JPH1173965A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1173965A
JPH1173965A JP10164883A JP16488398A JPH1173965A JP H1173965 A JPH1173965 A JP H1173965A JP 10164883 A JP10164883 A JP 10164883A JP 16488398 A JP16488398 A JP 16488398A JP H1173965 A JPH1173965 A JP H1173965A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
charge
positive electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10164883A
Other languages
Japanese (ja)
Other versions
JP3840805B2 (en
Inventor
Takayuki Shirane
隆行 白根
Takafumi Fujiwara
隆文 藤原
Noriki Muraoka
憲樹 村岡
Shoichiro Watanabe
庄一郎 渡邊
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16488398A priority Critical patent/JP3840805B2/en
Publication of JPH1173965A publication Critical patent/JPH1173965A/en
Application granted granted Critical
Publication of JP3840805B2 publication Critical patent/JP3840805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery with high capacity and superior cycle characteristic by suppressing the deposition of lithium to a negative electrode in the charge of a nonaqueous electrolyte lithium secondary battery, having a positive electrode containing a positive active material capable of releasing/absorbing lithium ions in charge/discharge and a negative electrode containing carbon capable of absorbing/releasing lithium ions in charging/discharging. SOLUTION: Carbon fluoride is added to the negative electrode of a battery. Thereby, lithium ions equivalent to the irreversible capacity of a positive electrode in a first cycle charge react with the additive having large reaction amount per volume with the ions and are fixed to the negative electrode. As a result, the increase in volume of the negative electrode is suppressed, and in addition, the conductivity of the negative electrode is increased by carbon produced in the reaction. A battery design capable of ensuring sufficient filling amount of an active material and suppressing the deposition of lithium to the negative electrode in charge is made possible, and the battery with high capacity and superior cycle characteristics can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液リチウ
ム二次電池、特に優れた充放電サイクル特性と高容量を
備えた電池を提供するものである。
The present invention provides a non-aqueous electrolyte lithium secondary battery, particularly a battery having excellent charge / discharge cycle characteristics and high capacity.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。従来から、これら電
子機器の駆動用電源としての役割を、ニッケル−カドミ
ウム電池、ニッケル水素蓄電池あるいは密閉型小型鉛蓄
電池が担っているが、これら機器の小型軽量化、多機能
化が進むにしたがい、駆動用電源となる二次電池の高エ
ネルギー密度化、小型軽量化の要望がさらに強くなって
いる。このような状況から様々な正極活物質が提案され
ている。これらの内の主なものとして、高い充放電電圧
を示すリチウム複合遷移金属酸化物、例えばLiCoO
2(例えば特公昭63−59507号公報)、さらには
高容量を目指したLiNiO2(例えば米国特許第43
02518号)、複数の金属元素とリチウムの複合酸化
物、例えばLiyNixCo1-x2(特開昭63−299
056号公報)、Lixy2O(M:Fe、Co、N
iの中から選ばれた少なくとも一種、N:Ti、V、C
r、Mnの中から選ばれた少なくとも1種)(特開平4
−267053号公報)がある。これらを正極活物質に
用い、リチウムイオンの吸蔵放出が可能な炭素材料を負
極に用いた種々の非水電解液二次電池が提案されてお
り、既に、LiCoO2を正極に用い、負極に炭素を用
いた電池が実用化されている。また、これらの正極活物
質の内、LiNiO2は特に原料であるNiの供給が安
定しており、安価でしかも高容量が期待されるため有望
な活物質として活発に研究開発が行われている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless use is rapidly progressing. Conventionally, nickel-cadmium batteries, nickel-metal hydride batteries or sealed small lead-acid batteries have played a role as a power supply for driving these electronic devices, but as these devices have become smaller, lighter and more multifunctional, Demands for higher energy density, smaller size and lighter weight of a secondary battery serving as a driving power source are increasing. Under such circumstances, various positive electrode active materials have been proposed. Among them, a lithium composite transition metal oxide exhibiting a high charge / discharge voltage, for example, LiCoO 2
2 (for example, JP-B-63-59507), and LiNiO 2 (for example, U.S. Pat.
02518), a composite oxide of a plurality of metal elements and lithium, for example, Li y Ni x Co 1-x O 2 (JP-A-63-299).
056 JP), Li x M y N 2 O (M: Fe, Co, N
at least one selected from i, N: Ti, V, C
at least one selected from r and Mn)
-267053). Various nonaqueous electrolyte secondary batteries using these as a positive electrode active material and using a carbon material capable of inserting and extracting lithium ions for a negative electrode have been proposed. LiCoO 2 has already been used for a positive electrode, and a carbon material has been used for a negative electrode. Batteries using Pt have been put to practical use. Among these positive electrode active materials, LiNiO 2 is being actively researched and developed as a promising active material because LiNiO 2 has a particularly stable supply of Ni as a raw material and is expected to be inexpensive and have a high capacity. .

【0003】[0003]

【発明が解決しようとする課題】しかし、これまで報告
されている正極活物質、特にLiNix1-x2(Mは
Co、Mn、Cr、Fe、V、Alのいずれか1種類以
上、x:1≧x≧0.5)では、通常的に電池として使
用される電位領域(Liに対して4.3V〜2V)にお
いて1サイクル目の充電(リチウムの放出反応)と、放
電(リチウムの吸蔵反応)の間に大きな充放電容量差が
あることが知られている(例えばA.Rouger e
t al.Solid State Ionics 9
0,83(1996)。この充放電容量差(正極不可逆
容量)に相当するリチウムイオン(Li+)は不可逆で
あり、充電で正極から放出されたが放電では吸蔵される
ことができないイオンである。そして、通常、この1サ
イクル目の充電によるLi+の放出量に対する放電によ
るLi+の吸蔵量の百分率を正極活物質の充放電効率と
呼んでおり、特に上記のLiNix1-x2の場合に充
放電効率が低い。
However, the positive electrode active materials reported so far, in particular, LiNi x M 1 -x O 2 (M is at least one of Co, Mn, Cr, Fe, V, and Al) , X: 1 ≧ x ≧ 0.5), the first cycle charge (lithium release reaction) and discharge (lithium release reaction) in the potential region (4.3 V to 2 V with respect to Li) which is usually used as a battery. It is known that there is a large difference in charge / discharge capacity during the lithium storage reaction (for example, A. Rougerie).
t al. Solid State Ionics 9
0,83 (1996). Lithium ions (Li + ) corresponding to this charge / discharge capacity difference (positive electrode irreversible capacity) are irreversible, and are ions that are released from the positive electrode during charging but cannot be absorbed by discharging. Usually, the percentage of the amount of Li + occluded by the discharge with respect to the amount of Li + released by the charge in the first cycle is called the charge / discharge efficiency of the positive electrode active material. In particular, the above-mentioned LiNi x M 1-x O 2 , The charging and discharging efficiency is low.

【0004】また、負極材料の場合は、この1サイクル
目の充電によるLi+の吸蔵量に対する放電によるLi+
の放出量の百分率を充放電効率と呼んでいる。このよう
な非水電解液二次電池の負極材料としては、凡そ90%
以上の高い充放電効率を示す黒鉛のような炭素材料が用
いられる。
In the case of a negative electrode material, Li + due to discharge with respect to the amount of Li + absorbed due to the charge in the first cycle.
Is referred to as charge / discharge efficiency. As a negative electrode material of such a non-aqueous electrolyte secondary battery, about 90%
A carbon material such as graphite exhibiting the above high charge / discharge efficiency is used.

