JP2005340057A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005340057A
JP2005340057A JP2004158782A JP2004158782A JP2005340057A JP 2005340057 A JP2005340057 A JP 2005340057A JP 2004158782 A JP2004158782 A JP 2004158782A JP 2004158782 A JP2004158782 A JP 2004158782A JP 2005340057 A JP2005340057 A JP 2005340057A
Authority
JP
Japan
Prior art keywords
transition metal
composite oxide
lithium
metal composite
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004158782A
Other languages
Japanese (ja)
Inventor
Toyoki Fujiwara
豊樹 藤原
Kazuhisa Takeda
和久 武田
Hideki Kitao
英樹 北尾
Naoya Nakanishi
直哉 中西
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004158782A priority Critical patent/JP2005340057A/en
Publication of JP2005340057A publication Critical patent/JP2005340057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance high temperature durability, or high temperature storage characteristics in a nonaqueous electrolyte secondary battery using a lithium transition metal composite oxide containing at least Li and Ni and having layer structure as a positive active material. <P>SOLUTION: The nonaqueous electrolyte secondary battery is equipped with a positive electrode containing the positive active material capable of storing or releasing lithium, a negative electrode containing a negative active material capable of storing or releasing lithium, and a nonaqueous electrolyte having lithium ion conductivity, and the positive active material is a mixture of the lithium transition metal composite oxide containing at least Li and Ni and having layer structure, having a molar ratio of Li to the whole transition metal (Li/the whole transition metal) of 1.02-1.30, and a lithium manganese composite oxide having spinel structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池などの非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery.

コバルト酸リチウム及びニッケル酸リチウムなどの層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質二次電池は、電圧が4V程度と高く、また大きな容量が得られるため、高いエネルギー密度を有する電池とすることができる。また、層状構造を有し、NiとMnあるいはNiとMnとCoを含有するリチウム遷移金属複合酸化物についても検討されており、優れた特性が報告されている(特許文献1〜3など)。   A non-aqueous electrolyte secondary battery using a lithium transition metal composite oxide having a layered structure such as lithium cobaltate and lithium nickelate as a positive electrode active material has a high voltage of about 4 V and a high capacity, and thus is high. A battery having an energy density can be obtained. Further, lithium transition metal composite oxides having a layered structure and containing Ni and Mn or Ni, Mn and Co have been studied, and excellent characteristics have been reported (Patent Documents 1 to 3 and the like).

さらに、上記の層状構造を有し、NiとMnあるいはNiとMnとCoを含有するリチウム遷移金属複合酸化物において、Li/全遷移金属のモル比を1.05〜1.45とすることにより優れたサイクル特性とレート特性が得られることが報告されている(特許文献4)。しかしながら、一般的にLi/全遷移金属のモル比が高くなると、リチウム遷移金属複合酸化物中に含まれる溶存アルカリが多くなり、高温保存特性が悪化するという問題があった(特許文献5)。   Furthermore, in the lithium transition metal composite oxide having the above layered structure and containing Ni and Mn or Ni, Mn and Co, the molar ratio of Li / total transition metal is set to 1.05 to 1.45. It has been reported that excellent cycle characteristics and rate characteristics can be obtained (Patent Document 4). However, generally, when the molar ratio of Li / total transition metal is increased, the dissolved alkali contained in the lithium transition metal composite oxide is increased, and there is a problem that high-temperature storage characteristics are deteriorated (Patent Document 5).

一方、リチウムマンガン複合酸化物中のマンガンの一部を他の元素で置換した第一酸化物と、リチウムニッケルコバルト複合酸化物中のニッケル及びコバルトの一部を他の元素で置換した第二酸化物との混合物を正極活物質として用いることにより、容量維持率が高くサイクル特性に優れた非水電解質二次電池が得られることが報告されている(特許文献6)。
特開2002−42813号公報 特許第2561556号公報 特許第3244314号公報 特開2003−81639号公報 特開2002−203552号公報 特開2000−315503号公報
On the other hand, the first oxide in which a part of manganese in the lithium manganese composite oxide is replaced with another element, and the second oxide in which a part of nickel and cobalt in the lithium nickel cobalt composite oxide are replaced with another element It has been reported that a non-aqueous electrolyte secondary battery having a high capacity retention rate and excellent cycle characteristics can be obtained by using a mixture thereof as a positive electrode active material (Patent Document 6).
JP 2002-42813 A Japanese Patent No. 2561556 Japanese Patent No. 3244314 JP 2003-81639 A JP 2002-203552 A JP 2000-315503 A

