JP2004071159A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004071159A
JP2004071159A JP2002224318A JP2002224318A JP2004071159A JP 2004071159 A JP2004071159 A JP 2004071159A JP 2002224318 A JP2002224318 A JP 2002224318A JP 2002224318 A JP2002224318 A JP 2002224318A JP 2004071159 A JP2004071159 A JP 2004071159A
Authority
JP
Japan
Prior art keywords
electrolyte
active material
secondary battery
battery
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224318A
Other languages
Japanese (ja)
Inventor
Shoichi Tsujioka
辻岡  章一
Hiroshige Takase
高瀬  浩成
Tomohito Fukuhara
福原  智人
Yukitaka Seyama
瀬山  幸隆
Hiroshi Wada
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Japan Storage Battery Co Ltd
Original Assignee
Central Glass Co Ltd
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Japan Storage Battery Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002224318A priority Critical patent/JP2004071159A/en
Publication of JP2004071159A publication Critical patent/JP2004071159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the serviceable life performance under high temperature in a nonaqueous electrolyte secondary battery using spinel structure lithium/manganese composite oxide as anode active material. <P>SOLUTION: This nonaqueous electrolyte secondary battery uses the spinel structure lithium/manganese composite oxide as the anode active material and is formed by including electrolyte shown in a general equation (1) in electrolytic solution. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スピネル構造リチウムマンガン複合酸化物を正極活物質とする非水電解質二次電池に関する。
【0002】
【従来の技術】
リチウム二次電池は、軽量で高エネルギー密度を有するという特徴から、携帯電話等の電源として普及している。現在普及しているリチウム二次電池は、容量が1Ah程度までの小型のものが主流であり、Liを吸蔵放出する炭素材料が活物質として用いられた負極と、リチウムコバルト複合酸化物が活物質として用いられた正極と、該正極と前記負極との間に配されたセパレータと、非水電解液とを備えてなる非水電解質二次電池である。
【0003】
これに対し、電気自動車に用いるような大型のリチウム二次電池の開発も盛んに行われている。大型のリチウム二次電池もその材料構成は基本的に上記小型のリチウム二次電池と同じであるが、将来の大量普及時の資源確保、大量使用時の環境負荷の低減といったような観点から、正極材料としてはスピネル構造リチウムマンガン複合酸化物がリチウムコバルト複合酸化物に代わるものとして有力な候補となっている。
【0004】
【発明が解決しようとする課題】
しかしながら、スピネル構造リチウムマンガン複合酸化物は、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物等の他の正極活物質に比べ、高温での寿命性能が悪いという欠点を有しており、特に長期の寿命性能を要求される大型のリチウム二次電池実用化の障害となっている。
【0005】
そして、このような問題に対しては、リチウム原子やAl原子を本来のMnサイトに導入することで、かなりの改善がなされているものの、まだまだ不十分であるというのが現状である。