【0005】図1に示すように、充放電効率が負極より
低い正極を用いた二次電池を構成した場合、1サイクル
目の充電により正極から放出されたLi+は負極に吸蔵
され、放電により、正極可逆容量に相当するLi+が負
極から放出されるが、上記の正極不可逆容量に相当する
量のLi+は放電終了後でも負極に残存している。この
負極に残存したLi+には、本来は放電可能であるに拘
わらず、負極よりも正極の可逆容量が小さいために、電
池の放電終了後も未放電状態で負極に残存する可逆容量
(図1のAに示す容量)に相当するものと、負極に固定
されまま、放電反応では本質的に放出されることができ
ない容量(負極不可逆容量)に相当するものとが含まれ
る。
As shown in FIG. 1, when a secondary battery using a positive electrode having lower charge / discharge efficiency than a negative electrode is constructed, Li + released from the positive electrode by the first cycle charging is occluded by the negative electrode, and Li + corresponding to the reversible capacity of the positive electrode is released from the negative electrode, but the amount of Li + corresponding to the irreversible capacity of the positive electrode remains on the negative electrode even after the end of discharge. Li + remaining on the negative electrode has a reversible capacity of the positive electrode smaller than that of the negative electrode despite the fact that it can be discharged. (Capacity indicated by A in FIG. 1), and a capacity corresponding to a capacity (negative electrode irreversible capacity) that cannot be essentially discharged by the discharge reaction while being fixed to the negative electrode.

【0006】そして、負極の炭素材料の可逆的なLi+
の吸蔵量、即ち、可逆的な充電容量には限界があり、例
えば黒鉛を負極に用いた場合はC6Liに相当する37
2mAh/gが限界であり、黒鉛以外の非晶質炭素材料
においてはこれより大きい限界量を示すものもある。し
かし、この限界量を超えて充電をしようとするとLi +
が還元さて負極の表面に金属リチウムが析出し、この析
出した金属リチウムが電解液と化学的に反応し易く、し
かも電気化学的に不活性であることや負極本体から脱離
することにより、充放電効率が低下し電池のサイクル特
性を著しく低下させることになる。
The reversible Li of the carbon material of the negative electrode is+
Storage capacity, that is, the reversible charging capacity is limited.
For example, if graphite is used for the negative electrode, C637 equivalent to Li
2 mAh / g is the limit, amorphous carbon material other than graphite
In some cases, a larger limit is shown. I
However, if you try to charge beyond this limit, Li +
Is reduced to deposit metallic lithium on the surface of the negative electrode.
The released metallic lithium easily reacts chemically with the electrolyte.
Moles are electrochemically inert and desorb from the negative electrode body
This reduces the charge / discharge efficiency and reduces battery cycle characteristics.
Properties will be significantly reduced.

【0007】即ち、上記の図1のAに示す充放電に関与
できない残存可逆容量に相当するLi+を負極炭素中に
保持したままの状態では、2サイクル目以降に充電でき
る負極の可逆電気容量が小さくなる。このため、電池の
充放電可能な電気容量が減少するとともに、充電時に可
逆電気容量の限界を越えた電気量が通電され易くなるた
め負極表面に金属リチウムが析出し易くなる問題があ
る。
That is, in the state where Li + corresponding to the remaining reversible capacity which cannot participate in charge / discharge shown in FIG. 1A is held in the negative electrode carbon, the reversible electric capacity of the negative electrode which can be charged in the second cycle and thereafter. Becomes smaller. For this reason, there is a problem that the chargeable / dischargeable electric capacity of the battery is reduced, and that the amount of electricity exceeding the limit of the reversible electric capacity is easily supplied during charging, so that metallic lithium is easily deposited on the negative electrode surface.

【0008】上記問題点を解決するための方策として、
正極が1サイクル目の充電で放出するLi+を全て負極
に吸蔵させた状態でも、負極の吸蔵能力に十分な余力を
残すために、負極に用いる炭素量を増量する方法が考え
られる。これにより、充電による金属リチウムの析出は
抑制されるが、増量分の炭素が占めるスペースが大き
く、これに対応させて活物質の充填量を減少させる必要
が生じ、結果的に電池容量を減少させることになる。
As a measure for solving the above problems,
Even in a state in which all the Li + released by the positive electrode in the first cycle of charging is occluded in the negative electrode, a method of increasing the amount of carbon used for the negative electrode is considered in order to leave sufficient reserve capacity for the occlusion capacity of the negative electrode. As a result, the deposition of metallic lithium due to charging is suppressed, but the space occupied by the increased amount of carbon is large, and it is necessary to correspondingly reduce the amount of the active material to be charged, and as a result, the battery capacity is reduced. Will be.

【0009】本発明は、充放電によりLi+を可逆的に
放出吸蔵可能な正極と炭素負極を備えた非水電解質電池
の上記の問題点を解決し、電池容量を十分に確保した上
で、充放電サイクル特性を向上させることを目的とす
る。
The present invention solves the above-mentioned problems of a nonaqueous electrolyte battery provided with a positive electrode capable of reversibly occluding and discharging Li + by charging and discharging and a carbon negative electrode. An object is to improve charge / discharge cycle characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は、充放電でリチ
ウムイオンを放出吸蔵可能な正極活物質を含む正極と、
充放電でリチウムイオンを吸蔵放出可能な炭素を含む負
極と非水電解質とを備えた非水電解液二次電池の負極中
にフッ化炭素の1種類単独または複数種類の混合物を添
加したことを特徴とするものである。
According to the present invention, there is provided a positive electrode including a positive electrode active material capable of releasing and occluding lithium ions upon charging and discharging;
The addition of one type or a mixture of multiple types of fluorocarbon to the negative electrode of a non-aqueous electrolyte secondary battery including a negative electrode containing carbon capable of inserting and extracting lithium ions by charge and discharge and a non-aqueous electrolyte. It is a feature.

【0011】本発明では添加剤の体積当りのLi+との
反応量が炭素より多いので、添加剤の負極への添加に伴
う正極活物質の充填量の減少を最小限に止めたうえで、
充電による負極へのリチウムの析出を抑制することがで
き、高エネルギー密度で、かつサイクル特性の良好な電
池が実現可能となる。
In the present invention, since the reaction amount of Li + with respect to the volume of the additive is larger than that of carbon, the decrease in the amount of the positive electrode active material due to the addition of the additive to the negative electrode is minimized.
Precipitation of lithium on the negative electrode due to charging can be suppressed, and a battery with high energy density and good cycle characteristics can be realized.

【0012】また、添加剤とLi+との反応によって生
成する炭素によって負極の導電性が向上し、電池の充放
電特性を向上させることができる。
Further, the conductivity of the negative electrode is improved by the carbon generated by the reaction between the additive and Li +, and the charge and discharge characteristics of the battery can be improved.

【0013】[0013]

【発明の実施の形態】本発明は、正極の不可逆容量を消
費する目的でフッ化炭素を負極に添加するものである。
ここでフッ化炭素は、炭素質材料をフッ素化した物であ
って、一般式(CxF)nで表される。それらの中の代表
的なものとして、(CF)n、(C2F)nがあり、リチ
ウム一次電池の正極活物質として一般的に知られてい
る。以下、これらのフッ化炭素の単体、または混合物を
(CxF)nと表現して本発明を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to add carbon fluoride to a negative electrode for the purpose of consuming the irreversible capacity of the positive electrode.
Here, fluorocarbon is a fluorinated carbonaceous material and is represented by the general formula (C x F) n . Representative of them are (CF) n and (C 2 F) n, which are generally known as positive electrode active materials for lithium primary batteries. Hereinafter, the present invention will be described by expressing a single substance or a mixture of these fluorocarbons as (C x F) n .