本発明の目的は、少なくともLiとNiを含有し、層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質二次電池において、高温耐久性すなわち高温保存特性を高めた非水電解質二次電池を提供することにある。   An object of the present invention is a non-aqueous electrolyte secondary battery containing at least Li and Ni and using a lithium transition metal composite oxide having a layered structure as a positive electrode active material. The object is to provide a water electrolyte secondary battery.

本発明は、リチウムの吸蔵・放出が可能な正極活物質を含む正極と、リチウムの吸蔵・放出が可能な負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解液とを備えた非水電解質二次電池において、正極活物質として、少なくともLiとNiを含有し、層状構造を有するリチウム遷移金属複合酸化物であって、全遷移金属に対するLiのモル比(Li/全遷移金属)が1.02〜1.30の範囲内であるリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して用いることを特徴としている。   The present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and a non-aqueous electrolyte having lithium ion conductivity. In a non-aqueous electrolyte secondary battery, a lithium transition metal composite oxide containing at least Li and Ni as a positive electrode active material and having a layered structure, wherein the molar ratio of Li to all transition metals (Li / total transition metals) Is characterized by using a mixture of a lithium transition metal composite oxide having a spinel structure in a range of 1.02 to 1.30.

本発明に従い、上記のモル比(Li/全遷移金属)が1.02〜1.30の範囲内であるリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して用いることにより、高温耐久性すなわち高温保存特性に優れた非水電解質二次電池とすることができる。   According to the present invention, a lithium transition metal composite oxide having a molar ratio (Li / total transition metal) in the range of 1.02 to 1.30 and a lithium manganese composite oxide having a spinel structure are mixed. By using it, it can be set as the nonaqueous electrolyte secondary battery excellent in high temperature durability, ie, a high temperature storage characteristic.

上記リチウム遷移金属複合酸化物における上記モル比が1.02未満であると、高温耐久性を十分に高めることができない。また、上記モル比が1.30を超えると、上記モル比が1である場合に比べ、電池容量が大きく低下する。上記モル比は、さらに好ましくは1.02〜1.16の範囲内である。   When the molar ratio in the lithium transition metal composite oxide is less than 1.02, the high temperature durability cannot be sufficiently improved. Further, when the molar ratio exceeds 1.30, the battery capacity is greatly reduced as compared with the case where the molar ratio is 1. The molar ratio is more preferably in the range of 1.02-1.16.

本発明において、上記リチウム遷移金属複合酸化物と上記リチウムマンガン複合酸化物とを混合する重量比率(リチウム遷移金属複合酸化物:リチウムマンガン複合酸化物)は、1:9〜9:1の範囲内であることが好ましく、さらに好ましくは6:4〜9:1の範囲内である。これらの範囲内とすることにより、高温耐久性をより高めることができる。   In the present invention, the weight ratio of mixing the lithium transition metal composite oxide and the lithium manganese composite oxide (lithium transition metal composite oxide: lithium manganese composite oxide) is in the range of 1: 9 to 9: 1. It is preferable that it is in the range of 6: 4 to 9: 1. By setting it within these ranges, the high temperature durability can be further improved.

本発明において用いるリチウム遷移金属複合酸化物は、遷移金属として、少なくともNiとMnを含有することが好ましい。NiとMnを含有することにより、構造安定性を高めることができる。また、ハイレート特性を高めるため、さらにCoを含有することが好ましい。すなわち、高い構造安定性とハイレート特性を得るため、遷移金属として少なくともNiとMnとCoを含むことが好ましい。   The lithium transition metal composite oxide used in the present invention preferably contains at least Ni and Mn as transition metals. By containing Ni and Mn, the structural stability can be enhanced. Further, in order to improve the high rate characteristics, it is preferable to further contain Co. That is, in order to obtain high structural stability and high rate characteristics, it is preferable to contain at least Ni, Mn, and Co as transition metals.

