JPH1172436A - Method and apparatus for measuring oil-application amount on metallic material surface - Google Patents

Method and apparatus for measuring oil-application amount on metallic material surface

Info

Publication number
JPH1172436A
JPH1172436A JP23427997A JP23427997A JPH1172436A JP H1172436 A JPH1172436 A JP H1172436A JP 23427997 A JP23427997 A JP 23427997A JP 23427997 A JP23427997 A JP 23427997A JP H1172436 A JPH1172436 A JP H1172436A
Authority
JP
Japan
Prior art keywords
oil
amount
rectangular
fluorescence
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23427997A
Other languages
Japanese (ja)
Inventor
Akira Torao
彰 虎尾
Yoshio Kawashima
祥生 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23427997A priority Critical patent/JPH1172436A/en
Publication of JPH1172436A publication Critical patent/JPH1172436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring an application amount of oil on a metallic material surface which can simply and easily measure a coat amount of oil with high measurement accuracy at an area of a low coat amount both off-line and online. SOLUTION: The apparatus is provided with an excitation light source 6 which projects an excitation light of rectangular beams of a specific wavelength to a metallic material surface where an oil is applied, an optical system 12 which condenses a fluorescent light generated by the excitation light from the metallic material surface and forms a rectangular fluorescent image on a rectangular slit 13, a spectroscope 14 splitting the fluorescent light introduced via the slit 13, and a photodetecting element 15 which detects the fluorescent light split by the spectroscope 14 and measures an intensity of the fluorescent light. The rectangular slit 13 is arranged so that the direction of a long side is orthogonal to the direction of a long side of the rectangular fluorescent image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料表面の塗
油量測定方法および装置に係り、特に、鋼板やアルミニ
ウム板等の金属材の表面に塗布された微量な油の量を簡
便かつ高精度に測定することが可能な金属材料表面の塗
油量測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the amount of oil applied to the surface of a metal material, and more particularly to a method for easily and easily measuring the amount of a small amount of oil applied to the surface of a metal material such as a steel plate or an aluminum plate. The present invention relates to a method and an apparatus for measuring the amount of oil applied to a metal material surface, which can be measured with high accuracy.

【0002】[0002]

【従来の技術】防錆やプレス成形時の潤滑等のために金
属板面に塗布された油の塗油量は、防錆やプレス成形の
特性を決める重要な管理項目である。通常は、連続生産
される金属板からサンプルを切り出して油付着時と油脱
脂後との重量を測定し、両者の差を求めて単位面積当た
りの塗油量を算出している。しかし最近は、より厳しい
品質管理が要求されることから、これに対応するべく測
定対象の金属板が走行している状態でも測定可能な連続
式のオンライン塗油量測定装置(特開平7−24397
0号)や、反対にバッチ式で簡便に使用できる小型軽量
なオフライン塗油量測定装置(New methods for qualit
y assurance in metal forming,18th Bi-ennial Congre
ss IDDRG 1994) が開発されて実用化されている。前者
はレーザ誘起蛍光法を利用し、後者は赤外吸収法を利用
したものである。
2. Description of the Related Art The amount of oil applied to a metal plate surface for rust prevention and lubrication during press molding is an important management item that determines the characteristics of rust prevention and press molding. Normally, a sample is cut out from a metal plate that is continuously produced, the weight of the sample at the time of oil adhesion and the weight of the sample after oil degreasing are measured, and the difference between the two is calculated to calculate the amount of oil applied per unit area. However, recently, since stricter quality control is required, a continuous online oiling amount measuring device capable of measuring even while a metal plate to be measured is running (Japanese Patent Application Laid-Open No. 7-24397)
No. 0) and, conversely, a compact and lightweight off-line oil coating amount measurement device (New methods for qualit
y assurance in metal forming, 18th Bi-ennial Congre
ss IDDRG 1994) has been developed and put into practical use. The former uses a laser-induced fluorescence method, and the latter uses an infrared absorption method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、レーザ
誘起蛍光法を利用した前者の場合は、例えば鉄鋼業の冷
間圧延工程や表面処理工程などで連続生産中の冷延鋼板
や各種めっき材などの表面の塗油量をオンライン測定で
きることを前提とし、塗油量の測定範囲も100〜20
00mg/m2 と比較的多いものが対象となるため、工
業的に安定で高出力のレーザを使用しており、その結果
装置が大型化し価格も高くなってオフラインでは利用し
にくいという問題がある。
However, in the former case using the laser-induced fluorescence method, for example, cold-rolled steel sheets and various plating materials that are being continuously produced in a cold rolling process or a surface treatment process in the steel industry. Assuming that the amount of oil applied on the surface can be measured online, the measurement range of the amount of oil applied is also 100 to 20.
Since a relatively large amount of 00 mg / m 2 is targeted, an industrially stable and high-output laser is used. As a result, there is a problem that the apparatus becomes large and the price is high, so that it is difficult to use it off-line. .

【0004】一方、後者の赤外吸収法を利用したものの
場合は、オフライン用装置に必要なコンパクトで低価格
という条件は満足しても、塗布油の赤外線吸収度合いは
下地金属材料の表面特性例えば表面粗さ,圧延方向性,
反射率等の影響や、油の付着状態例えば粒状に付着して
いるか膜状に付着しているかの違いによる影響を受けや
すいことから、低塗油量域での測定精度が良くないとい
う問題がある。
On the other hand, in the case of using the latter infrared absorption method, the degree of infrared absorption of the applied oil can be reduced even if the condition of compactness and low price required for an off-line device is satisfied, for example, by the surface characteristics of the underlying metal material. Surface roughness, rolling directionality,
The problem of poor measurement accuracy in the low oil application range is that it is susceptible to the effects of reflectivity, etc. and the state of oil adhesion, for example, whether the oil adheres in granular or film form. is there.