【0006】
以上に鑑み、本発明は、スピネル構造リチウムマンガン複合酸化物を正極活物質とする非水電解質二次電池の高温での寿命性能のより一層の向上を目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、スピネル構造リチウムマンガン複合酸化物が正極活物質として用いられ、電解液中に下記一般式(1)で示される電解質LiBF(以下、電解質1という)が含まれていることを特徴とする非水電解質二次電池であり、本電解質1を用いることにより、高温(例えば60℃)でのサイクル寿命が向上する。これは、この電解質が、高温においてLiPFのようにHFを発生することがなく、スピネル構造リチウムマンガン複合酸化物特有の高温でのHFによる溶解反応が抑制されるためと考えられる。
【0008】
【化2】

Figure 2004071159
好ましくは、電解液溶媒として環状炭酸エステルと鎖状炭酸エステルとを含むものを用いる場合には、LiPF(以下、電解質2という)と共に用いるのが良く、電解液中に含まれる前記2種類の電解質のモル濃度比率:(電解質1のモル濃度)/(電解質1のモル濃度+電解質2のモル濃度)は0.3以下とするのが好ましい。このようにすることによって、溶媒の分解反応が抑制され、電池の膨れを抑制することが可能となる。
【0009】
より好ましくは、スピネル構造リチウムマンガン複合酸化物として、組成式Li1+xMn2−x−y(0.05≦x≦0.15、0.02≦y≦0.15、Mは、Ti、Cr、Fe、Co、Ni、Zn、Al、Mgの中から選んだ少なくとも1種以上の金属元素)で表されるものを用い、負極活物質として、Liを吸蔵放出する炭素材料を用いるのが良く、このような活物質を用いることによって、サイクル寿命性能のより一層の向上と、電池のエネルギー密度を大きくすることが可能となる。この場合、電解質のモル濃度比率は、0.1以下とするのが好ましい。
【0010】
【発明の実施の形態】
本発明で用いられるスピネル構造リチウムマンガン複合酸化物としては、スピネル構造のLi1+xMn2−x−y(0.05≦x≦0.15、0.02≦y≦0.15、Mは、Ti、Cr、Fe、Co、Ni、Zn、Al、Mgの中から選んだ少なくとも1種以上の金属元素)を好適に用いることができるが、中でも、金属元素Mが、寿命をより長くし重負荷特性も良好となることから、Alであるものがより好ましい。なお、基本的に前記組成で示されるものであるが、酸素サイトの一部が硫黄やハロゲン元素で置換されているもの、酸素量に多少の不定比性のあるものも好ましい。
【0011】
また、リチウムマンガン複合酸化物の粒子を用いる場合、粒子の外観が多角形状の一次粒子が集合して表面に多数の凹凸を有してなる球状二次粒子となったもので、平均粒径が10μm〜20μmのものを用いるのがより好ましく、比表面積は0.1m/g以上1.0m/g以下のものを用いるのがより好ましい。このような粉体を用いることで巻回構造の電極を剥離等が生じない良好な状態で作製することが容易となり、寿命性能を良好に維持することができる。また、比表面積は、0.1m/gより小さくなると、高率放電性能が悪くなり、1.0m/gを越えると寿命が急激に悪くなる。
【0012】
上記のようなリチウムマンガン複合酸化物粒子は、例えば、リチウム、マンガン及び金属元素を含有する出発原料を混合後、酸素存在下で焼成・冷却することによって製造することができる。出発原料として用いるリチウム化合物としては、LiCO、LiNO、LiOH、LiCl、LiO等があり、出発原料として用いるマンガン化合物としては、Mn,MnO等のマンガン酸化物、MnCO、Mn(NO等がある。また、他金属元素の出発原料として用いる他金属元素の化合物としては、酸化物、水酸化物、硝酸塩、炭酸塩、ジカルボン酸塩、脂肪酸塩、アンモニウム塩等が挙げられる。
【0013】
本発明で用いられる炭素材料としては、リチウムイオンが挿入脱離するものであれば特に限定されないが、C軸方向の面間隔d(002)が0.337nm以下の炭素材料、例えば、メソフェーズピッチ小球体を焼成したもの、コークスを焼成して粉砕したもの、鱗片状天然黒鉛または鱗片状人造黒鉛等を、負極活物質の90%以上となる割合で含ませて用いるのが特に好ましい。これは、このようにすることで大きなエネルギー密度と高い放電レート性能を有する電池を作製できるからである。
【0014】
電解液を構成する非水溶媒としては、例えば、炭酸プロピレン、炭酸エチレン等の環状炭酸エステルや、炭酸ジエチル、炭酸ジメチル等の鎖状炭酸エステル、プロピオン酸メチルや酪酸メチル等のカルボン酸エステル、γ−ブチロラクトン、スルホラン、2−メチルテトラヒドロフランやジメトキシエタン等のエーテル類等を使用することができるが、特に本発明電池の場合、環状炭酸エステルと鎖状炭酸エステルとの混合溶媒を用いるのが良く、本願発明の効果がよく発揮される。
【0015】