【0014】先ず、フッ化炭素とLi+とは非水電解液
中で(化1)で示されるような不可逆的電気化学反応を
行うものとして一般的に知られている。
First, it is generally known that fluorocarbon and Li + undergo an irreversible electrochemical reaction as shown in Chemical formula 1 in a non-aqueous electrolyte.

【0015】[0015]

【化1】(CxF)n+nLi++ne-→nxC+nLi
F この反応は、リチウム金属を用いた参照極に対して2〜
3Vの電位領域で進行するため、本発明では、電池の最
初の充電において正極から放出されたLi+は、負極炭
素に吸蔵される反応に優先して、負極に添加した(Cx
F)nと反応する。その結果、正極の不可逆容量分のL
+は1サイクル目の充電で不可逆なLiFとして負極
に固定され、2サイクル目以降の放電では負極から放出
されない。また、負極極板中で(化1)の反応により生
成した炭素は負極極板中の導電性を向上させるため、負
極の抵抗分極を低減できる。また、この炭素は負極炭素
と類似な反応機構で充放電によるLi+の吸蔵放出にも
寄与するので、電池の高容量化にも効果がある。
Embedded image (C x F) n + nLi + + ne → nxC + nLi
F This reaction is performed with respect to a reference electrode using lithium metal.
In the present invention, Li + released from the positive electrode during the first charge of the battery was added to the negative electrode (C x
F) Reacts with n . As a result, L for the irreversible capacity of the positive electrode
i + is fixed to the negative electrode as irreversible LiF in the first cycle of charging, and is not released from the negative electrode in the second and subsequent cycles of discharging. Further, carbon generated by the reaction of Chemical Formula 1 in the negative electrode plate improves the conductivity in the negative electrode plate, so that the resistance polarization of the negative electrode can be reduced. Further, this carbon contributes to the insertion and extraction of Li + by charging and discharging by a reaction mechanism similar to that of the negative electrode carbon, and thus is effective in increasing the capacity of the battery.

【0016】即ち、図2に示すように、正極からの不可
逆なリチウムイオン(図2のBの容量)を負極に添加し
た(CxF)nで消費すれば、充電状態の負極の負荷が
(CxF)nを添加していない場合と比較して小さくな
り、正極の可逆容量と負極の可逆容量を最大限に活用す
ることが可能となり、充放電サイクルによって金属リチ
ウムを負極に析出させることなく、従来よりも放電容量
の大きい二次電池を実現できる。
That is, as shown in FIG. 2, when irreversible lithium ions (capacity B in FIG. 2) from the positive electrode are consumed by (C x F) n added to the negative electrode, the load on the negative electrode in the charged state is reduced. (C x F) n is smaller than that in the case where n is not added, so that the reversible capacity of the positive electrode and the reversible capacity of the negative electrode can be maximized, and metallic lithium is deposited on the negative electrode by a charge / discharge cycle. Thus, a secondary battery having a larger discharge capacity than before can be realized.

【0017】ここで負極の負荷とは、充電状態で負極に
存在する可逆及び不可逆なリチウムの量の総和のことを
指し、これが増大するとLi+の吸蔵限界に近づき金属
リチウムが析出しやすくなる。本発明により、この現象
が効果的に抑制される。
Here, the load of the negative electrode refers to the total amount of reversible and irreversible lithium present in the negative electrode in a charged state, and when this amount increases, the limit of Li + storage is approached and metallic lithium tends to precipitate. According to the present invention, this phenomenon is effectively suppressed.

【0018】本発明の添加剤は、例えば(CF)n
(C2F)nの場合、真密度は2.6、2.8g/ccと
炭素の2.2g/ccよりも若干大きな値を持つため、
上述の従来法における負極炭素の増量分と比較して、重
量当たり添加剤の体積がより少ない。さらに(C
F)n、(C2F)nがLi+と電気化学的に反応する理論
電気容量はそれぞれ864、623mAh/gであり、
炭素にLi+が挿入される反応の372mAh/gに対
して、重量当たり約1.7〜2倍のLi+の反応量を持
つ。さらに、[1]式の反応により生成した炭素中にL
i+が挿入される要素を加味すると、正極の不可逆容量
を消費して負極に固定するために必要な添加剤の量は、
負極炭素を増量する場合に対して、極板の重量、体積と
も大幅に減少させることができ、その分に相当する正極
活物質の充填量を増量できるので、従来法に対して電池
容量を増大させることができる。上記の内、Li+がL
iFに変化する反応量の影響が支配的であることから、
本発明で負極への添加剤として用いる(CxF)nはLi
+との反応電気容量が、少なくとも、負極炭素にLi+
挿入される反応の電気量である372mAh/gを上回
るものを用いることにより本発明の効果が顕著に得られ
ることになる。言い換えると、添加剤としての(C
xF)nの平均的なx値は、Li+との反応電気容量が3
72mAh/g以上となる4.38以下であるべきこと
が計算される。然し、実際的には(CxF)nはLi +
の反応で生成する炭素が若干のLi+のを吸蔵すること
や、真密度が大きい事などが加味されるため、x値が約
4.5以下の場合に本発明の効果が顕著に得られること
が実験的に明らかになった。x値の最小値は(CF)n
に相当する1であるが、完全にフッ素化された(CF)
nは、通常は若干フッ素過剰の組成を示し、約0.9の
実効値を示す場合があり得る。これらのことから、0.
9≦x≦4.5の添加剤を用いることが好ましい。
The additive of the present invention is, for example, (CF)n,
(CTwoF)n, The true density is 2.6, 2.8 g / cc
Because it has a value slightly larger than 2.2 g / cc of carbon,
Compared to the increase in the amount of negative electrode carbon in the conventional method described above,
Lower volume of additive per volume. Furthermore, (C
F)n, (CTwoF)nIs Li+That electrochemically reacts with
The electric capacities are 864 and 623 mAh / g, respectively.
Li on carbon+Vs. 372 mAh / g of the reaction where
And about 1.7 to 2 times as much Li per weight+Reaction volume
One. Further, L is contained in carbon generated by the reaction of the formula [1].
Taking into account the element into which i + is inserted, the irreversible capacity of the positive electrode
The amount of additive required to consume and fix to the negative electrode is
When increasing the amount of negative electrode carbon, the weight and volume of the electrode plate
Can be greatly reduced, and the corresponding positive electrode
Since the amount of active material can be increased, the battery
The capacity can be increased. Of the above, Li+Is L
Since the effect of the reaction amount changing to iF is dominant,
It is used as an additive to the negative electrode in the present invention (CxF)nIs Li
+The reaction electric capacity of the negative electrode carbon is at least Li+But
Exceeds 372 mAh / g, which is the amount of electricity for the inserted reaction
The effect of the present invention is remarkably obtained by using
Will be. In other words, (C) as an additive
xF)nIs the average x value of Li+Reaction capacity with 3
What should be 4.38 or less, which is 72 mAh / g or more
Is calculated. However, in practice (CxF)nIs Li +When
Is slightly Li+Occlusion of
And the fact that the true density is large, the x value is about
The effect of the present invention is remarkably obtained when the ratio is 4.5 or less.
Was experimentally revealed. The minimum value of x value is (CF)n
1, which is fully fluorinated (CF)
nIndicates a composition which is usually slightly excessive in fluorine,
It may indicate an effective value. From these, 0.
It is preferable to use an additive satisfying 9 ≦ x ≦ 4.5.

【0019】また、本発明においてはフッ化炭素の添加
量は、添加剤とLi+との反応電気容量が正極不可逆容
量から負極不可逆容量を差し引いた容量と同容量程度で
あることが望ましい。
[0019] The addition amount of the fluorocarbon in the present invention, it is preferable reaction electric capacity of the additive and Li + are capacity and same capacity approximately by subtracting the negative electrode irreversible capacity from the positive electrode irreversible capacity.