【0005】そこで本発明は、このような従来技術の問
題点に着目してなされたものであり、油が塗布された被
測定金属面へ照射する励起光により誘起された蛍光を集
中的に受光光学系に導いて蛍光強度を測定することによ
り、被測定面の粗さや測定装置との位置関係の変動によ
る蛍光強度測定誤差を低減させた、低塗油量域での測定
精度が高く且つオフラインでもオンラインでも簡便且つ
容易に塗油量を測定できる金属材料表面の塗油量測定方
法および装置を提供することを目的とする。
Accordingly, the present invention has been made in view of such problems of the prior art, and intensively receives the fluorescence induced by the excitation light applied to the oil-coated metal surface to be measured. By measuring the fluorescence intensity by introducing it to the optical system, the fluorescence intensity measurement error due to variations in the roughness of the surface to be measured and the positional relationship with the measurement device has been reduced. However, an object of the present invention is to provide a method and an apparatus for measuring the amount of oil applied to the surface of a metal material, which can easily and easily measure the amount of oil applied even online.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成する本
発明の請求項1に係る金属材料表面の塗油量測定方法
は、油が塗布された金属材料表面に長方形のビーム形状
とした特定波長の励起光を照射し、その照射によって生
じる蛍光を集光して長方形の蛍光像を長方形のスリット
位置に結ばせて当該蛍光像の長辺方向と前記スリットの
長辺方向とを直交せしめるとともに各長方形の中心を一
致せしめ、当該スリットを通過した蛍光の強度を測定し
て塗油量を求めることを特徴とする。
According to a first aspect of the present invention, there is provided a method for measuring the amount of oil applied to a surface of a metal material, the method comprising: Irradiating the excitation light of the wavelength, condensing the fluorescence generated by the irradiation, forming a rectangular fluorescent image at the rectangular slit position, and making the long side direction of the fluorescent image orthogonal to the long side direction of the slit. The center of each rectangle is matched, and the intensity of the fluorescence that has passed through the slit is measured to determine the amount of oil applied.

【0007】また、請求項2に係る金属材料表面の塗油
量測定装置は、油が塗布された金属材料表面に長方形の
ビーム形状とした特定波長の励起光を照射する手段と、
その励起光により発生した前記金属材料表面からの蛍光
を集光して長方形のスリット位置に長方形の蛍光像を結
ぶ光学系と、前記スリットを介して導いた前記蛍光を分
光する分光器と、該分光器で分光した蛍光を検出して蛍
光強度を測定する手段と、その蛍光強度に基づいて塗油
量を算出する手段とを備え、前記長方形のスリットはそ
の長辺の方向を前記長方形の蛍光像の長辺方向と直交す
るように配置したことを特徴とする。
[0007] Further, according to a second aspect of the present invention, there is provided an apparatus for measuring the amount of oil applied to a surface of a metal material, comprising: a means for irradiating the surface of the metal material coated with oil with excitation light having a rectangular beam shape and a specific wavelength;
An optical system that collects fluorescence from the metal material surface generated by the excitation light and forms a rectangular fluorescence image at a rectangular slit position, a spectroscope that disperses the fluorescence guided through the slit, and A means for detecting the fluorescence separated by the spectroscope to measure the fluorescence intensity, and a means for calculating the amount of oil applied based on the fluorescence intensity, wherein the rectangular slit has its long side directed to the rectangular fluorescence. It is characterized by being arranged so as to be orthogonal to the long side direction of the image.

【0008】請求項3に係る金属材料表面の塗油量測定
装置は、上記請求項2記載の塗油量測定装置において、
被測定金属材料を所定の測定位置に保持する保持装置を
備えたことを特徴とする。
According to a third aspect of the present invention, there is provided the apparatus for measuring the amount of oil applied to the surface of a metal material according to the second aspect.
A holding device for holding the metal material to be measured at a predetermined measurement position is provided.

【0009】鋼板などの金属板上に塗布された油の表面
に、その油に好適な励起波長の光を照射すると、蛍光を
発することが知られており、この蛍光の強度と塗油量と
の間には比例関係があるとの知見が得られている。例え
ば、冷間圧延後の調質圧延工程や精整工程において多く
使用される防錆油の蛍光特性を調べると、紫外線波長領
域である波長330〜350nm付近で励起すると効率
良く蛍光が発し、その蛍光のピークは波長420〜45
0nm付近であるとの結果を得ており、肉眼でも蛍光を
観察することができる。本願発明者らは、この原理を利
用しオフラインでの測定に特に好適に適用できるコンパ
クトな塗油量測定を実現するために実験を重ねたとこ
ろ、コンパクト化にはピークパワーの強い波長337n
mの窒素(N2 )パルスレーザが好適に利用できるとの
知見が得られた。従来、N2 パルスレーザは理化学実験
用に用いられており比較的大型の装置が多かったが、最
近はN2 ガスを循環させなくても、2千万パルスを連続
的に発信できる小型のレーザ発振器が安価に市販されて
いる。そこで、このようなレーザ発振器を用い、例えば
繰り返し周波数20Hz、1パルス当たりのエネルギー
120μJのN2 レーザ光を集光して鋼板上の油に照射
し、蛍光強度をパルス同期させて測定すると、S/N比
の良い蛍光検出が可能であり、塗油量測定に応用できる
ことが分かった。
It is known that when the surface of oil applied on a metal plate such as a steel plate is irradiated with light having an excitation wavelength suitable for the oil, the oil emits fluorescence. It has been found that there is a proportional relationship between. For example, when examining the fluorescent properties of rust-preventive oil, which is often used in the temper rolling step and the refining step after cold rolling, the fluorescent light is efficiently emitted when excited around a wavelength of 330 to 350 nm, which is an ultraviolet wavelength region. Fluorescence peaks at wavelengths of
The result was about 0 nm, and fluorescence can be observed with the naked eye. The inventors of the present application have repeatedly conducted experiments using this principle to realize a compact measurement of the amount of applied oil which can be particularly suitably applied to off-line measurement.
It has been found that a nitrogen (N 2 ) pulse laser of m can be suitably used. Conventionally, N 2 pulse lasers have been used for physics and chemistry experiments, and there were many relatively large devices. Recently, a small laser that can continuously emit 20 million pulses without circulating N 2 gas is used. Oscillators are commercially available at low cost. Therefore, when using such a laser oscillator, for example, an N 2 laser beam having a repetition frequency of 20 Hz and an energy of 120 μJ per pulse is condensed and applied to oil on a steel plate, and the fluorescence intensity is measured in a pulse-synchronized manner. It was found that fluorescence detection with a good / N ratio was possible, and that it was applicable to measurement of the amount of applied oil.

【0010】しかして、例えばN2 レーザを用いてオフ
ライン用の塗油量測定を構成する場合、塗油量が100
mg/m2 以下の低塗油量域で高精度に測定するために
は、レーザビームをレンズを用いて集光して蛍光効率を
高め金属材料表面に照射することが効果的であることが
判明した。
[0010] For example, when the off-line oil amount measurement is configured using an N 2 laser, the oil amount is 100%.
In order to measure with high accuracy in the low oiling amount range of less than mg / m 2, it is effective to focus the laser beam using a lens to increase the fluorescence efficiency and irradiate the metal material surface. found.