電解質としては、電解質1(LiBF)が含まれていればよく、この電解質1とLiBF、LiAsF、LiClO、LiCFSO、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiF等、種々電解質を併せて使用することができるが、LiPF6と組み合わせるのが好ましい。
【0016】
なお、電解質の合計濃度は、寿命と放電容量との関係から、非水溶媒中に0.5mol/l〜2.0mol/lとするのが良い。
【0017】
【実施例】
図1は、実施例の角形非水電解液二次電池の構造を示す概略断面図である。図1において、1は角形非水電解液二次電池、2は電極群、3は負極、4は正極、5は25μm厚さのPE製セパレータ、6は電池ケース、7は蓋、8は安全弁、9は負極端子、10は負極リードである。この電池の大きさは、幅34mm、高さ67mm、厚み6.2mmである。
【0018】
この角形非水電解液二次電池1は、アルミニウム箔からなる集電体に正極合剤を塗布してなる正極4と、銅箔からなる集電体に負極合剤を塗布してなる負極3と、セパレータ5と非水電解液とを電池ケース6に収納してなるものであり、電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード10を介して負極3と接続され、正極4は電池ケース6の内壁と接触により電気的に接続されている。
【0019】
正極4は以下のようにして作製した。多角形状の1次粒子が集合して球状の二次粒子を形成したスピネル構造リチウムマンガン複合酸化物Li1.1Mn1.82Al0.08(比表面積0.7m/g、平均粒径15μm)粉末を用い、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を重量比で88:5:7の割合で混合して合剤を調整し、溶剤となるN−メチル−2−ピロリドンに分散させてスラリーにし、これを厚さ20ミクロンのアルミニウム箔両面に塗布し、乾燥、プレスして220μm厚さの帯状正極を作製した。
【0020】
負極3は以下のようにして作製した。平均粒径26μmの球状人造黒鉛粉末75重量部(C軸方向の平均面間隔0.335nm)、平均繊維長10μmの繊維状人造黒鉛粉末15重量部(C軸方向の平均面間隔0.335nm)、PVdF10重量部を混合して負極合剤を調整し、溶剤となるN−メチル−2−ピロリドンに分散させてスラリーにし、これを厚さ15μmの銅箔両面に塗布し、乾燥させた後、一定圧力で圧縮成型して120μm厚さの帯状負極を作製した。
【0021】
以上のような構成の電池に下記表1に記載の量の電解質1(LiBF)、電解質2(LiPF)を含む電解液を注液し、実施例電池と比較例電池を作製した。電解液溶媒は、EC/EMC=3/7のものであり、電解質の総量濃度は1.2モル濃度である。なお、比較例電池2は、実施例電池2において正極活物質をLiCoOとしたもの、比較例電池3は、実施例電池2において正極活物質をLiCoOとしたものである。
【0022】
これら電池について、電池温度25℃で700mAの定電流充電を行い、電池電圧が4.1Vになった時点で4.1Vの定電圧充電に切り替えてさらに3時間の充電を行った。引き続き700mAの定電流で、電池電圧が2.8Vになるまで放電を行った。この充放電を3回行い、3回目の放電電流量を初期放電容量とした。
【0023】
ついで、電池温度を60℃にし、上記と同じ条件で充放電を100回繰り返し行い、その後電池温度を25℃にし、同じ条件で充放電を行ない、この時の放電容量を求め、これを100サイクル後の放電容量とした。そして、100サイクル後の放電容量を初期放電容量で割って百分率を算出し、これを60℃維持率とした。
【0024】
また、60℃試験中の電池の厚さを測定し、60℃サイクル試験前の厚さに対する百分率を算出し、膨れとした。なお、測定装置の関係で、20%以上は測定していない。これらの測定結果も併せて表1に示した。
【0025】
【表1】
Figure 2004071159
【0026】
以上の結果より、電解質1を用いることにより、リチウムコバルト複合酸化物を活物質とする場合には効果は見られないものの、リチウムマンガン複合酸化物を正極活物質とする場合に、60℃維持率が向上していることがわかる。
また、モル濃度比率を0.2以下とすることで膨れが抑制されている事がわかる。なお、0.3の場合も同様に膨れは抑制された。
【0027】
さらに、モル濃度比率を0.05以下とすることで初期放電容量が最も大きくなっており、エネルギー密度が向上し、膨れも非常に少なくなっていることがわかる。なお、0.1の場合も同様であり、さらに長期にわたってサイクル試験を行った場合には、0.1以下で良好な結果が得られた。
【0028】
【発明の効果】
本発明によれば、スピネル構造リチウムマンガン複合酸化物を正極活物質とする非水電解質二次電池の高温での寿命性能をより一層向上できる。
【図面の簡単な説明】
【図1】実施例の角形非水電解液二次電池の構造を示す概略断面図。
【符号の説明】
3 負極
4 正極
5 セパレータ
6 電池ケース[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode active material.