【0020】ちなみに、これまでに炭素負極への添加剤
の先行例としてLi+を吸蔵もしくは含有しえる化合物
(例えばFeO、FeO2、Fe23、SnO、Sn
2、MoO2、V25、Bi2Sn39、WO3、W
2、Nb25:特開平7−192723号公報、リチ
ウムを含有しうる金属酸化物、硫化物、水酸化物、セレ
ン化物:特開平8−213053、リチウム吸蔵・放出
できる遷移金属酸化物でLipNiq1-qr、P=0.
4〜3、q=0〜1、r=1.2〜5.5:特開平6−
44972号公報)を添加する例が報告されているが、
これらの報告例はいずれも放電末期、もしくは過放電時
の負極特性の安定性向上のために添加されており、いず
れも可逆性が要求されるものである。これらの添加剤は
本発明と同様に正極の不可逆容量に相当するLi+を負
極で消費する機能も合わせ持っているが、充放電中の状
態は金属酸化物もしくはリチウム含有酸化物であるため
本発明の上記反応で生成する炭素に匹敵する導電性向上
の効果が得られず、体積当りのLi+との反応量も少な
く、サイクル特性を向上させるためには、電池容量を犠
牲にせざるを得ない問題があった。本発明はこれらの方
法に対しても上述のような選りすぐれた有効な効果を発
揮できる。
Incidentally, compounds which can occlude or contain Li + (eg, FeO, FeO 2 , Fe 2 O 3 , SnO, Sn)
O 2 , MoO 2 , V 2 O 5 , Bi 2 Sn 3 O 9 , WO 3 , W
O 2 , Nb 2 O 5 : JP-A-7-192723, metal oxides, sulfides, hydroxides, and selenides containing lithium: JP-A-8-213053, transition metal oxides capable of absorbing and releasing lithium in Li p Ni q V 1-q O r, P = 0.
4 to 3, q = 0 to 1, r = 1.2 to 5.5
No. 44972) has been reported.
All of these reports are added for the purpose of improving the stability of the negative electrode characteristics at the end of discharge or overdischarge, and all require reversibility. These additives also have a function of consuming Li + corresponding to the irreversible capacity of the positive electrode at the negative electrode, as in the present invention. The effect of improving the conductivity comparable to the carbon generated by the above reaction of the present invention cannot be obtained, the reaction amount with Li + per volume is small, and in order to improve the cycle characteristics, the battery capacity has to be sacrificed. There was no problem. The present invention can also exert the above-mentioned selected and effective effects on these methods.

【0021】本発明で用いる(CxF)nのうち、(C2
F)nは、炭素材料を300℃〜600℃でフッ素ガス
でフッ素化することにより合成される。またこの手法に
より、フッ素の流量を制御することで(CF)nを合成
することもできる。また、石油コークスなどの炭素材料
はフッ素化合物と共に100℃程度で加熱することによ
ってもフッ素化される。
Of (C x F) n used in the present invention, (C 2
F) n is synthesized by fluorinating a carbon material with fluorine gas at 300 to 600 ° C. Further, by this method, (CF) n can be synthesized by controlling the flow rate of fluorine. Carbon materials such as petroleum coke are also fluorinated by heating at about 100 ° C. with a fluorine compound.

【0022】ここで原料として用いられる炭素材料に
は、例えばサーマルブラック、アセチレンブラック、フ
ァーネスブラック、気相成長炭素繊維、熱分解炭素、天
然黒鉛、人造黒鉛、メソフェーズマイクロビーズ、石油
コークス、石炭コークス、石油系炭素繊維、石炭系炭素
繊維、木炭、活性炭、ガラス状炭素、レーヨン系炭素繊
維、PAN系炭素繊維などがある。
The carbon materials used as raw materials include, for example, thermal black, acetylene black, furnace black, vapor grown carbon fiber, pyrolytic carbon, natural graphite, artificial graphite, mesophase microbeads, petroleum coke, coal coke, Examples include petroleum-based carbon fiber, coal-based carbon fiber, charcoal, activated carbon, glassy carbon, rayon-based carbon fiber, and PAN-based carbon fiber.

【0023】また、本発明において、正極活物質は、例
えばLiCoO2、LiNiO2、LiMn24などのL
+を放出し、吸蔵するリチウム含有金属化合物の何れ
をも用いることが出来、これらの1サイクル目の充放電
効率{(放電によるLi+吸蔵量/充電によるLi+放出
量)×100(%)}は概ね75〜95%の範囲にあ
る。
In the present invention, the positive electrode active material is, for example, LCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.
Any of the lithium-containing metal compounds that release and occlude i + can be used, and the charge and discharge efficiency of the first cycle {(Li + occlusion amount by discharge / Li + release amount by charging) × 100 (% )} Is generally in the range of 75-95%.

【0024】これらの中でも、正極活物質としてLiN
x1-x2(MはCo、Mn、Cr、Fe、V、Al
のいずれか1種類以上、x:1≧x≧0.5)で示され
るリチウム含有ニッケル酸化物である場合には充放電効
率が小さく、通常用いられる材料では75〜90%であ
る。このように充放電効率が特に小さい場合に本発明を
適用することは、正極の不可逆容量が大きいために生じ
る弊害を最小限に止めるという本発明の添加剤の添加目
的に最も合致しており、特に本発明の実施効果が大き
い。
Among them, LiN is used as a positive electrode active material.
i x M 1-x O 2 (M is Co, Mn, Cr, Fe, V, Al
In the case of a lithium-containing nickel oxide represented by any one or more of x, x: 1 ≧ x ≧ 0.5), the charge / discharge efficiency is low, and 75 to 90% for a commonly used material. Applying the present invention when the charge / discharge efficiency is particularly small as described above is most consistent with the purpose of adding the additive of the present invention to minimize the adverse effects caused by the large irreversible capacity of the positive electrode, Particularly, the effect of the present invention is great.

【0025】尚、一般に用いられるLiNix1-x2
の代表例として、例えば、ニッケルを主体とする複合水
酸化物と水酸化リチウムとを混合し、750℃〜900
℃の温度範囲で合成されたものがあり、750℃以下で
合成した場合はやや熱安定性が低下し、一方900℃以
上の高温で合成した場合に1サイクル目の充放電効率が
極端に小さくなり、放電特性が悪くなる傾向がある。
Incidentally, LiNi x M 1-x O 2 which is generally used
As a typical example, for example, a composite hydroxide mainly composed of nickel and lithium hydroxide are mixed, and then mixed at 750 ° C. to 900 ° C.
Some of them were synthesized in a temperature range of ℃ C. When synthesized at a temperature of 750 ° C. or lower, the thermal stability was slightly lowered. On the other hand, when synthesized at a high temperature of 900 ° C. or higher, the charge / discharge efficiency in the first cycle was extremely small. And the discharge characteristics tend to deteriorate.