【0011】一方、オフライン測定では、サンプルを切
り出して塗油量測定装置に装着して測定する場合と、塗
油量測定装置の方をシート状またはコイル状の金属材料
表面上に押し当てるか或いは金属材料表面上に載せて測
定する場合との両方の場合を想定し、それぞれの場合に
使用できるようにすることが好ましい。しかしこれらの
場合、金属材料表面の微小な凹凸形状や装置へのサンプ
ル装着,押し当て方などの位置精度の違いにより、受光
される蛍光ビームの受光光学系への導光状態が微妙に異
なり、それが蛍光強度誤差となって最終的な塗油量測定
誤差となる可能性がある。そこで、本願発明者らは、こ
のようなオフライン測定の欠点に対処して測定値の信頼
性を高めるべく研究を進めた結果、測定面の位置が多少
変動したり傾いたりしても受光する蛍光を安定的に受光
光学系に導き測定誤差を減少させるには、照射光ビーム
形状と受光スリット形状とのそれぞれを長方形とし、各
長方形の中心を一致させて配置するとともに、各長方形
の長辺が直交するように励起光とスリットとの三次元的
な配置を定めることが有効であることを見いだして本発
明をなすに至ったものである。
On the other hand, in off-line measurement, a sample is cut out and mounted on an oiling amount measuring device for measurement, or the oiling amount measuring device is pressed against a sheet-like or coil-like metal material surface, or It is preferable that both the case where the measurement is carried out on the surface of the metal material and the case where the measurement is carried out is assumed, and the case can be used in each case. However, in these cases, the light guide state of the received fluorescent beam to the light receiving optical system is slightly different due to the difference in positional accuracy such as the minute uneven shape of the metal material surface and the way of mounting the sample on the device and pressing it. This may result in a fluorescence intensity error and a final oil coating amount measurement error. Accordingly, the present inventors have conducted research to address the drawbacks of off-line measurement and to increase the reliability of the measured values. As a result, even if the position of the measurement surface fluctuates or tilts slightly, the fluorescent light received In order to reduce the measurement error by stably guiding to the light receiving optical system, each of the irradiation light beam shape and the light receiving slit shape is rectangular, and the centers of the rectangles are aligned so that the long side of each rectangle is The inventors have found that it is effective to determine the three-dimensional arrangement of the excitation light and the slit so as to be orthogonal to each other, and have accomplished the present invention.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は本発明に係る金属材料表面
の塗油量測定装置の全体構成を説明する概要図である。
図において、符号1は塗油量測定用の検出ヘッドで、持
ち運びできる程度に小型軽量である。この検出ヘッド1
の先端部には、油を塗布した被測定金属試料(以下、ワ
ークという)Wを所定の測定位置に保持する保持装置と
しての着脱可能なサンプルホルダ2を備えている。この
場合のワークWは、プロセスラインで切断して採取した
ものを示しているが、サンプルホルダ2を取り外すこと
により、シート状又はコイル状の金属材料に直接に検出
ヘッド1を接触させて測定することもできる。符号3は
検出ヘッド1に接続された信号制御処理装置で、後述す
るレーザの発信タイミングや蛍光強度を測定する検出素
子の検出タイミングを制御する機能を有する。符号4は
塗油量算出手段としての演算処理装置で、前記信号制御
処理装置3で処理された信号の測定値から塗油量を算出
したり、校正板の測定,検量線の入力などの一連の測定
手順を制御する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram illustrating the entire configuration of the apparatus for measuring the amount of oil applied to the surface of a metal material according to the present invention.
In the figure, reference numeral 1 denotes a detection head for measuring the amount of applied oil, which is small and light enough to be portable. This detection head 1
Is provided with a detachable sample holder 2 as a holding device for holding an oil-coated metal sample to be measured (hereinafter referred to as a work) W at a predetermined measurement position. The work W in this case is a work W cut and collected in the process line, but by removing the sample holder 2, the detection head 1 is brought into direct contact with the sheet-shaped or coil-shaped metal material to perform measurement. You can also. Reference numeral 3 denotes a signal control processing device connected to the detection head 1 and has a function of controlling a laser transmission timing described later and a detection timing of a detection element for measuring a fluorescence intensity. Reference numeral 4 denotes an arithmetic processing unit as oiling amount calculation means, which calculates the oiling amount from the measured value of the signal processed by the signal control processing unit 3, measures a calibration plate, and inputs a calibration curve. Control the measurement procedure.

【0013】前記検出ヘッド1は、図2に示すように、
ワークWの表面に長方形のビーム形状とした特定波長の
励起光を照射する手段としての励起用光源6と、この励
起用光源6からの励起光LBのうち波長λ1 のみを透過
する干渉フィルタ7と、励起光LBをワークWの表面に
入射角θ1 で照射するためのミラー8と、ミラー8の反
射光をワークWの表面に集光するレンズ9と、このレン
ズ9で集光された長方形の励起光LBによりワークW表
面に塗布されている油11から発生した蛍光L f を集光
して長方形のスリット13の位置に長方形の蛍光像を結
ぶ光学系12と、スリット13を通過して導かれた蛍光
f を高精度で分光する分光器14と、この分光器14
で分光した蛍光Lf を検出して蛍光強度を測定する手段
としての光検出素子15を備えている。光検出素子15
で検出された蛍光強度の測定値は、図1に示す演算処理
装置4に送られて、ワークWの表面の油11の塗油量が
算出されるようになっている。
The detection head 1 is, as shown in FIG.
A specific wavelength of a rectangular beam on the surface of the work W
An excitation light source 6 as a means for irradiating excitation light;
Wavelength λ of the excitation light LB from the light source 61Only transparent
And the excitation light LB on the surface of the workpiece W
Incident angle θ1Mirror 8 for irradiating with
A lens 9 for condensing the emitted light on the surface of the workpiece W;
Workpiece W table by the rectangular excitation light LB
Fluorescence L generated from oil 11 applied to the surface fCondensing
To form a rectangular fluorescent image at the position of the rectangular slit 13.
Fluorescence guided through the optical system 12 and the slit 13
Lf14 that spectroscopy the light with high accuracy,
Fluorescent light LfFor detecting fluorescence and measuring fluorescence intensity
The light detecting element 15 is provided. Photodetector 15
The measured value of the fluorescence intensity detected in
It is sent to the device 4 and the amount of oil 11
It is calculated.