また、上記リチウム遷移金属複合酸化物には、B,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Y,Zr,及びSnからなる少なくとも1種が含まれていてもよい。   The lithium transition metal composite oxide may contain at least one of B, Mg, Al, Ti, Cr, V, Fe, Cu, Zn, Nb, Y, Zr, and Sn. .

本発明における上記リチウム遷移金属複合酸化物は、例えば、式Li〔LiaMnxNiyCozb〕O2(MはB,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Y,Zr,及びSnからなる群から選択される少なくとも1種の元素であり、a,b,x,y,及びzは、1.02≦(1.0+a)/(a+b+x+y+z)≦1.30、0≦b≦0.1、0.02≦x≦0.5、0≦z/y+z≦0.5、a+b+x+y+z=1を満足する。)で表されるものを用いることができる。 The lithium transition metal composite oxide in the present invention are, for example, the formula Li [Li a Mn x Ni y Co z M b ] O 2 (M is B, Mg, Al, Ti, Cr, V, Fe, Cu, Zn , Nb, Y, Zr, and Sn, and a, b, x, y, and z are 1.02 ≦ (1.0 + a) / (a + b + x + y + z) ≦ 1.30, 0 ≦ b ≦ 0.1, 0.02 ≦ x ≦ 0.5, 0 ≦ z / y + z ≦ 0.5, and a + b + x + y + z = 1)) can be used. .

本発明における上記リチウムマンガン複合酸化物には、さらに高温耐久性を高めるため、B,Mg,Al,Ti,Cr,V,Fe,Co,Ni,Cu,Zn.Nb及びZrからなる群から選択される少なくとも1種の元素が含まれていることが好ましく、特にAlが含まれていることが好ましい。   In the lithium manganese composite oxide according to the present invention, B, Mg, Al, Ti, Cr, V, Fe, Co, Ni, Cu, Zn. It is preferable that at least one element selected from the group consisting of Nb and Zr is included, and it is particularly preferable that Al is included.

本発明において用いる上記リチウムマンガン複合酸化物は、例えば、式Li〔LiaMnxy〕O4+z(MはB,Mg,Al,Ti,Cr,V,Fe,Co,Ni,Cu,Zn,Nb及びZrからなる群から選択される少なくとも1種の元素であり、a,x,及びyは、a+x+y=2、0≦a≦0.2、0≦y≦0.1、−0.2≦z≦0.2を満足する。)で表されるものを用いることができる。 The lithium manganese composite oxide used in the present invention include, for example, the formula Li [Li a Mn x M y] O 4 + z (M is B, Mg, Al, Ti, Cr, V, Fe, Co, Ni, Cu , Zn, Nb and Zr, at least one element selected from the group consisting of a, x, and y, a + x + y = 2, 0 ≦ a ≦ 0.2, 0 ≦ y ≦ 0.1, − Satisfying 0.2 ≦ z ≦ 0.2.) Can be used.

本発明において負極に用いる負極活物質は特に限定されるものではなく、非水電解質二次電池に用いることができるものであればよいが、好ましくは炭素材料が用いられる。炭素材料の中でも、特に黒鉛材料が好ましく用いられる。   The negative electrode active material used for the negative electrode in the present invention is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery, but a carbon material is preferably used. Among carbon materials, graphite material is particularly preferably used.

非水電解質としては、非水電解質二次電池に用いられる電解質を制限なく用いることができる。電解質の溶媒としては、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートなどを用いることができる。特に、環状カーボネートと鎖状カーボネートの混合溶媒が好ましく用いられる。また、上記環状カーボネートと、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒との混合溶媒も例示される。   As the non-aqueous electrolyte, an electrolyte used for a non-aqueous electrolyte secondary battery can be used without limitation. The electrolyte solvent is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate may be used. it can. In particular, a mixed solvent of a cyclic carbonate and a chain carbonate is preferably used. Moreover, the mixed solvent of the said cyclic carbonate and ether solvents, such as 1, 2- dimethoxyethane and 1, 2- diethoxyethane, is also illustrated.