【0026】[0026]

【実施例】【Example】

(実施例1)以下、本発明の実施例を図面に沿って説明
する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0027】図3に実施例1で用いた円筒系電池の縦断
面図を示す。図3において1は耐有機電解液性のステン
レス鋼板を加工した電池ケース、2は安全弁を設けた封
口板、3は絶縁パッキングを示す。4は極板群であり、
正極板5および負極板6がセパレータ7を介して複数回
渦巻状に巻回されて電池ケース1内に収納されている。
そして正極板5からはアルミニウム製の正極リード5a
が引き出されて封口板2に接続され、負極板6からはニ
ッケル製の負極リード6aが引き出されて電池ケース1
の底部に接続されている。8は絶縁リングで極板群4の
上下部にそれぞれ設けられている。
FIG. 3 is a longitudinal sectional view of the cylindrical battery used in Example 1. In FIG. 3, reference numeral 1 denotes a battery case processed from a stainless steel plate having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. 4 is an electrode group,
A positive electrode plate 5 and a negative electrode plate 6 are spirally wound a plurality of times via a separator 7 and housed in the battery case 1.
From the positive electrode plate 5, an aluminum positive electrode lead 5a is formed.
Is pulled out and connected to the sealing plate 2, and the negative electrode lead 6 a made of nickel is pulled out from the negative electrode plate 6 to
Connected to the bottom of Reference numeral 8 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0028】次に、正極活物質の合成法について説明す
る。まず、硫酸ニッケル溶液、硫酸コバルト溶液を一定
流量で容器内に導入し、十分撹拌しながら水酸化ナトリ
ウム溶液を添加し、生成した沈殿物を水洗、乾燥しニッ
ケル−コバルト複合水酸化物(Ni0.85Co0.15(O
H)2)を得た。得られたニッケル−コバルト複合水酸
化物を水酸化リチウムと混合し、酸化雰囲気下において
800℃で10時間焼成してLiNi0.85Co0.152
を合成した。
Next, a method for synthesizing the positive electrode active material will be described. First, a nickel sulfate solution and a cobalt sulfate solution are introduced into a vessel at a constant flow rate, a sodium hydroxide solution is added with sufficient stirring, and the generated precipitate is washed with water and dried to obtain a nickel-cobalt composite hydroxide (Ni 0.85 Co 0.15 (O
H) 2 ) was obtained. The obtained nickel-cobalt composite hydroxide is mixed with lithium hydroxide, and calcined at 800 ° C. for 10 hours in an oxidizing atmosphere to obtain LiNi 0.85 Co 0.15 O 2.
Was synthesized.

【0029】正極板5は、まず正極活物質であるLiN
0.85Co0.152の粉末100重量部に、アセチレン
ブラック3重量部、フッ素樹脂系結着剤5重量部を混合
し、N−メチルピロリドン溶液に懸濁させてペースト状
にした。このペーストを厚さ0.020mmのアルミ箔
の両面に塗着し、乾燥後厚み0.130mm、幅35m
m、長さ270mmの正極板5を作成した。また正極リ
ード5aとしてアルミニウム片を取り付けた。
First, the positive electrode plate 5 is made of LiN which is a positive electrode active material.
To 100 parts by weight of i 0.85 Co 0.15 O 2 powder, 3 parts by weight of acetylene black and 5 parts by weight of a fluororesin binder were mixed and suspended in an N-methylpyrrolidone solution to form a paste. This paste is applied on both sides of an aluminum foil having a thickness of 0.020 mm, and after drying, has a thickness of 0.130 mm and a width of 35 m.
A positive electrode plate 5 having a length of 270 mm was prepared. An aluminum piece was attached as the positive electrode lead 5a.

【0030】この正極の正極不可逆容量は20mAh/
gであり、充放電効率は85%であった。
The positive electrode irreversible capacity of this positive electrode is 20 mAh /
g, and the charge / discharge efficiency was 85%.

【0031】負極板6は、黒鉛粉100重量部に、(C
F)n4重量部を添加した後、スチレン−ブタジエンゴ
ム系結着剤を混合し、カルボキシメチルセルロース水溶
液に懸濁させてペースト状にした。なお、この(CF)
nの添加量は、(CF)nの電気容量と炭素材料の不可逆
容量の総和が正極の不可逆容量と等しくなるよう計算し
たものである。ここで用いた(CF)nは石油コークス
をフッ素化した物であり、C:Fの分析値は原子比で
0.9:1であり、このうち、実質的に電気化学反応を
行う実効フッ素と炭素の比率は1:1であり、(CF)
nの電気容量は実効値から算出した。
The negative electrode plate 6 was prepared by adding (C)
F) After adding 4 parts by weight of n , a styrene-butadiene rubber-based binder was mixed and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Note that this (CF)
The addition amount of n is calculated so that the sum of the electric capacity of (CF) n and the irreversible capacity of the carbon material is equal to the irreversible capacity of the positive electrode. The (CF) n used here is a fluorinated product of petroleum coke, and the analysis value of C: F is 0.9: 1 in atomic ratio. Of these, effective fluorine which substantially performs an electrochemical reaction And the ratio of carbon is 1: 1 and (CF)
The electric capacity of n was calculated from the effective value.

【0032】そしてこのペーストを厚さ0.015mm
の銅箔の表面に塗着し、乾燥後厚み0.2mm、幅37
mm、長さ300mmの負極板を作成した。
Then, the paste is coated with a thickness of 0.015 mm.
0.2 mm thick and 37 mm wide after drying
A negative electrode plate having a length of 300 mm and a length of 300 mm was prepared.

【0033】そして正極板と負極板を、セパレータを介
して渦巻き状に巻回し、直径13.8mm、高さ50m
mの電池ケース内に収納した。
Then, the positive electrode plate and the negative electrode plate are spirally wound via a separator, and have a diameter of 13.8 mm and a height of 50 m.
m in a battery case.

【0034】電解液には炭酸エチレン(EC)、炭酸エ
チルメチル(EMC)と炭酸ジメチル(DMC)を3
0:20:50の容量比で混合した混合溶媒に、六フッ
化リン酸リチウム1mol/lの割合で溶解したものを
用いて極板群4に注入した後、電池を密封口して作成し
た電池を試験電池Aとした。
Ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) were used as the electrolyte.
A solution prepared by dissolving lithium hexafluorophosphate at a ratio of 1 mol / l in a mixed solvent mixed at a volume ratio of 0:20:50 was injected into the electrode group 4, and then the battery was formed with a sealed opening. The battery was designated as test battery A.

【0035】同様に電解液の溶媒にECとジエチルカー
ボネート(DEC)とプロピオン酸メチル(MP)を3
0:20:50の容積比で混合した溶媒を用いた電池を
試験電池B、ECとDECとプロピオン酸エチル(E
P)を30:20:50の容積比で混合した溶媒を用い
た電池を試験電池C、ECとEMCとDMCとMPを3
0:20:30:20の容積比で混合した溶媒を用いた
試験電池Dとした。
Similarly, EC, diethyl carbonate (DEC) and methyl propionate (MP) were added to the solvent of the electrolyte solution.
A battery using a solvent mixed at a volume ratio of 0:20:50 was used for test battery B, EC, DEC and ethyl propionate (E
A battery using a solvent in which P) was mixed at a volume ratio of 30:20:50 was used as a test battery C, and EC, EMC, DMC, and MP were used in 3 batteries.
Test battery D was prepared using a solvent mixed at a volume ratio of 0: 20: 30: 20.

【0036】比較例として、負極に添加剤を入れない他
は実施例(試験電池A〜D)と同様に電池を構成し電池
E〜Hとした。
As comparative examples, batteries were constructed in the same manner as in Examples (test batteries A to D) except that no additive was added to the negative electrode, and batteries E to H were obtained.

【0037】以上の各電池を20℃、充放電電流100
mAで充電終止電圧4.2V、放電終止電圧2.5Vで
充放電サイクルを行った。3サイクル目の放電容量に対
し、放電容量が70%の容量に減少したサイクル数をサ
イクル寿命とした。
Each of the above batteries was charged at 20 ° C. with a charge / discharge current of 100
A charge / discharge cycle was performed at a charge end voltage of 4.2 V at mA and a discharge end voltage of 2.5 V. The number of cycles at which the discharge capacity was reduced to 70% of the discharge capacity at the third cycle was defined as the cycle life.