【0014】前記光学系12は、例えば励起光LBの照
射によりワークWの表面上の油11に誘起された蛍光L
f を集光して平行光線にするレンズ12aと、その平行
光線のうちの波長λ2 を透過させる干渉フィルタ12b
と、干渉フィルタ12bを透過した波長λ2 の蛍光Lf
をスリット13の面上に集光するレンズ12cとを組み
合わせて構成される。その場合、レンズ12aとレンズ
12cとしては、同一の焦点距離を有するレンズを用い
ると、ワークWの表面にレンズ9で集光された励起光L
Bの長方形の結像(A’、図3参照)の寸法形状を、ス
リット13の面上に集光された蛍光Lf の長方形の蛍光
像(A”、図3参照)と同一にすることができ、スリッ
ト13の上に蛍光像を結ぶことができて効率の良い蛍光
測定が可能となる。
The optical system 12 emits the fluorescent light L induced on the oil 11 on the surface of the work W by, for example, irradiation of the excitation light LB.
a lens 12a for condensing f into parallel rays and an interference filter 12b for transmitting a wavelength λ 2 of the parallel rays
And the fluorescence L f of the wavelength λ 2 transmitted through the interference filter 12b.
Is combined with a lens 12c that collects light on the surface of the slit 13. In this case, when lenses having the same focal length are used as the lenses 12a and 12c, the excitation light L condensed by the lens 9 on the surface of the work W is used.
Rectangular imaging of B (A ', see FIG. 3) the geometry of the rectangular fluorescent image of the fluorescence L f which is focused on the surface of the slit 13 (A ", see FIG. 3) be the same as Thus, a fluorescent image can be formed on the slit 13 and efficient fluorescent measurement can be performed.

【0015】なお、図2中の符号17は励起用光源6の
光を遮断するためのシャッタである。符号18は検出ヘ
ッド1の内部に外光が侵入しないように通常は閉じ測定
時のみ開くようにしたスライドシャッタで、その開閉タ
イミングは信号制御処理装置3により制御される。ま
た、符号19はサンプルホルダ2を上下左右に一定の長
さだけ移動させるためのサンプル微動用ステージであ
る。
Reference numeral 17 in FIG. 2 denotes a shutter for blocking light from the excitation light source 6. Reference numeral 18 denotes a slide shutter which is normally closed so as to prevent outside light from entering the inside of the detection head 1 and opened only at the time of measurement, and its opening / closing timing is controlled by the signal control processor 3. Reference numeral 19 denotes a sample fine movement stage for moving the sample holder 2 up, down, left, and right by a fixed length.

【0016】前記励起用光源6としては、波長330〜
350nmの紫外線領域の波長の励起光LBを(長方形
のビームとして)出力するものを用いると、ワークWに
塗布した例えば防錆油から波長420〜450nmの蛍
光が良好な発光効率で得られて好都合である。但し本発
明の塗油量測定装置はオフラインでの測定を好適に行え
るようなコンパクトなものが望ましい。また、本発明の
場合、励起光LBのビーム形状は、後述する理由によ
り、一般的な円形ビームではなく長方形ビームを使用す
る。そこでこの実施形態では励起用光源6として、ピー
クパワーの強い波長337nmの長方形のビームを発信
する安価で小型の市販のN2 パルスレーザ発振器を利用
している。したがって干渉フィルタ7の波長λ1 =33
7nmである。このN2 パルスレーザ発振器を励起用光
源とし、先に述べたようにワークWへの塗油量が100
mg/m2 以下の低塗油量域で高精度に測定するため
に、長方形のレーザビームをレンズ9により集光してワ
ークWの表面に長方形に照射するものである。
The excitation light source 6 has a wavelength of 330 to
Use of a device that outputs (as a rectangular beam) excitation light LB having a wavelength in the ultraviolet region of 350 nm is advantageous because fluorescence having a wavelength of 420 to 450 nm can be obtained with good emission efficiency from, for example, rust-proof oil applied to the work W. It is. However, it is desirable that the oiling amount measuring apparatus of the present invention is compact so that off-line measurement can be suitably performed. In the case of the present invention, the beam shape of the excitation light LB uses a rectangular beam instead of a general circular beam for the reason described later. Therefore, in this embodiment, a commercially available inexpensive and small N 2 pulse laser oscillator that emits a rectangular beam having a strong peak power and a wavelength of 337 nm is used as the excitation light source 6. Therefore, the wavelength λ 1 = 33 of the interference filter 7
7 nm. The N 2 pulse laser oscillator is used as a light source for excitation, and the amount of oil applied to the work W is 100
A rectangular laser beam is condensed by a lens 9 and irradiated on the surface of the work W in a rectangular shape in order to measure with high accuracy in a low oil coating amount range of mg / m 2 or less.

【0017】その励起光LB(λ1 =337nmの長方
形のレーザビーム)の入射により、ワークWの表面に塗
布されている油11に誘起される蛍光Lf は、指向性と
単色性の良いレーザ光線の反射光(LB’)とは異なる
方向,異なる波長で放射される(例えばある種の防錆油
の場合であれば波長λ2 =435nm)。これをレーザ
反射光(LB’)とは異なる方向に配置した受光光学系
12で受光することで感度の高い検出ができる。そのた
め、受光光学系12の配置は、レーザ光線のワークWへ
の入射角θ1 と、油で発生した蛍光がワークWの表面で
反射する蛍光反射角θ2 との関係が正反射を測定する関
係(すなわちθ1 =θ2 )にならないように設定するこ
とが好ましい。例えば 30°≦θ1 ≦75°, θ2 =0° ……(1) のような条件で三次元配置すると、効率的に蛍光を受光
でき、且つワークWの表面の性状、例えば表面粗さ,圧
延方向性,反射率等の影響を受けにくいことが実験的に
確認できた。
[0017] The incidence of the excitation light LB (rectangular laser beam lambda 1 = 337 nm), the fluorescence L f is a good laser directivity and monochromaticity induced in oil 11 which is applied to the surface of the workpiece W Light is emitted in a different direction and at a different wavelength from the reflected light (LB ') of the light beam (for example, in the case of a certain kind of rust preventive oil, the wavelength λ 2 = 435 nm). This is detected by the light receiving optical system 12 arranged in a direction different from the laser reflected light (LB ′), so that highly sensitive detection can be performed. Therefore, in the arrangement of the light receiving optical system 12, the relationship between the incident angle θ 1 of the laser beam to the work W and the fluorescence reflection angle θ 2 at which the fluorescence generated by the oil is reflected on the surface of the work W measures the regular reflection. It is preferable to set the relationship so as not to satisfy the relationship (that is, θ 1 = θ 2 ). For example, when three-dimensionally arranged under the following condition: 30 ° ≦ θ 1 ≦ 75 °, θ 2 = 0 ° (1), fluorescence can be efficiently received and the surface properties of the work W, for example, surface roughness It has been confirmed experimentally that it is hardly affected by the rolling direction, the reflectivity and the like.