また、電解質の溶質としては、特に限定されるものではないが、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C25SO2)2、LiN(CF3SO2)(C49SO2)、LiC(CF3SO2)3、LiC(C25SO2)3、LiAsF6、LiClO4、Li210Cl10、Li212Cl12、LiB(C242、LiB(C24)F2、LiP(C243、LiP(C2422、LiP(C24)F4など及びそれらの混合物が挙げられる。 Further, the electrolyte solute is not particularly limited, but LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiB (C 2 O 4 ) 2 , LiB (C 2 O 4 ) F 2 , LiP (C 2 O 4 ) 3 , LiP (C 2 O 4 ) 2 F 2 , LiP (C 2 O 4 ) F 4 and the like and mixtures thereof.

本発明に従い、全遷移金属に対するLiのモル比(Li/全遷移金属)が、1.02〜1.30の範囲内であるリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して正極活物質として用いることにより、上記モル比が1である従来のリチウム遷移金属複合酸化物を用いた場合に比べ、高温耐久性すなわち高温保存特性を高めることができる。   In accordance with the present invention, a lithium transition metal composite oxide having a molar ratio of Li to all transition metals (Li / total transition metal) in the range of 1.02 to 1.30, and a lithium manganese composite oxide having a spinel structure As a positive electrode active material, the high temperature durability, that is, the high temperature storage characteristics can be improved as compared with the case where the conventional lithium transition metal composite oxide having a molar ratio of 1 is used.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

(実施例1)
〔リチウム遷移金属複合酸化物の作製〕
Li2CO3と、(Ni0.4Co0.3Mn0.334とを、Li/(Ni0.4Co0.3Mn0.3)のモル比が1.02となるように混合し、この混合物を空気雰囲気中900℃で20時間焼成することにより層状構造を有するリチウム遷移金属複合酸化物を得た。なお、焼成により得られたリチウム遷移金属複合酸化物においても、Li/(Ni0.4Co0.3Mn0.3)のモル比は1.02であった。焼成により得られたリチウム遷移金属複合酸化物中におけるLi/全遷移金属のモル比は、ICP分光分析により測定した。
(Example 1)
[Preparation of lithium transition metal composite oxide]
Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 O 4 are mixed so that the molar ratio of Li / (Ni 0.4 Co 0.3 Mn 0.3 ) is 1.02, and this mixture is mixed in an air atmosphere. By baking at 900 ° C. for 20 hours, a lithium transition metal composite oxide having a layered structure was obtained. In the lithium transition metal composite oxide obtained by firing, the molar ratio of Li / (Ni 0.4 Co 0.3 Mn 0.3 ) was 1.02. The molar ratio of Li / total transition metal in the lithium transition metal composite oxide obtained by firing was measured by ICP spectroscopic analysis.

〔正極の作製〕
上記のように作製したリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物(Li1.1Mn1.895Al0.0054)とを重量比(リチウム遷移金属複合酸化物:リチウムマンガン複合酸化物)で7:3となるように混合して、この混合物を正極活物質として用いた。この混合物(正極活物質)と、導電剤としての炭素材料と、結着剤としてのポリフッ化ビニリデンを溶解したN−メチル−2−ピロリドン溶液を、活物質と導電剤と結着剤の重量比が90:5:5となるように混合して正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電体タブを取り付けることにより正極を作製した。
[Production of positive electrode]
The lithium transition metal composite oxide produced as described above and the lithium manganese composite oxide having a spinel structure (Li 1.1 Mn 1.895 Al 0.005 O 4 ) are in a weight ratio (lithium transition metal composite oxide: lithium manganese composite oxide). ), And the mixture was used as a positive electrode active material. This mixture (positive electrode active material), a carbon material as a conductive agent, and an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed in a weight ratio of the active material, the conductive agent, and the binder. Was mixed to be 90: 5: 5 to prepare a positive electrode slurry. The prepared slurry was applied onto an aluminum foil as a current collector, dried, then rolled using a rolling roller, and a current collector tab was attached to produce a positive electrode.

〔負極の作製〕
負極活物質としての黒鉛と、結着剤としてのSBRと、増粘剤としてのカルボキシメチルセルロースを溶かした水溶液を、活物質と結着剤と増粘剤の重量比が98:1:1になるように混練して負極スラリーを作製した。作製したスラリーを集電体としての銅箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けて負極を作製した。
(Production of negative electrode)
An aqueous solution in which graphite as a negative electrode active material, SBR as a binder, and carboxymethyl cellulose as a thickener are dissolved has a weight ratio of 98: 1: 1 between the active material, the binder, and the thickener. The negative electrode slurry was prepared by kneading as described above. After apply | coating the produced slurry on the copper foil as a collector, it dried and then rolled using the rolling roller, the collector tab was attached, and the negative electrode was produced.