[0002]
[Prior art]
Lithium secondary batteries are widely used as power sources for mobile phones and the like because of their features of being lightweight and having high energy density. Currently, lithium secondary batteries, which are widely used, have a small capacity of about 1 Ah. A negative electrode using a carbon material that absorbs and releases Li as an active material, and a lithium-cobalt composite oxide are used as an active material. A non-aqueous electrolyte secondary battery comprising a positive electrode used as a separator, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte.
[0003]
On the other hand, large-sized lithium secondary batteries used for electric vehicles have been actively developed. The material composition of the large lithium secondary battery is also basically the same as that of the small lithium secondary battery, but from the viewpoint of securing resources for mass diffusion in the future and reducing the environmental load during mass use, As a positive electrode material, a spinel-structured lithium manganese composite oxide is a strong candidate as a substitute for the lithium cobalt composite oxide.
[0004]
[Problems to be solved by the invention]
However, the spinel structure lithium manganese composite oxide has a disadvantage that its life performance at high temperatures is poor compared to other positive electrode active materials such as lithium cobalt composite oxide and lithium nickel composite oxide, This is an obstacle to the practical use of large lithium secondary batteries that require long life performance.
[0005]
In order to solve such a problem, introduction of lithium atoms and Al atoms into the original Mn site has been considerably improved, but is still insufficient.
[0006]
In view of the above, an object of the present invention is to further improve the high-temperature life performance of a nonaqueous electrolyte secondary battery using a spinel-structured lithium manganese composite oxide as a positive electrode active material.
[0007]
[Means for Solving the Problems]
In the present invention, a lithium manganese composite oxide having a spinel structure is used as a positive electrode active material, and an electrolyte includes an electrolyte LiBF 2 C 2 O 4 represented by the following general formula (1) (hereinafter, referred to as electrolyte 1). A non-aqueous electrolyte secondary battery characterized in that the present electrolyte 1 improves cycle life at high temperatures (for example, 60 ° C.). This is presumably because this electrolyte does not generate HF at a high temperature unlike LiPF 6 , and the dissolution reaction due to HF at a high temperature peculiar to the spinel-structured lithium manganese composite oxide is suppressed.
[0008]
Embedded image
Figure 2004071159
Preferably, when a solvent containing a cyclic carbonate and a chain carbonate is used as the electrolyte solution solvent, it is preferable to use it together with LiPF 6 (hereinafter referred to as electrolyte 2). The molar ratio of the electrolyte: (the molar concentration of the electrolyte 1) / (the molar concentration of the electrolyte 1 + the molar concentration of the electrolyte 2) is preferably 0.3 or less. By doing so, the decomposition reaction of the solvent is suppressed, and the swelling of the battery can be suppressed.
[0009]
More preferably, as the spinel structure lithium manganese composite oxide, the composition formula Li 1 + x Mn 2- xy My O 4 (0.05 ≦ x ≦ 0.15, 0.02 ≦ y ≦ 0.15, M is , Ti, Cr, Fe, Co, Ni, Zn, Al, Mg, at least one or more metal elements), and a carbon material capable of inserting and extracting Li as a negative electrode active material. The use of such an active material makes it possible to further improve the cycle life performance and increase the energy density of the battery. In this case, the molar concentration ratio of the electrolyte is preferably 0.1 or less.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As the spinel-structured lithium manganese composite oxide used in the present invention, a spinel-structured Li 1 + x Mn 2- xy My O 4 (0.05 ≦ x ≦ 0.15, 0.02 ≦ y ≦ 0.15) , M can be preferably at least one or more metal elements selected from Ti, Cr, Fe, Co, Ni, Zn, Al, and Mg). Al is more preferable because it is longer and the heavy load characteristics are improved. It is to be noted that, although it is basically represented by the above-mentioned composition, it is also preferable that the oxygen site is partially substituted with sulfur or a halogen element, or that the oxygen content is somewhat non-stoichiometric.
[0011]
In addition, when using lithium manganese composite oxide particles, the appearance of the particles is a collection of spherical primary particles aggregated into spherical secondary particles having a large number of irregularities on the surface, the average particle size is It is more preferable to use one having a thickness of 10 μm to 20 μm, and it is more preferable to use one having a specific surface area of 0.1 m 2 / g or more and 1.0 m 2 / g or less. By using such a powder, it becomes easy to manufacture the electrode having the wound structure in a good state in which peeling or the like does not occur, and the life performance can be favorably maintained. When the specific surface area is smaller than 0.1 m 2 / g, the high-rate discharge performance is deteriorated, and when the specific surface area exceeds 1.0 m 2 / g, the life is sharply deteriorated.