【0018】ここで、本発明におけるワークWの表面に
集光して照射される励起光LBの形状,寸法と、スリッ
ト13上に形成される蛍光像および当該スリット13の
形状,寸法との関係並びに配置等の条件について説明す
る。
Here, the relationship between the shape and size of the excitation light LB which is condensed and applied to the surface of the work W in the present invention, the fluorescent image formed on the slit 13 and the shape and size of the slit 13 In addition, conditions such as arrangement will be described.

【0019】励起光LBのビーム形状を長方形とする
理由:円形ビームを使用するよりも、塗油量の測定精度
が向上し、しかも照射エネルギーが小さくてすみ、装置
の小型化が容易になる。
The reason why the beam shape of the excitation light LB is rectangular: the accuracy of measuring the amount of applied oil is improved, the irradiation energy is small, and the apparatus can be easily miniaturized as compared with the case of using a circular beam.

【0020】これを、図3,図4を参照して詳しく説明
する。例えば、いま、スリット13上に焦点した蛍光L
f の蛍光像(ビーム形状)A”に対して、単位面積当た
りのエネルギー密度を等しくするとともに分光器14に
導かれる蛍光の強度を等価とした円形蛍光ビームをD”
とする。この円形蛍光ビームD”の場合は、照射面積が
小さいぶん照射エネルギーは少なくても良いが、被測定
面であるワークW表面の凹凸形状や測定装置までの距離
の変動により円形蛍光ビームD”の位置がずれて蛍光強
度に誤差を生じ易く、塗油量の測定精度が悪化すること
になる。一方、前記蛍光Lf の蛍光像(ビーム形状)
A”に対して、単位面積当たりのエネルギー密度を等し
くするとともにワークW表面上に焦点した励起光LBの
長方形ビームにより発生する蛍光ビームA’の長辺長さ
(蛍光像A”の長辺長さと同じ)を直径とする円形の蛍
光ビームC”とした場合には、円形蛍光ビームC”の位
置ずれによる蛍光強度誤差は生じにくいが、照射面積が
広いぶん受光される蛍光強度は弱くなり測定感度が劣
る。従って強度を高めるためには照射エネルギーを大き
くする必要があるので好ましくない。
This will be described in detail with reference to FIGS. For example, now the fluorescence L focused on the slit 13
With respect to the fluorescent image (beam shape) A ″ of f , a circular fluorescent beam D ″ having the same energy density per unit area and the same intensity of the fluorescent light guided to the spectroscope 14 is obtained.
And In the case of the circular fluorescent beam D ", although the irradiation area may be small, the irradiation energy may be small. However, the circular fluorescent beam D" may vary due to the unevenness of the surface of the work W to be measured or the distance to the measuring device. The position is shifted and an error is easily generated in the fluorescence intensity, and the measurement accuracy of the amount of applied oil is deteriorated. On the other hand, the fluorescence image of the fluorescence L f (beam shape)
A ″, the long side length of the fluorescent beam A ′ generated by the rectangular beam of the excitation light LB focused on the surface of the workpiece W (the long side length of the fluorescent image A ″) In the case where a circular fluorescent beam C ″ having a diameter of “C” is used as the diameter, a fluorescence intensity error due to the displacement of the circular fluorescent beam C ″ is unlikely to occur, but the fluorescence intensity received is weakened because the irradiation area is large, and the measurement is performed. Poor sensitivity. Therefore, in order to increase the intensity, it is necessary to increase the irradiation energy, which is not preferable.

【0021】そこで、本発明の励起光LBのビーム形状
は長方形として、スリット13上に長方形の蛍光蛍光像
A”を焦点させるものとし、これによりワークの表面状
態等に起因する蛍光像の位置ずれによる誤差が生じにく
く、かつ照射エネルギーが小さくてすむようにした。
Therefore, the beam shape of the excitation light LB of the present invention is rectangular, and the rectangular fluorescent fluorescent image A ″ is focused on the slit 13, thereby displacing the fluorescent image due to the surface condition of the work. Errors are less likely to occur, and the irradiation energy is small.

【0022】励起光,蛍光像,スリットの各長方形の
相互の配置関係について:N2 パルスレーザ発振器から
なる励起用光源6から出力される励起光LBのビーム形
状Aは、図3に示すように、長辺がa1 ,短辺がa2
長方形である。この励起光LBをレンズ9で集光しワー
クW表面に照射して、長辺がa1 ’,短辺がa2 ’の長
方形の結像A’とする。ここに、a1 :a2 =a1 ’:
2 ’である。この照射で発生する蛍光Lf を、光学系
12の同一焦点距離を有するレンズ12a,12cで集
光してスリット13上に投影すると、長辺a1 ”=
1 ’,短辺a2 ”=a2 ’の長方形の蛍光像A”とな
る。そのスリット13の形状は長辺がb1 ,短辺がb2
の長方形Bである。本発明にあっては、スリット13の
長方形Bの中心と蛍光像A”の中心を一致させる(中心
点O)。且つまた、両長方形を直交させる(中心線の交
叉角α=90°)。このようにすることで、ワークW表
面自体の凹凸形状や、ワークWを検出ヘッド1のサンプ
ルホルダ2に装着する際に生ずる測定面と測定装置との
相対的位置の変動誤差に起因する蛍光強度測定誤差を低
減させることができるので、測定値の信頼性が高められ
る。
With respect to the mutual positional relationship between the excitation light, the fluorescent image, and the rectangle of the slit: The beam shape A of the excitation light LB output from the excitation light source 6 composed of an N 2 pulse laser oscillator is as shown in FIG. , A long side is a 1 and a short side is a 2 . The excitation light LB is condensed by the lens 9 and irradiated on the surface of the work W to form a rectangular image A ′ having a long side a 1 ′ and a short side a 2 ′. Where a 1 : a 2 = a 1 ':
a 2 ′. The fluorescence L f generated by the irradiation, the lens 12a having the same focal length of the optical system 12, when projected onto the slit 13 is condensed by 12c, the long side a 1 "=
a 1 ′, and a rectangular fluorescent image A ″ having a short side a 2 ″ = a 2 ′. The shape of the slit 13 is such that the long side is b 1 and the short side is b 2
Is a rectangle B. In the present invention, the center of the rectangle B of the slit 13 coincides with the center of the fluorescent image A ″ (center point O), and both rectangles are perpendicular to each other (intersection angle α of the center line = 90 °). In this way, the fluorescence intensity due to the unevenness of the surface of the work W itself and the fluctuation error in the relative position between the measurement surface and the measurement device caused when the work W is mounted on the sample holder 2 of the detection head 1. Since the measurement error can be reduced, the reliability of the measurement value is improved.