【0038】尚、上記の正極の不可逆容量は1サイクル
目の充電で正極から放出したLi+量から、1サイクル
目の放電で正極が吸蔵できるLi+量を差し引いた値で
あり、充放電効率はこれらの比率{(吸蔵量/放出量)
×100(%)}である。この測定試験は負極板として
金属リチウム板を用い、充放電の電圧が正極電位で支配
される構成とした以外は上記の試験電池Aと同様の製法
で電池を作成し、約20℃で行った。測定方法は定電圧
充電(4.2V/2.5時間)を行った後、これを2.
5Vまで定電流放電(2mA/cm2)させた場合の正
極板の充放電の電気量を計測し、その電気量をLi+
放出量、或いは吸蔵量に換算して算出したものである。
また、負極の不可逆容量は約20mAh/gで、充放電
効率は92%であった。これらの測定には、金属リチウ
ム板を正極板に代えて用い、充放電の電圧が炭素負極の
電位で支配される構成とした以外は上記の試験電池Aと
同様の製法で電池を作成し、正極の場合と同様の方法で
測定を行った。但し、この場合の充電は定電圧充電(0
V/2.5時間)、放電は0.5Vまで行い、その時の
充放電容量から負極の不可逆容量と充放電効率を算出し
た。
The irreversible capacity of the positive electrode is a value obtained by subtracting the amount of Li + that can be stored in the positive electrode in the first cycle of discharge from the amount of Li + released from the positive electrode in the first cycle of charge. Is the ratio of these {(storage / release)
× 100 (%)}. This measurement test was performed at about 20 ° C. using a metal lithium plate as the negative electrode plate, and preparing a battery by the same manufacturing method as the above test battery A except that the charge / discharge voltage was controlled by the positive electrode potential. . The measurement method is as follows: after performing constant voltage charging (4.2 V / 2.5 hours),
The amount of charge / discharge of the positive electrode plate when a constant current discharge ( 2 mA / cm 2 ) was performed up to 5 V was measured, and the amount of charge was converted into the amount of release of Li + or the amount of occlusion.
The irreversible capacity of the negative electrode was about 20 mAh / g, and the charge / discharge efficiency was 92%. For these measurements, a battery was prepared in the same manner as the test battery A described above, except that a metal lithium plate was used in place of the positive electrode plate, and the charge / discharge voltage was controlled by the potential of the carbon negative electrode. The measurement was performed in the same manner as in the case of the positive electrode. However, the charging in this case is constant voltage charging (0
V / 2.5 hours), the discharge was performed up to 0.5 V, and the irreversible capacity and charge / discharge efficiency of the negative electrode were calculated from the charge / discharge capacity at that time.

【0039】これらの電池の1サイクル目の充電、放電
容量及び末期サイクルを(表1)に示した。
The charge, discharge capacity and terminal cycle of the first cycle of these batteries are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例および比較例の電池において、1サ
イクル目の充電容量と放電容量の差は各々の電池におい
てほとんど同じであることがわかる。
It can be seen that the difference between the charge capacity and the discharge capacity in the first cycle in the batteries of the example and the comparative example is almost the same in each battery.

【0042】このことは、いずれの場合も正極の可逆容
量によって電池の放電容量が決定されていることを示し
ている。
This indicates that the discharge capacity of the battery is determined by the reversible capacity of the positive electrode in each case.

【0043】しかしながら、これらの電池の充放電サイ
クルを継続して行うと比較例の添加剤を加えていない電
池に比べ、添加剤を加えている本発明の電池のサイクル
特性は著しく向上していることがわかる。
However, when the charge / discharge cycle of these batteries is continuously performed, the cycle characteristics of the battery of the present invention to which the additive is added are remarkably improved as compared with the battery of the comparative example to which no additive is added. You can see that.

【0044】サイクル試験後の電池を分解し観察した結
果、比較例の電池の負極表面には金属光沢を有するリチ
ウム金属の析出が観測され、実施例の電池では析出が観
測されなかった。
As a result of disassembling and observing the battery after the cycle test, deposition of lithium metal having a metallic luster was observed on the negative electrode surface of the battery of the comparative example, and no deposition was observed in the battery of the example.

【0045】この結果から、比較例では、サイクル初期
の電池容量は実施例と同じであっても、正極の不可逆容
量分(図1のAの容量)が負極の炭素中に残存したまま
充放電サイクルが進行するので実質的な可逆容量が減少
し、充電によって負極の可逆な充放電容量を越えて充電
が行われたため負極板表面に金属リチウムが析出し、放
電容量が著しく減少したものと考えられる。ちなみに、
比較例の場合、正極活物質量を減ずるか、充電電圧を下
げることによって、負極の可逆容量に余裕を持たせるこ
とにより、サイクル特性の良好な電池は実現できるが、
放電容量自体が小さくなるため電池の高容量化は実現で
きない。
From these results, in the comparative example, even when the battery capacity at the beginning of the cycle was the same as that of the example, the charge / discharge was performed with the irreversible capacity of the positive electrode (capacity A in FIG. 1) remaining in the carbon of the negative electrode. As the cycle proceeds, the substantial reversible capacity decreased, and the charge was performed beyond the reversible charge / discharge capacity of the negative electrode due to charging, so metallic lithium was deposited on the negative electrode plate surface and the discharge capacity was considered to have decreased significantly. Can be By the way,
In the case of the comparative example, a battery with good cycle characteristics can be realized by reducing the amount of the positive electrode active material or lowering the charging voltage to allow a margin for the reversible capacity of the negative electrode.
Since the discharge capacity itself is small, it is not possible to realize a high capacity battery.

【0046】これに対し本発明の電池は図1のAに相当
する充放電に関与できない容量を添加した(CF)n
消費(図2のBの容量)するために正極の可逆容量と負
極可逆容量が最大限利用でき、サイクル特性も良好な電
池が得られる。
On the other hand, the battery of the present invention consumes (CF) n (capacity B in FIG. 2) to which a capacity not involved in charge / discharge was added, which corresponds to A in FIG. A battery with maximum reversible capacity and good cycle characteristics can be obtained.

【0047】また、他の混合溶媒を用いた電池(B、
C、D)の場合でも、比較例の電池よりはサイクル特性
が優れている。
Also, batteries using other mixed solvents (B,
Even in cases C and D), the cycle characteristics are superior to those of the battery of the comparative example.

【0048】(実施例2)実施例2として、負極に添加
する(CF)nの添加量を負極炭素に対し0.05、
1、4、6、10重量部としたこと以外は実施例1の試
験電池Aと同じ条件で試験電池I、J、K、Lを作製
し、実施例1の場合と同条件で充放電サイクル試験を行
った。尚、この(CF)nの分析値は原子比でC:F=
0.9:1であった。(表2)に実施例1の試験電池A
と実施例2の試験電池(I〜L)および比較例(E)の
電池の試験結果を示す。
Example 2 As Example 2, the amount of (CF) n added to the negative electrode was 0.05,
Test batteries I, J, K, and L were prepared under the same conditions as the test battery A of Example 1 except that the amounts were 1, 4, 6, and 10 parts by weight, and the charge / discharge cycle was performed under the same conditions as in Example 1. The test was performed. The analytical value of (CF) n is represented by an atomic ratio of C: F =
0.9: 1. (Table 2) shows the test battery A of Example 1.
And test results of the test batteries (I to L) of Example 2 and the battery of Comparative Example (E).