[0012]
The lithium-manganese composite oxide particles as described above can be produced, for example, by mixing starting materials containing lithium, manganese, and a metal element, followed by firing and cooling in the presence of oxygen. Examples of the lithium compound used as a starting material include Li 2 CO 3 , LiNO 3 , LiOH, LiCl, and Li 2 O. Examples of the manganese compound used as a starting material include manganese oxides such as Mn 2 O 3 and MnO 2 . MnCO 3 , Mn (NO 3 ) 2 and the like. Examples of the compound of the other metal element used as a starting material of the other metal element include an oxide, a hydroxide, a nitrate, a carbonate, a dicarboxylate, a fatty acid salt, and an ammonium salt.
[0013]
The carbon material used in the present invention is not particularly limited as long as it allows lithium ions to be inserted and desorbed. However, a carbon material having a C-axis spacing d (002) of 0.337 nm or less, for example, a mesophase pitch small It is particularly preferable to use spheres fired, coke fired and crushed, flaky natural graphite or flaky artificial graphite, etc., in a proportion of 90% or more of the negative electrode active material. This is because a battery having a large energy density and a high discharge rate performance can be manufactured in this manner.
[0014]
Examples of the non-aqueous solvent constituting the electrolytic solution include, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, chain carbonates such as diethyl carbonate and dimethyl carbonate, carboxylate esters such as methyl propionate and methyl butyrate, and γ. -Butyrolactone, sulfolane, ethers such as 2-methyltetrahydrofuran and dimethoxyethane and the like can be used.In particular, in the case of the battery of the present invention, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate, The effects of the present invention are well exhibited.
[0015]
The electrolyte may include the electrolyte 1 (LiBF 2 C 2 O 4 ), and the electrolyte 1 and LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC Various electrolytes such as (SO 2 CF 3 ) 3 , LiAlCl 4 and LiSiF 6 can be used together, but it is preferable to combine them with LiPF 6.
[0016]
The total concentration of the electrolyte is preferably 0.5 mol / l to 2.0 mol / l in the non-aqueous solvent from the relationship between the life and the discharge capacity.
[0017]
【Example】
FIG. 1 is a schematic cross-sectional view illustrating the structure of a prismatic nonaqueous electrolyte secondary battery of an example. In FIG. 1, 1 is a prismatic nonaqueous electrolyte secondary battery, 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a PE separator having a thickness of 25 μm, 6 is a battery case, 7 is a lid, and 8 is a safety valve. , 9 is a negative electrode terminal and 10 is a negative electrode lead. The size of this battery is 34 mm in width, 67 mm in height, and 6.2 mm in thickness.
[0018]
The prismatic nonaqueous electrolyte secondary battery 1 has a positive electrode 4 formed by applying a positive electrode mixture to a current collector formed of aluminum foil, and a negative electrode 3 formed by applying a negative electrode mixture to a current collector formed of copper foil. , A separator 5 and a non-aqueous electrolyte are accommodated in a battery case 6, a battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, and a negative electrode terminal 9 is connected to a negative electrode lead. The positive electrode 4 is electrically connected to the inner wall of the battery case 6 by contact with the negative electrode 3 via the reference numeral 10.
[0019]
The positive electrode 4 was produced as follows. Spinel-structured lithium manganese composite oxide Li 1.1 Mn 1.82 Al 0.08 O 4 in which polygonal primary particles are aggregated to form spherical secondary particles (specific surface area 0.7 m 2 / g, average Acetylene black and polyvinylidene fluoride (PVdF) were mixed at a weight ratio of 88: 5: 7 by using powder and a mixture was prepared using a powder, and dispersed in N-methyl-2-pyrrolidone as a solvent. The slurry was applied to both sides of a 20-μm-thick aluminum foil, dried and pressed to produce a 220 μm-thick strip-shaped positive electrode.
[0020]
The negative electrode 3 was produced as follows. 75 parts by weight of spherical artificial graphite powder having an average particle diameter of 26 μm (average plane spacing in the C-axis direction 0.335 nm), 15 parts by weight of fibrous artificial graphite powder having an average fiber length of 10 μm (average plane spacing in the C-axis direction 0.335 nm) , 10 parts by weight of PVdF to prepare a negative electrode mixture, disperse in N-methyl-2-pyrrolidone as a solvent to form a slurry, apply this on both surfaces of a 15 μm-thick copper foil, and after drying, A belt-shaped negative electrode having a thickness of 120 μm was produced by compression molding at a constant pressure.