【0023】図5は、スリットと蛍光像とを直交させた
効果を確認するべく行った比較実験の結果を示したもの
である。すなわち、スリット13の長方形Bの中心と蛍
光像A”の中心を一致させた状態で、交叉角αを90
°,45°及び0°(両長方形が平行に重なる)とした
場合のそれぞれについて、測定値とα=0°でサンプル
位置0mmの場合の塗油量Mとの測定誤差(絶対値)│
ΔM/M│で比較した。横軸の目盛りは、試料ワークW
の位置の励起光LBの焦点位置からの前後方向のずれ量
である。この結果から、スリット13と蛍光像A”とを
中心一致の状態で直交させた配置にすることで、ワーク
Wの保持位置が前後方向で2.0mm変動しても測定誤
差が5%以内になることがわかる。
FIG. 5 shows the results of a comparative experiment conducted to confirm the effect of orthogonalizing the slit and the fluorescent image. That is, with the center of the rectangle B of the slit 13 and the center of the fluorescent image A ″ being aligned, the intersection angle α is set to 90 °.
Measurement error (absolute value) between the measured value and the oiling amount M when α = 0 ° and the sample position is 0 mm for each of the cases of °, 45 °, and 0 ° (both rectangles overlap in parallel) |
ΔM / M | The scale on the horizontal axis is the sample work W
Is the amount of shift in the front-rear direction from the focal position of the excitation light LB at the position (1). From this result, by arranging the slit 13 and the fluorescent image A ″ perpendicular to each other so that the center coincides with each other, even if the holding position of the work W fluctuates 2.0 mm in the front-rear direction, the measurement error is within 5%. It turns out that it becomes.

【0024】ワークW表面へ焦点した長方形励起光L
Bの照射形状の寸法およびスリット13の長方形寸法に
ついて:本発明の塗油量測定装置において、ワークW表
面上で焦点した長方形励起光LBの長方形の結像A’の
大きさは、短辺を0.4〜1.0mmの範囲、長辺を
1.6〜4.0mmの範囲とするのが好ましい。これに
よりワークW表面の油11が点状の油滴の場合にも照射
面を広く取り、しかも励起エネルギーを十分に確保する
ことができるからである。上記各辺の長さが下限値未満
の場合は、点状の塗布に対して測定面積が小さすぎて塗
油むらの影響を受け易く、上限値を超えると感度を高め
るためには励起用光源6の所要パワーを大きくする必要
が生じる。
The rectangular excitation light L focused on the surface of the work W
Regarding the size of the irradiation shape of B and the rectangular size of the slit 13: In the oiling amount measuring device of the present invention, the size of the rectangular image A ′ of the rectangular excitation light LB focused on the surface of the work W has a short side. It is preferable that the length be in the range of 0.4 to 1.0 mm and the long side be in the range of 1.6 to 4.0 mm. Thereby, even when the oil 11 on the surface of the work W is a point-like oil droplet, the irradiation surface can be widened and the excitation energy can be sufficiently secured. When the length of each side is less than the lower limit, the measurement area is too small for the dot-like coating and is easily affected by uneven oil coating. 6 needs to be increased.

【0025】また、スリット13の大きさは、分光器1
4への迷光の除去、波長分解能,信号強度の確保の見地
から短辺を0.4〜0.8mmの範囲とするのが好まし
い。0.4mm未満では信号強度が不十分となり、0.
8mmを超えると迷光の除去が不完全になる。
The size of the slit 13 is determined by the spectroscope 1.
It is preferable that the short side is in the range of 0.4 to 0.8 mm from the viewpoints of removing stray light to 4, and securing wavelength resolution and signal intensity. If it is less than 0.4 mm, the signal intensity becomes insufficient, and
If it exceeds 8 mm, the removal of stray light will be incomplete.

【0026】本実施形態では、励起用光源6から発射さ
れる励起光LBの長方形ビームAの寸法を長辺a1 =8
mm、短辺a2 =2mmとし、レンズ9で集光されてワ
ークWの表面上に焦点を結んだ長方形の照射部A’の寸
法は長辺a1 ’=2.0mm、短辺a2 ’=0.5m
m、スリット13上に焦点した蛍光像A”の寸法は前記
照射部A’の寸法と同じく長辺a1 ’=2.0mm、短
辺a2 ’=0.5mmとしている。
In the present embodiment, the size of the rectangular beam A of the excitation light LB emitted from the excitation light source 6 is set to the long side a 1 = 8.
mm, the short side a 2 = 2 mm, and the dimensions of the rectangular irradiation part A ′ focused by the lens 9 and focused on the surface of the work W are long side a 1 ′ = 2.0 mm and short side a 2 '= 0.5m
m, the size of the fluorescent image A ″ focused on the slit 13 is the same as the size of the irradiation part A ′, with the long side a 1 ′ = 2.0 mm and the short side a 2 ′ = 0.5 mm.

【0027】(実施例)上記の実施形態に示す塗油量測
定装置と他の蛍光分析法による塗油量測定装置を用い
て、冷延鋼板に防錆油を静電塗油したワークWについて
塗油量を測定し、その結果を重量法による塗油量分析値
と比較したものを図6に示す。
(Working Example) A work W in which a rust-preventive oil was electrostatically applied to a cold-rolled steel sheet using the oiling amount measuring device shown in the above embodiment and the oiling amount measuring device by another fluorescence analysis method. FIG. 6 shows the results obtained by measuring the amount of applied oil and comparing the results with the values obtained by analyzing the applied amount of oil by a gravimetric method.

【0028】ケース1(CASE1)は、本発明塗油量
測定装置による測定値(○)である。ケース2(CAS
E2)は、スリット13上に結像する長方形蛍光像A”
と長方形スリット形状Bとが平行(即ち交叉角α=0
°)になるように光学系を配置した装置による比較例の
測定値(●)である。
Case 1 (CASE 1) is a value (○) measured by the oil amount measurement device of the present invention. Case 2 (CAS
E2) is a rectangular fluorescent image A ″ formed on the slit 13
And the rectangular slit shape B are parallel (that is, the intersection angle α = 0)
°) is a measured value (●) of a comparative example using an apparatus in which an optical system is arranged so as to satisfy ()).