〔電解液の作製〕
エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを体積比3:7で混合した溶媒に、溶質としてのLiPF6を1モル/リットルとなるように溶解し、電解液を作製した。
(Preparation of electrolyte)
LiPF 6 as a solute was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 so as to be 1 mol / liter to prepare an electrolytic solution.

〔非水電解質二次電池の作製〕
上記で作製した正極及び負極を、ポリエチレン製のセパレータを介して対向するように巻取って巻取り体を作製し、アルゴン雰囲気下のグローボックス中にて、この巻取り体を電解液とともに電池缶に封入することにより、定格容量1.4Ahの円筒型18650サイズの非水電解質二次電池Aを作製した。
[Preparation of non-aqueous electrolyte secondary battery]
The positive electrode and negative electrode prepared above are wound so as to face each other through a polyethylene separator, and a wound body is manufactured. In a glow box under an argon atmosphere, this wound body is battery canister together with an electrolyte. The cylindrical 18650 size non-aqueous electrolyte secondary battery A having a rated capacity of 1.4 Ah was produced.

(実施例2)
実施例1のリチウム遷移金属複合酸化物の作製において、Li2CO3と、(Ni0.4Co0.3Mn0.334とを、Li/(Ni0.4Co0.3Mn0.3)のモル比が1.10となるように混合する以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を作製した。なお、焼成により得られたリチウム遷移金属複合酸化物中のLi/全遷移金属のモル比は1.11であった。このリチウム遷移金属複合酸化物を用いる以外は、実施例1と同様にして、定格容量1.4Ahの円筒型18650サイズの非水電解質二次電池Bを作製した。
(Example 2)
In the production of the lithium transition metal composite oxide of Example 1, Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 O 4 have a molar ratio of Li / (Ni 0.4 Co 0.3 Mn 0.3 ) of 1. A lithium transition metal composite oxide was produced in the same manner as in Example 1 except that the mixture was mixed so as to be 10. The Li / total transition metal molar ratio in the lithium transition metal composite oxide obtained by firing was 1.11. Except for using this lithium transition metal composite oxide, a cylindrical 18650 size non-aqueous electrolyte secondary battery B having a rated capacity of 1.4 Ah was produced in the same manner as in Example 1.

(実施例3)
実施例1のリチウム遷移金属複合酸化物の作製において、Li2CO3と、(Ni0.4Co0.3Mn0.334とを、Li/(Ni0.4Co0.3Mn0.3)のモル比が1.15となるように混合する以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を作製した。なお、焼成により得られたリチウム遷移金属複合酸化物中のLi/全遷移金属のモル比は1.16であった。このリチウム遷移金属複合酸化物を用いる以外は、実施例1と同様にして、定格容量1.4Ahの円筒型18650サイズの非水電解質二次電池Cを作製した。
(Example 3)
In the production of the lithium transition metal composite oxide of Example 1, Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 O 4 have a molar ratio of Li / (Ni 0.4 Co 0.3 Mn 0.3 ) of 1. A lithium transition metal composite oxide was produced in the same manner as in Example 1 except that the mixture was mixed so as to be 15. The molar ratio of Li / total transition metals in the lithium transition metal composite oxide obtained by firing was 1.16. A non-aqueous electrolyte secondary battery C having a rated capacity of 1.4 Ah and having a rated capacity of 1.4 Ah was produced in the same manner as in Example 1 except that this lithium transition metal composite oxide was used.

(比較例1)
実施例1のリチウム遷移金属複合酸化物の作製において、Li2CO3と、(Ni0.4Co0.3Mn0.334とを、Li/(Ni0.4Co0.3Mn0.3)のモル比が1.00となるように混合する以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を作製した。なお、焼成により得られたリチウム遷移金属複合酸化物中のLi/全遷移金属のモル比は1.00であった。このリチウム遷移金属複合酸化物を用いる以外は、実施例1と同様にして、定格容量1.4Ahの円筒型18650サイズの非水電解質二次電池Xを作製した。
(Comparative Example 1)
In the production of the lithium transition metal composite oxide of Example 1, Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 O 4 have a molar ratio of Li / (Ni 0.4 Co 0.3 Mn 0.3 ) of 1. A lithium transition metal composite oxide was produced in the same manner as in Example 1 except that mixing was performed to obtain 00. The Li / total transition metal molar ratio in the lithium transition metal composite oxide obtained by firing was 1.00. Except for using this lithium transition metal composite oxide, a cylindrical 18650 size non-aqueous electrolyte secondary battery X having a rated capacity of 1.4 Ah was produced in the same manner as in Example 1.