[0021]
An electrolyte containing the amount of electrolyte 1 (LiBF 2 C 2 O 4 ) and the amount of electrolyte 2 (LiPF 6 ) shown in Table 1 below was injected into the battery having the above-described configuration, and the example battery and the comparative example battery were prepared. Produced. The electrolyte solvent was EC / EMC = 3/7, and the total concentration of the electrolyte was 1.2 molar. The battery of Comparative Example 2 was the same as the battery of Example 2 except that the positive electrode active material was LiCoO 2, and the battery of Comparative Example 3 was the battery of Example 2 except that the positive electrode active material was LiCoO 2 .
[0022]
These batteries were charged at a constant current of 700 mA at a battery temperature of 25 ° C., and when the battery voltage reached 4.1 V, the battery was switched to a constant voltage charge of 4.1 V and further charged for 3 hours. Subsequently, discharging was performed at a constant current of 700 mA until the battery voltage reached 2.8 V. This charge / discharge was performed three times, and the amount of the third discharge current was defined as the initial discharge capacity.
[0023]
Then, the battery temperature was set to 60 ° C., charging and discharging were repeated 100 times under the same conditions as above, and thereafter, the battery temperature was set to 25 ° C., charging and discharging were performed under the same conditions, and the discharge capacity at this time was determined. The later discharge capacity was used. Then, the discharge capacity after 100 cycles was divided by the initial discharge capacity to calculate a percentage, which was defined as a 60 ° C. maintenance rate.
[0024]
Further, the thickness of the battery during the 60 ° C. test was measured, and the percentage of the thickness before the 60 ° C. cycle test was calculated, and the result was defined as swelling. In addition, 20% or more was not measured because of the measuring device. Table 1 also shows these measurement results.
[0025]
[Table 1]
Figure 2004071159
[0026]
From the above results, although the use of the electrolyte 1 has no effect when the lithium-cobalt composite oxide is used as the active material, when the lithium-manganese composite oxide is used as the positive electrode active material, the 60 ° C. It can be seen that is improved.
In addition, it can be seen that swelling is suppressed by setting the molar concentration ratio to 0.2 or less. In the case of 0.3, the swelling was similarly suppressed.
[0027]
Furthermore, it can be seen that when the molar concentration ratio is 0.05 or less, the initial discharge capacity is maximized, the energy density is improved, and the swelling is extremely reduced. The same applies to the case of 0.1, and when the cycle test was performed for a long period of time, good results were obtained at 0.1 or less.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the lifetime performance at high temperature of the nonaqueous electrolyte secondary battery which uses a spinel structure lithium manganese composite oxide as a positive electrode active material can be improved further.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing the structure of a prismatic nonaqueous electrolyte secondary battery according to an example.
[Explanation of symbols]
3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case

Claims (3)

スピネル構造リチウムマンガン複合酸化物が正極活物質として用いられ、電解液中に下記一般式(1)で示される電解質(以下、電解質1という)が含まれていることを特徴とする非水電解質二次電池。
Figure 2004071159
A nonaqueous electrolyte comprising a spinel-structured lithium manganese composite oxide used as a positive electrode active material and an electrolyte containing an electrolyte represented by the following general formula (1) (hereinafter referred to as electrolyte 1). Next battery.