【0029】ケース3(CASE3)は、励起光LBの
ビーム形状が円形の従来の装置による測定値(▲)であ
る。この図6から明らかなように、塗油量が300mg
/m2 以下の少ない領域において、本発明による結果
(CASE1)では、±10%以内の精度で測定可能で
ある。これに対して、比較例及び従来例(CASE2,
3)による結果は、測定誤差が±10%を超えてしま
い、測定性能が低下している。
Case 3 (CASE 3) is a measured value (▲) obtained by a conventional apparatus in which the beam shape of the excitation light LB is circular. As is clear from FIG.
In a small region of / m 2 or less, the result (CASE1) according to the present invention can be measured with an accuracy within ± 10%. On the other hand, the comparative example and the conventional example (CASE2,
In the result of 3), the measurement error exceeds ± 10%, and the measurement performance is deteriorated.

【0030】この実施例の場合、使用した冷延鋼板の表
面粗さはRa0.15〜1.0μmの範囲で異なるもの
である。したがって、本発明の塗油量測定装置によれ
ば、ワークWの表面粗さ(下地表面粗さ)の影響を受け
ない測定が可能であるといえる。
In the case of this embodiment, the surface roughness of the cold rolled steel sheet used varies in the range of Ra 0.15 to 1.0 μm. Therefore, according to the oiling amount measuring apparatus of the present invention, it can be said that the measurement can be performed without being affected by the surface roughness (base surface roughness) of the work W.

【0031】なお、上記実施形態では、測定対象である
油の油種を1種類に限定して説明したが、油種が異なる
場合には蛍光効率が異なるため、油種毎に予め蛍光強度
と塗油量との関係を表す検量線を求めておき、それらの
関係式を前記演算処理装置4に記憶させておくことによ
り、測定油種毎に検量線を選択して用いるようにすれば
良い。
In the above embodiment, the oil type of the oil to be measured is limited to one type. However, when the oil type is different, the fluorescence efficiency is different. Calibration curves representing the relationship with the amount of applied oil are obtained in advance, and the relational expressions are stored in the arithmetic processing unit 4, so that the calibration curve may be selected and used for each type of measured oil. .

【0032】また、本発明の金属材料表面の塗油量測定
装置及び方法は、鋼板に限らず、アルミニウム板や銅箔
などの各種非鉄分野への応用も可能である。また、本発
明の金属材料表面の塗油量測定装置は、小型で軽量な構
成であるから容易に持ち運びができるとともに、保持装
置2を取り外すことによりシート状またはコイル状の金
属材料表面に装置を押し当てて測定するという使用態様
も可能であるから、オフラインとは限らずラインにおけ
るバッチ測定にも利用できるものである。
The apparatus and method for measuring the amount of oil applied to a metal material surface according to the present invention can be applied not only to steel plates but also to various non-ferrous fields such as aluminum plates and copper foils. In addition, the apparatus for measuring the amount of oil applied to the surface of a metal material according to the present invention has a small and lightweight configuration, so that it can be easily carried, and by removing the holding device 2, the device can be mounted on a sheet-shaped or coil-shaped metal material surface. Since it is also possible to use the method in which the measurement is performed by pressing, the method can be used not only for offline measurement but also for batch measurement in a line.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
測定対象の金属材料表面に塗布された油の量を、たとえ
単位面積当たりの塗油量が微量であっても十分な感度で
精度良く測定できると共に簡便な操作で測定でき、且つ
自動測定で作業負荷を軽減することも可能であるから、
測定頻度を増やすことができて、その結果品質管理の強
化、異常の早期発見、目標に合わせた塗油量での安定的
な塗布がなされると同時に過剰塗布による無駄を排除し
コストダウンできるという効果を奏する。
As described above, according to the present invention,
The amount of oil applied to the surface of the metal material to be measured can be measured with sufficient sensitivity and accuracy with sufficient sensitivity, even if the amount of oil applied per unit area is very small, and it can be measured by simple operations, and work is performed automatically. It is also possible to reduce the load,
The frequency of measurement can be increased, resulting in enhanced quality control, early detection of abnormalities, stable application with the desired amount of oil applied, and at the same time eliminate waste due to excessive application and reduce costs. It works.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る金属材料表面の塗油量測定装置の
全体構成を示す概略図である。
FIG. 1 is a schematic diagram showing the overall configuration of a device for measuring the amount of oil applied to a metal material surface according to the present invention.

【図2】本発明に用いる検出ヘッドの一実施形態の構成
を模式的にしめす図である。
FIG. 2 is a diagram schematically showing a configuration of an embodiment of a detection head used in the present invention.

【図3】本発明における励起光と蛍光像およびスリット
の形状,寸法,位置等との関係を説明する模式図で、
(a)は部分の斜視図、(b)はそのスリット部の拡大
図である。
FIG. 3 is a schematic diagram illustrating a relationship between excitation light, a fluorescence image, and the shape, size, and position of a slit in the present invention.
(A) is a perspective view of a part, (b) is an enlarged view of the slit part.

【図4】本発明におけるスリット形状と蛍光ビーム形状
との関係を説明する図である。
FIG. 4 is a diagram illustrating a relationship between a slit shape and a fluorescent beam shape according to the present invention.

【図5】スリットと蛍光像との位置関係(交叉角α)と
測定誤差との相関を示す実測値のグラフである。
FIG. 5 is a graph of actually measured values showing a correlation between a positional relationship (crossing angle α) between a slit and a fluorescent image and a measurement error.

【図6】本発明に係る実施例と比較例と従来例との塗油
量測定値を比較したグラフである。
FIG. 6 is a graph comparing the measured values of the amount of applied oil between the example according to the present invention, the comparative example, and the conventional example.