〔電池の定格容量の測定〕
電池の定格容量は、1400mAの定電流−定電圧(70mAカット)で4.2Vまで充電した後、放電終止電圧を3.0Vに設定し、470mAで3.0Vまで放電したときの電池容量を定格容量とした。
[Measurement of rated battery capacity]
The battery has a rated capacity of 1400 mA constant current-constant voltage (70 mA cut) after charging to 4.2 V, then set the discharge end voltage to 3.0 V, and the battery capacity when discharged to 3.0 V at 470 mA. Rated capacity.

〔保存特性試験〕
1400mAでSOC50%まで充電した後、温度を65℃に保持した恒温槽内で10日間保存試験を行った。保存後、上記と同様にして定格容量を測定し、容量復帰率を求めた。容量復帰率は、保存試験後の電池定格容量を保存試験前の電池定格容量で割って算出した。結果を表1に示す。
[Storage characteristics test]
After charging to SOC 50% at 1400 mA, a storage test was conducted for 10 days in a thermostatic chamber maintained at 65 ° C. After storage, the rated capacity was measured in the same manner as described above to determine the capacity recovery rate. The capacity recovery rate was calculated by dividing the battery rated capacity after the storage test by the battery rated capacity before the storage test. The results are shown in Table 1.

Figure 2005340057
表1に示す結果から明らかなように、本発明に従い、モル比(Li/全遷移金属)が1.02〜1.30の範囲内であるリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して正極活物質として用いることにより、上記モル比が1である従来の場合よりも高温耐久性を高めることができる。
Figure 2005340057
As is apparent from the results shown in Table 1, in accordance with the present invention, a lithium transition metal composite oxide having a molar ratio (Li / total transition metal) in the range of 1.02 to 1.30, and lithium having a spinel structure When mixed with a manganese composite oxide and used as a positive electrode active material, the high temperature durability can be improved as compared with the conventional case where the molar ratio is 1.

なお、本実施例においては、リチウム遷移金属複合酸化物の合成の際の出発材料として、Li2CO3、及び(Ni0.4Co0.3Mn0.334を用いているが、本発明はこれらに限定されるものではなく、例えば、Liの原料として、LiOH、Li2O等を用いてもよく、NiCoMnの原料として、Ni0.4Co0.3Mn0.3(OH)2等を用いてもよい。
In this example, Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 O 4 are used as starting materials for the synthesis of the lithium transition metal composite oxide. For example, LiOH, Li 2 O, or the like may be used as a raw material for Li, and Ni 0.4 Co 0.3 Mn 0.3 (OH) 2 or the like may be used as a raw material for NiCoMn.

Claims (4)

リチウムの吸蔵・放出が可能な正極活物質を含む正極と、リチウムの吸蔵・放出が可能な負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解液とを備えた非水電解質二次電池において、
前記正極活物質として、少なくともLiとNiを含有し、層状構造を有するリチウム遷移金属複合酸化物であって、全遷移金属に対するLiのモル比(Li/全遷移金属)が1.02〜1.30の範囲内であるリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して用いることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte comprising a positive electrode including a positive electrode active material capable of inserting and extracting lithium, a negative electrode including a negative electrode active material capable of inserting and extracting lithium, and a non-aqueous electrolyte having lithium ion conductivity In the next battery,
The positive electrode active material is a lithium transition metal composite oxide containing at least Li and Ni and having a layered structure, wherein the molar ratio of Li to the total transition metal (Li / total transition metal) is 1.02-1. 30. A nonaqueous electrolyte secondary battery comprising a mixture of lithium transition metal composite oxide having a spinel structure within a range of 30 and lithium manganese composite oxide having a spinel structure.
前記リチウム遷移金属複合酸化物が、遷移金属として少なくともNiとMnを含有することを特徴とする請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide contains at least Ni and Mn as transition metals. 前記リチウム遷移金属複合酸化物が、遷移金属として少なくともNiとMnとCoを含有することを特徴とする請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide contains at least Ni, Mn, and Co as transition metals. 前記リチウムマンガン複合酸化物がAlを含有することを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium manganese composite oxide contains Al.
JP2004158782A 2004-05-28 2004-05-28 Nonaqueous electrolyte secondary battery Pending JP2005340057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158782A JP2005340057A (en) 2004-05-28 2004-05-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158782A JP2005340057A (en) 2004-05-28 2004-05-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005340057A true JP2005340057A (en) 2005-12-08

