A JP4362152B2 (en) 1997-08-28 1997-08-28 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24779997A JP4362152B2 (en) 1997-08-28 1997-08-28 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH1173999A true JPH1173999A (en) 1999-03-16
JP4362152B2 JP4362152B2 (en) 2009-11-11

Family

ID=17168835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24779997A Expired - Lifetime JP4362152B2 (en) 1997-08-28 1997-08-28 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4362152B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100740A (en) * 2003-09-24 2005-04-14 Sanyo Electric Co Ltd Nonaqueous solvent secondary battery
JP2008262859A (en) * 2007-04-13 2008-10-30 Toyota Central R&D Labs Inc Nonaqueous electrolyte and lithium-ion secondary battery
JP2011124125A (en) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2011074631A1 (en) 2009-12-17 2011-06-23 インテグリス・インコーポレーテッド Purifier for removing hydrogen fluoride from electrolytic solution
JP2015230793A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Electrically conductive material
JP2015229607A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Magnesium aluminum oxide composite
JP2015230794A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016002829A1 (en) * 2014-07-03 2016-01-07 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte solution for non-aqueous secondary cell, and method for producing non-aqueous secondary cell
JP2017004627A (en) * 2015-06-05 2017-01-05 東亞合成株式会社 Ion capturing agent for lithium ion secondary battery and lithium ion secondary battery using the same
JPWO2017033431A1 (en) * 2015-08-24 2018-06-14 日本ゼオン株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP2019071293A (en) * 2019-02-05 2019-05-09 日立化成株式会社 Electroconductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114667640A (en) * 2019-10-31 2022-06-24 太平洋工业发展公司 Inorganic material for lithium ion secondary battery
WO2023233971A1 (en) * 2022-05-31 2023-12-07 セトラスホールディングス株式会社 Composite metal oxide

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100740A (en) * 2003-09-24 2005-04-14 Sanyo Electric Co Ltd Nonaqueous solvent secondary battery
JP4596763B2 (en) * 2003-09-24 2010-12-15 三洋電機株式会社 Non-aqueous solvent type secondary battery
JP2008262859A (en) * 2007-04-13 2008-10-30 Toyota Central R&D Labs Inc Nonaqueous electrolyte and lithium-ion secondary battery
JP2011124125A (en) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2011074631A1 (en) 2009-12-17 2011-06-23 インテグリス・インコーポレーテッド Purifier for removing hydrogen fluoride from electrolytic solution
US9023204B2 (en) 2009-12-17 2015-05-05 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution
JP2015230794A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015229607A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Magnesium aluminum oxide composite
JP2015230793A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Electrically conductive material
WO2016002829A1 (en) * 2014-07-03 2016-01-07 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte solution for non-aqueous secondary cell, and method for producing non-aqueous secondary cell
CN106661067A (en) * 2014-07-03 2017-05-10 富士胶片株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte solution for non-aqueous secondary cell, and method for producing non-aqueous secondary cell
JPWO2016002829A1 (en) * 2014-07-03 2017-07-06 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
US10461367B2 (en) 2014-07-03 2019-10-29 Fujifilm Corporation Manufacturing method for amino-substituted phosphazene compound, manufacturing method for electrolyte solution for nonaqueous secondary battery, and manufacturing method for nonaqueous secondary battery
JP2017004627A (en) * 2015-06-05 2017-01-05 東亞合成株式会社 Ion capturing agent for lithium ion secondary battery and lithium ion secondary battery using the same
JPWO2017033431A1 (en) * 2015-08-24 2018-06-14 日本ゼオン株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP2019071293A (en) * 2019-02-05 2019-05-09 日立化成株式会社 Electroconductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114667640A (en) * 2019-10-31 2022-06-24 太平洋工业发展公司 Inorganic material for lithium ion secondary battery
WO2023233971A1 (en) * 2022-05-31 2023-12-07 セトラスホールディングス株式会社 Composite metal oxide

Also Published As

Publication number Publication date
JP4362152B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4660164B2 (en) Nonaqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP4721729B2 (en) Nonaqueous electrolyte secondary battery
JP4841133B2 (en) Nonaqueous electrolyte secondary battery
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
US6319633B1 (en) Rechargeable lithium battery
JP2010251280A (en) Nonaqueous electrolyte secondary battery
KR101026287B1 (en) Nonaqueous electrolyte secondary battery
JP4362152B2 (en) Non-aqueous secondary battery
JP5556844B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2003223887A (en) Nonaqueous system secondary battery
JP4297704B2 (en) Nonaqueous electrolyte secondary battery
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
JP3301931B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
CN107112527B (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2004071159A (en) Nonaqueous electrolyte secondary battery
JPH08306386A (en) Manaqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
US6376127B1 (en) Rechargeable lithium battery containing a complex sulfide active material
JP2005340057A (en) Nonaqueous electrolyte secondary battery
JP2528183B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040831

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

EXPY Cancellation because of completion of term