【符号の説明】[Explanation of symbols]

1 検出ヘッド 2 保持装置(サンプルホルダ) 4 塗油量算出手段(演算処理装置) 6 励起光照射手段(励起用光源) 12 光学系 13 スリット 14 分光器 15 蛍光強度測定手段(光検出素子) DESCRIPTION OF SYMBOLS 1 Detection head 2 Holding device (sample holder) 4 Oiling amount calculation means (arithmetic processing device) 6 Excitation light irradiation means (excitation light source) 12 Optical system 13 Slit 14 Spectroscope 15 Fluorescence intensity measurement means (light detection element)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 油が塗布された金属材料表面に長方形の
ビーム形状とした特定波長の励起光を照射し、その照射
によって生じる蛍光を集光して長方形の蛍光像を長方形
のスリット位置に結ばせて当該蛍光像の長辺方向と前記
スリットの長辺方向とを直交せしめるとともに各長方形
の中心を一致せしめ、当該スリットを通過した蛍光の強
度を測定して塗油量を求めることを特徴とする金属材料
表面の塗油量測定方法。
1. A surface of a metal material coated with oil is irradiated with a rectangular beam of excitation light having a specific wavelength, and the resulting fluorescence is condensed to form a rectangular fluorescent image at a rectangular slit position. Making the long side direction of the fluorescent image orthogonal to the long side direction of the slit and matching the center of each rectangle, and measuring the intensity of the fluorescent light passing through the slit to obtain the oiling amount. Method for measuring the amount of oil applied to the surface of a metallic material.
【請求項2】 油が塗布された金属材料表面に長方形の
ビーム形状とした特定波長の励起光を照射する手段と、
その励起光により発生した前記金属材料表面からの蛍光
を集光して長方形のスリット位置に長方形の蛍光像を結
ぶ光学系と、前記スリットを介して導いた前記蛍光を分
光する分光器と、該分光器で分光した蛍光を検出して蛍
光強度を測定する手段と、その蛍光強度に基づいて塗油
量を算出する手段とを備え、前記長方形のスリットをそ
の長辺の方向が前記長方形の蛍光像の長辺方向と直交す
るように配置したことを特徴とする金属材料表面の塗油
量測定装置。
2. A means for irradiating a surface of an oil-coated metal material with excitation light of a specific wavelength in the form of a rectangular beam;
An optical system that collects fluorescence from the metal material surface generated by the excitation light and forms a rectangular fluorescence image at a rectangular slit position, a spectroscope that disperses the fluorescence guided through the slit, and A means for detecting the fluorescence separated by the spectrometer to measure the fluorescence intensity, and a means for calculating the amount of oil applied based on the fluorescence intensity; An apparatus for measuring the amount of oil applied to a surface of a metal material, wherein the oil amount is arranged so as to be orthogonal to the long side direction of the image.
【請求項3】 請求項2記載の塗油量測定装置におい
て、被測定金属材料を所定の測定位置に保持する保持装
置を備えたことを特徴とする金属材料表面の塗油量測定
装置。
3. An apparatus for measuring the amount of oil applied to a surface of a metal material according to claim 2, further comprising a holding device for holding the metal material to be measured at a predetermined measurement position.
JP23427997A 1997-08-29 1997-08-29 Method and apparatus for measuring oil-application amount on metallic material surface Pending JPH1172436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23427997A JPH1172436A (en) 1997-08-29 1997-08-29 Method and apparatus for measuring oil-application amount on metallic material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23427997A JPH1172436A (en) 1997-08-29 1997-08-29 Method and apparatus for measuring oil-application amount on metallic material surface

Publications (1)

Publication Number Publication Date
JPH1172436A true JPH1172436A (en) 1999-03-16

Family

ID=16968493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23427997A Pending JPH1172436A (en) 1997-08-29 1997-08-29 Method and apparatus for measuring oil-application amount on metallic material surface

Country Status (1)

Country Link
JP (1) JPH1172436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287758A (en) * 1998-04-01 1999-10-19 Kawasaki Steel Corp Method for forming calibration curve for use in measurement of applied oil amount
JP2002333310A (en) * 2001-03-09 2002-11-22 Nippon Steel Corp Apparatus and method for measuring oil applying amount distribution
JP2012098248A (en) * 2010-11-05 2012-05-24 Hitachi Ltd Degreasing determination device and degreasing determination method
JP2013205203A (en) * 2012-03-28 2013-10-07 Hitachi Ltd Defatted state measuring apparatus, defatted state measuring system, and method for measuring defatted state
CN114054243A (en) * 2020-07-31 2022-02-18 上海梅山钢铁股份有限公司 Oil coating amount control system and control method for electrostatic oiling machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287758A (en) * 1998-04-01 1999-10-19 Kawasaki Steel Corp Method for forming calibration curve for use in measurement of applied oil amount
JP2002333310A (en) * 2001-03-09 2002-11-22 Nippon Steel Corp Apparatus and method for measuring oil applying amount distribution
JP2012098248A (en) * 2010-11-05 2012-05-24 Hitachi Ltd Degreasing determination device and degreasing determination method
JP2013205203A (en) * 2012-03-28 2013-10-07 Hitachi Ltd Defatted state measuring apparatus, defatted state measuring system, and method for measuring defatted state
CN114054243A (en) * 2020-07-31 2022-02-18 上海梅山钢铁股份有限公司 Oil coating amount control system and control method for electrostatic oiling machine

Similar Documents

Publication Publication Date Title
US5812261A (en) Method and device for measuring the thickness of opaque and transparent films
US8149409B2 (en) Apparatus and method for on-line detecting welding part of strip
US7989730B2 (en) Method and device for determining the lateral relative displacement between a processing head and a workpiece
EP1238744A1 (en) Laser weld quality monitoring method and system
JP2002516984A (en) Apparatus and method for measuring properties of a structure
JP2001500975A (en) Improved method and apparatus for measuring material properties using a transient grating spectrometer
JPH0394417A (en) X-ray aligner
JP4106400B2 (en) Thickness measuring device and thickness measuring method
JPH0694604A (en) Spectral photographing device using two interferometer
US7212288B2 (en) Position modulated optical reflectance measurement system for semiconductor metrology
JPH1172436A (en) Method and apparatus for measuring oil-application amount on metallic material surface
JP2005214758A (en) Surface inspection device
JPH04275007A (en) Laser processing apparatus
JP2915294B2 (en) Method and apparatus for measuring oil coating amount on metal material surface
JPH05332934A (en) Spectroscope
JPS5979122A (en) Laser power measuring device
CN114535787A (en) Laser processing system and jig
JP3058030B2 (en) Laser emission spectroscopy method and apparatus
JPH0768396A (en) Laser beam machine
JP3570488B2 (en) Measurement method of alloying degree of galvanized steel sheet using laser beam
JP4130599B2 (en) Laser beam irradiation device
JPH08193810A (en) Device for measuring displacement
JPH09210908A (en) Method and device for measuring coated oil quantity on the surface of metal material
JP2971003B2 (en) Device to detect dirt on lens of laser repair device
JPH06241999A (en) Spectral analytical method by laser emission using two step excitation method