Family

ID=35493369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158782A Pending JP2005340057A (en) 2004-05-28 2004-05-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005340057A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074703A1 (en) * 2009-12-18 2011-06-23 住友化学株式会社 Electrode active material, electrode, and non-aqueous electrolyte secondary battery
JP2013507745A (en) * 2009-10-14 2013-03-04 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for the cathode electrode
KR20140116548A (en) * 2012-03-07 2014-10-02 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode for electric device, and electric device
KR20140119184A (en) * 2012-03-07 2014-10-08 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode for electrical device, and electrical device
KR20150110174A (en) * 2014-03-24 2015-10-02 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including the same
US9306211B2 (en) 2012-03-07 2016-04-05 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256978A (en) * 2000-02-14 2001-09-21 Samsung Sdi Co Ltd Positive pole active material for lithium secondary battery and its manufacturing method
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004259511A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256978A (en) * 2000-02-14 2001-09-21 Samsung Sdi Co Ltd Positive pole active material for lithium secondary battery and its manufacturing method
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004259511A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507745A (en) * 2009-10-14 2013-03-04 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for the cathode electrode
US8852805B2 (en) 2009-12-18 2014-10-07 Sumitomo Chemical Company, Limited Electrode active material comprising a mixture of a layered crystal structure material and a spinel crystal structure material, electrode, and non-aqueous electrolyte secondary battery
JP2011129410A (en) * 2009-12-18 2011-06-30 Sumitomo Chemical Co Ltd Electrode active material, electrode, and non-aqueous electrolyte secondary battery
CN102656725A (en) * 2009-12-18 2012-09-05 住友化学株式会社 Electrode active material, electrode, and non-aqueous electrolyte secondary battery
WO2011074703A1 (en) * 2009-12-18 2011-06-23 住友化学株式会社 Electrode active material, electrode, and non-aqueous electrolyte secondary battery
KR20140119184A (en) * 2012-03-07 2014-10-08 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode for electrical device, and electrical device
KR20140116548A (en) * 2012-03-07 2014-10-02 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode for electric device, and electric device
US9306211B2 (en) 2012-03-07 2016-04-05 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device
US9391326B2 (en) 2012-03-07 2016-07-12 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electric device, and electric device
KR101665217B1 (en) * 2012-03-07 2016-10-11 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode for electric device, and electric device
KR101674278B1 (en) * 2012-03-07 2016-11-08 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode for electrical device, and electrical device
US9646734B2 (en) 2012-03-07 2017-05-09 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device
KR20150110174A (en) * 2014-03-24 2015-10-02 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including the same
KR101662641B1 (en) 2014-03-24 2016-10-05 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP4660164B2 (en) Nonaqueous electrolyte secondary battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP2009217981A (en) Non-aqueous electrolyte secondary battery
JP2007095354A (en) Charge and discharge method of nonaqueous electrolyte secondary battery
KR101224735B1 (en) Non-aqueous Electrolyte Secondary Battery
JP3588338B2 (en) Non-aqueous electrolyte secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP3723444B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2007242420A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing anode active material for nonaqueous electrolyte secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP4259900B2 (en) Lithium secondary battery
JP4707430B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
JP5089097B2 (en) Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP2005340057A (en) Nonaqueous electrolyte secondary battery
JP4036717B2 (en) Nonaqueous electrolyte secondary battery
JP3717783B2 (en) Lithium secondary battery
JP2000277111A (en) Lithium secondary battery
JP2000277112A (en) Lithium secondary battery
JP2010177207A (en) Non aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419