【0049】[0049]

【表2】 [Table 2]

【0050】実施例2の電池は何れも1サイクル目の充
電容量は、実施例1の場合と同様に電池によって大きな
変化は見られない。しかし、(CF)nを6重量部以上
添加した電池の1サイクル目の放電容量が他の電池の放
電容量と比較して減少している。これは実施例1の項で
述べた計算値、即ち4重量部の(CF)nの添加量に対
して過剰に添加された(CF)nが、正極の可逆容量の
一部に相当するLi+と反応したためと考えられる。
In any of the batteries of the second embodiment, the charge capacity in the first cycle does not show a large change depending on the battery as in the case of the first embodiment. However, the discharge capacity in the first cycle of the battery to which (CF) n was added in an amount of 6 parts by weight or more was smaller than the discharge capacity of the other batteries. Li this calculated value mentioned in the Examples 1, i.e. was added in excess with respect to the addition amount of (CF) n of 4 parts by weight (CF) n, corresponding to a part of the reversible capacity of the positive electrode Probably because it reacted with + .

【0051】それぞれの電池のサイクル特性は、(C
F)n0.05重量部の添加の場合、正極不可逆容量分
のLi+のすべてが添加剤で消費されないため、一部が
負極の炭素中に吸蔵され、その部分が実質的には不可逆
な容量となるためサイクル特性の改良効果が顕著には認
められない。しかし、添加物を入れない比較例と比べる
とこのような少量の添加でも、その弊害が軽くなってい
るためサイクル特性は向上している。
The cycle characteristics of each battery are (C
F) In the case of adding 0.05 parts by weight of n , since all of the Li + for the positive electrode irreversible capacity is not consumed by the additive, a part is occluded in the carbon of the negative electrode, and the part is substantially irreversible. Because of the capacity, the effect of improving the cycle characteristics is not remarkably recognized. However, compared to the comparative example in which no additive is added, even with such a small amount of addition, the adverse effect is reduced, and thus the cycle characteristics are improved.

【0052】一方、(CF)nを6重量部添加した電池
は、正極の可逆容量そのものを(CF)nに一部消費さ
れているため放電容量が若干減少しているが、優れたサ
イクル特性を示している。
On the other hand, in the battery containing 6 parts by weight of (CF) n , although the reversible capacity itself of the positive electrode was partially consumed by (CF) n , the discharge capacity was slightly reduced. Is shown.

【0053】(CF)nを10重量部添加した場合は電
池の容量が大幅に減少しているがサイクル特性は優れて
いる。
When 10 parts by weight of (CF) n is added, the capacity of the battery is greatly reduced, but the cycle characteristics are excellent.

【0054】以上のことより、添加剤に(CF)n単独
を用いた場合の添加量は、負極の炭素材料100重量部
に対して0.5〜6重量部であることが好ましい。
From the above, it is preferable that the additive amount when (CF) n alone is used as the additive is 0.5 to 6 parts by weight based on 100 parts by weight of the carbon material of the negative electrode.

【0055】(実施例3)実施例3として、(C
F)n、(C2F)n、(C4F)n、(C6F)nを単独又
は混合比を変化させて混合し、(CxF)nの平均x値が
分析値で0.9、4、4.5、6となるように調製して
添加剤として用いたこと以外は実施例1の試験電池Aと
同じ条件の各種の電池を作製し、実施例1と同条件で充
放電サイクル試験を行った。
Example 3 As Example 3, (C
F) n , (C 2 F) n , (C 4 F) n , and (C 6 F) n singly or by changing the mixing ratio, and the average x value of (C x F) n is the analytical value. Various batteries were prepared under the same conditions as the test battery A of Example 1 except that they were prepared so as to be 0.9, 4, 4.5, and 6 and used as an additive. A charge / discharge cycle test was performed.

【0056】(表3)に実施例3および比較例の電池の
試験結果を示す。
Table 3 shows the test results of the batteries of Example 3 and Comparative Example.

【0057】[0057]

【表3】 [Table 3]

【0058】実施例3の結果から、添加量が一定(4重
量部)の場合xの値が増加すると添加剤が正極不可逆容
量をすべて消費できないため、Xの値が6になると、X
の値が4.5以下のものと比べて、ややサイクル特性が
劣る結果を示している。つまり、(CF)nを単独で用
いたx=0.9の場合と(C4F)nを主体に調製したx
=4、4.5の場合にはほぼ同等に放電容量、サイクル
特性ともに優れており本発明の効果が顕著に得られた。
一方これらよりFの含有率が低いx=6の場合は添加剤
を用いない場合よりはサイクル特性は優れているが本発
明の効果は必ずしも十分とは言えない。
From the results of Example 3, it can be seen that when the value of x increases when the amount of addition is constant (4 parts by weight), the additive cannot consume all the irreversible capacity of the positive electrode.
The results show that the cycle characteristics are slightly inferior to those having a value of 4.5 or less. That is, x = 0.9 when (CF) n is used alone, and x when (C 4 F) n is mainly used
= 4, 4.5, the discharge capacity and the cycle characteristics were almost equally excellent, and the effect of the present invention was remarkably obtained.
On the other hand, when the content of F is lower than these, when x = 6, the cycle characteristics are better than when no additive is used, but the effect of the present invention is not necessarily sufficient.

【0059】また、(C4F)nを主成分としするx=4
の添加剤の場合は、重量当たりのLi+との反応量が小
さく正極不可逆容量を十分に消費させるためには(C
F)nや(C2F)nを主体とした添加剤を用いた場合よ
りも添加量を増加させる必要が生じる。しかし、過剰に
添加し過ぎると大幅に負極の炭素量を減らす必要が生
じ、電池容量が小さくなる。その限界は18重量部であ
り、20重量部添加した場合には過剰添加となり、サイ
クル特性は向上させることは出来るが放電容量を犠牲に
せざるをえないことが明らかになった。このため(C4
F)nのみを添加する場合、添加量は18%以下である
ことが望ましい。
Further, x = 4 having (C 4 F) n as a main component.
In the case of the additive of (c), the amount of reaction with Li + per weight is small and in order to sufficiently consume the irreversible capacity of the positive electrode, (C
It is necessary to increase the addition amount as compared with the case where an additive mainly comprising F) n or (C 2 F) n is used. However, if it is added excessively, it becomes necessary to greatly reduce the carbon amount of the negative electrode, and the battery capacity becomes small. The limit is 18 parts by weight, and when 20 parts by weight is added, it becomes excessive and the cycle characteristics can be improved but the discharge capacity has to be sacrificed. For this reason (C 4
F) When only n is added, the addition amount is desirably 18% or less.

【0060】以上のことにより、負極添加剤として(C
xF)nを単独または混合物として添加する場合、添加剤
のxの平均値は0.9≦x≦4.5であることが好まし
いことが実験的に確認された、その添加量はxの値に対
応する適量の添加量が存在し、例えば、x値が4近辺の
場合は18重量部以下とすることが好ましいことが確認
された。
From the above, (C)
xF ) When n is added alone or as a mixture, it has been experimentally confirmed that the average value of x of the additive is preferably 0.9 ≦ x ≦ 4.5. It was confirmed that there was an appropriate amount of addition corresponding to the value. For example, when the x value was around 4, it was confirmed that the amount was preferably 18 parts by weight or less.