Figure 2004071159
上記電解液は環状炭酸エステルと鎖状炭酸エステルとを含み、LiPF(以下、電解質2という)を含んでおり、電解液中に含まれる前記2種類の電解質のモル濃度比率:(電解質1のモル濃度)/(電解質1のモル濃度+電解質2のモル濃度)が0.3以下であることを特徴とする請求項1記載の非水電解質二次電池。The electrolyte contains a cyclic carbonate and a chain carbonate, contains LiPF 6 (hereinafter referred to as electrolyte 2), and has a molar concentration ratio of the two kinds of electrolytes contained in the electrolyte: (of electrolyte 1). 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein (molar concentration) / (molar concentration of electrolyte 1 + molar concentration of electrolyte 2) is 0.3 or less. 上記正極活物質が、組成式Li1+xMn2−x−y(0.05≦x≦0.15、0.02≦y≦0.15、Mは、Ti、Cr、Fe、Co、Ni、Zn、Al、Mgの中から選んだ少なくとも1種以上の金属元素)で表されるスピネル構造リチウムマンガン複合酸化物であり、Liを吸蔵放出する炭素材料が負極活物質として用いられていることを特徴とする請求項1または2記載の非水電解質二次電池。The positive electrode active material has a composition formula of Li 1 + x Mn 2- xy My O 4 (0.05 ≦ x ≦ 0.15, 0.02 ≦ y ≦ 0.15, where M is Ti, Cr, Fe, At least one metal element selected from the group consisting of Co, Ni, Zn, Al and Mg), and a carbon material capable of absorbing and releasing Li is used as a negative electrode active material. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
JP2002224318A 2002-08-01 2002-08-01 Nonaqueous electrolyte secondary battery Pending JP2004071159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224318A JP2004071159A (en) 2002-08-01 2002-08-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224318A JP2004071159A (en) 2002-08-01 2002-08-01 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004071159A true JP2004071159A (en) 2004-03-04

Family

ID=32012311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224318A Pending JP2004071159A (en) 2002-08-01 2002-08-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004071159A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2006190635A (en) * 2004-12-10 2006-07-20 Sony Corp Battery
WO2006082912A1 (en) * 2005-02-03 2006-08-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008288049A (en) * 2007-05-18 2008-11-27 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2009158330A (en) * 2007-12-27 2009-07-16 Toyota Central R&D Labs Inc Lithium-ion secondary battery
WO2010016520A1 (en) 2008-08-06 2010-02-11 三井化学株式会社 Nonaqueous electrolyte solution and lithium secondary battery
JP2010080229A (en) * 2008-09-25 2010-04-08 Sony Corp Electrode and battery
JP2013525958A (en) * 2010-04-20 2013-06-20 ノボライト、テクノロジーズ(スーチョウ)カンパニー、リミテッド Gel electrolyte and method for producing the same, battery using the gel electrolyte, and method for producing the same
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP4711639B2 (en) * 2004-03-29 2011-06-29 セントラル硝子株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
US7776476B2 (en) 2004-12-10 2010-08-17 Sony Corporation Battery
JP2006190635A (en) * 2004-12-10 2006-07-20 Sony Corp Battery
WO2006082912A1 (en) * 2005-02-03 2006-08-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP4703203B2 (en) * 2005-02-03 2011-06-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2006216378A (en) * 2005-02-03 2006-08-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2008288049A (en) * 2007-05-18 2008-11-27 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2009158330A (en) * 2007-12-27 2009-07-16 Toyota Central R&D Labs Inc Lithium-ion secondary battery
WO2010016520A1 (en) 2008-08-06 2010-02-11 三井化学株式会社 Nonaqueous electrolyte solution and lithium secondary battery
US9130243B2 (en) 2008-08-06 2015-09-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution and lithium secondary battery
JP2010080229A (en) * 2008-09-25 2010-04-08 Sony Corp Electrode and battery
JP2013525958A (en) * 2010-04-20 2013-06-20 ノボライト、テクノロジーズ(スーチョウ)カンパニー、リミテッド Gel electrolyte and method for producing the same, battery using the gel electrolyte, and method for producing the same

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
JP4985524B2 (en) Lithium secondary battery
US20080213670A1 (en) Non-aqueous electrolyte secondary battery
JP4853608B2 (en) Lithium secondary battery
US20080286657A1 (en) Non-aqueous electrolyte secondary battery
JP4739770B2 (en) Nonaqueous electrolyte secondary battery
JP2009277597A (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
KR20160081395A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
CN107112527B (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2010009898A (en) Nonaqueous secondary battery and nonaqueous secondary battery system
JP2004071159A (en) Nonaqueous electrolyte secondary battery
JP4691775B2 (en) Lithium secondary battery
KR101423818B1 (en) Pretreatment method and using method of lithium ion secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
WO2020158223A1 (en) Nonaqueous electrolyte secondary battery and electrolyte solution used in same
JP7458033B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP4296591B2 (en) Nonaqueous electrolyte secondary battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP2004055500A (en) Method of manufacturing positive electrode active material in nonaqueous secondary battery, positive electrode active material, and nonaqueous secondary battery therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20060116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623