【0061】実施例においては正極活物質としてLiN
x1-x2(MはCo、Mn、Cr、Fe、V、Al
のいずれか1種類以上、x:1≧x≧0.5)の内、代
表的な材料を用いたが、本発明を適用する電池の正極活
物質はこれらに限定するものでなく、Mn、Co、F
e、Niを主体とする金属のリチウム含有酸化物等の、
充放電によりリチウムイオンを放出し、吸蔵する正極活
物質を用いる場合に広く適用でき、特に、充放電効率が
75〜95%の範囲の正極活物質を用いた場合に、大き
な効果が得られる。
In the examples, LiN was used as the positive electrode active material.
i x M 1-x O 2 (M is Co, Mn, Cr, Fe, V, Al
And any one of x, x: 1 ≧ x ≧ 0.5), a representative material was used. However, the positive electrode active material of the battery to which the present invention is applied is not limited thereto, and Mn, Co, F
e, such as a lithium-containing oxide of a metal mainly composed of Ni,
The present invention can be widely applied to a case where a positive electrode active material that releases and occludes lithium ions by charge and discharge is used. Particularly, a large effect is obtained when a positive electrode active material having a charge and discharge efficiency in the range of 75 to 95% is used.

【0062】実施例では溶媒の1種、環状カーボネート
としてエチレンカーボネートを用いたが、他の環状カー
ボネート、例えばプロピレンカーボネート、ブチレンカ
ーボネートなどでもよく、鎖状カーボネートとしてジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネートを用いたが、他の鎖状カーボネート、例
えば、ジプロピルカーボネート、プロピルメチルカーボ
ネート、プロピルエチルカーボネートなどでもよい。
In the examples, ethylene carbonate was used as one kind of solvent and cyclic carbonate, but other cyclic carbonates such as propylene carbonate and butylene carbonate may be used. Although used, other chain carbonates, such as dipropyl carbonate, propyl methyl carbonate, propyl ethyl carbonate, and the like, may be used.

【0063】また、脂肪族カルボン酸エステルとしてプ
ロピオン酸メチル、プロピオン酸エチルを用いたが、他
の脂肪族カルボン酸エステル、例えば酪酸メチル、酪酸
エチルなどでもよい。
Although methyl propionate and ethyl propionate have been used as the aliphatic carboxylic acid esters, other aliphatic carboxylic acid esters such as methyl butyrate and ethyl butyrate may be used.

【0064】また、必要に応じて適宜エーテル類やラク
トン類などの溶媒も混合可能である。
Further, if necessary, solvents such as ethers and lactones can be appropriately mixed.

【0065】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、他のリチウム含有
塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。さらに本
発明は、電解液として有機溶媒にリチウム塩を溶解させ
た上記以外の溶液を用いた電池にも広く適用できる。
In the above embodiment, lithium hexafluorophosphate was used as the electrolyte. However, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluoride were used. Similar effects were obtained with lithium arsenate and the like. Further, the present invention can be widely applied to batteries using a solution other than the above in which a lithium salt is dissolved in an organic solvent as an electrolytic solution.

【0066】上記実施例においては円筒型の電池を用い
て評価を行ったが、角型など電池形状が異なっても同様
の効果が得られる。
In the above embodiment, the evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape is different, such as a square battery.

【0067】[0067]

【発明の効果】以上の説明から明らかなように、充放電
によりリチウムイオンを吸蔵放出できる炭素質材料を主
体とする負極にフッ化炭素を添加することにより、高容
量でサイクル特性が優れた非水電解液二次電池を提供す
ることが出来る。
As is apparent from the above description, by adding carbon fluoride to a negative electrode mainly composed of a carbonaceous material capable of inserting and extracting lithium ions by charging and discharging, a non-electrode having a high capacity and excellent cycle characteristics is obtained. A water electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用しない場合のリチウム二次電池の
1回目の充放電の概念図
FIG. 1 is a conceptual diagram of a first charge / discharge of a lithium secondary battery when the present invention is not applied.

【図2】本発明のリチウム二次電池の1回目の充放電の
概念図
FIG. 2 is a conceptual diagram of the first charge / discharge of the lithium secondary battery of the present invention.

【図3】本実施例および比較例における円筒型電池の縦
断面図
FIG. 3 is a longitudinal sectional view of a cylindrical battery in the present example and a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulating packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulating ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 庄一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shoichiro Watanabe 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 充放電でリチウムイオンを放出吸蔵可能
な正極活物質を含む正極と、充放電でリチウムイオンを
吸蔵放出可能な炭素を含む負極と非水電解液とを備え、
前記負極にフッ化炭素のうちの1種類単独あるいは複数
種類を添加した非水電解液二次電池。
1. A positive electrode including a positive electrode active material capable of storing and releasing lithium ions during charge and discharge, a negative electrode including carbon capable of storing and releasing lithium ions during charge and discharge, and a non-aqueous electrolyte.
A non-aqueous electrolyte secondary battery in which one or more of fluorocarbon is added to the negative electrode.
【請求項2】 負極に添加したフッ化炭素単独もしくは
それらの混合物中の、フッ素に対する炭素の平均的原子
比率をxとした場合、0.9≦x≦4.5である請求項
1記載の非水電解液二次電池。
2. The composition according to claim 1, wherein, when x represents an average atomic ratio of carbon to fluorine in the fluorocarbon alone added to the negative electrode or a mixture thereof, 0.9 ≦ x ≦ 4.5. Non-aqueous electrolyte secondary battery.
【請求項3】 正極活物質が、LiNix1-x2(M
はCo、Mn、Cr、Fe、V、Alのいずれか1種類
以上、x:1≧x≧0.5)で示されるリチウム含有ニ
ッケル酸化物である請求項2記載の非水電解液二次電
池。
3. The method according to claim 1, wherein the positive electrode active material is LiNi x M 1 -x O 2 (M
Is a lithium-containing nickel oxide represented by the following formula: x, wherein at least one of Co, Mn, Cr, Fe, V, and Al. battery.
JP16488398A 1997-06-19 1998-06-12 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3840805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16488398A JP3840805B2 (en) 1997-06-19 1998-06-12 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-162250 1997-06-19
JP16225097 1997-06-19
JP16488398A JP3840805B2 (en) 1997-06-19 1998-06-12 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1173965A true JPH1173965A (en) 1999-03-16
JP3840805B2 JP3840805B2 (en) 2006-11-01

Family

ID=26488114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16488398A Expired - Fee Related JP3840805B2 (en) 1997-06-19 1998-06-12 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3840805B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073719A1 (en) * 2001-03-14 2002-09-19 Sony Corporation Positive electrode material and battery comprising it
CN111525091A (en) * 2019-02-05 2020-08-11 丰田自动车株式会社 Negative electrode layer and all-solid-state battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073719A1 (en) * 2001-03-14 2002-09-19 Sony Corporation Positive electrode material and battery comprising it
CN111525091A (en) * 2019-02-05 2020-08-11 丰田自动车株式会社 Negative electrode layer and all-solid-state battery
CN111525091B (en) * 2019-02-05 2023-08-18 丰田自动车株式会社 Negative electrode layer and all-solid-state battery

Also Published As

Publication number Publication date
JP3840805B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP4604460B2 (en) Nonaqueous electrolyte secondary battery and battery charge / discharge system
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP6739823B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution containing the same for lithium secondary battery, and lithium secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2006173099A (en) Nonaqueous electrolyte secondary battery
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
JP2005243620A (en) Nonaqueous electrolyte battery
JP2001273899A (en) Positive electrode material for lithium secondary battery
JP4949017B2 (en) Lithium ion battery with improved high-temperature storage characteristics
US6120707A (en) Secondary battery
JP2000133247A (en) Nonaqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2000251932A (en) Nonaqueous electrolyte battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP5159268B2 (en) Non-aqueous electrolyte battery
JP3840805B2 (en) Non-aqueous electrolyte secondary battery
JP2000021392A (en) Nonaqueous secondary battery
JP3720959B2 (en) Secondary battery electrode material
JP2001319640A (en) Nonaqueous secondary battery
JP2001291519A (en) Nonaqueous second battery
JP3468956B2 (en) Non-aqueous electrolyte secondary battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees