JP2005214758A - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP2005214758A
JP2005214758A JP2004021016A JP2004021016A JP2005214758A JP 2005214758 A JP2005214758 A JP 2005214758A JP 2004021016 A JP2004021016 A JP 2004021016A JP 2004021016 A JP2004021016 A JP 2004021016A JP 2005214758 A JP2005214758 A JP 2005214758A
Authority
JP
Japan
Prior art keywords
microwave
optical system
light
detector
surface inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004021016A
Other languages
Japanese (ja)
Other versions
JP4369766B2 (en
Inventor
Noboru Hasegawa
昇 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004021016A priority Critical patent/JP4369766B2/en
Publication of JP2005214758A publication Critical patent/JP2005214758A/en
Application granted granted Critical
Publication of JP4369766B2 publication Critical patent/JP4369766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect and discriminate an irregular shape with the size of about several tens μm or smaller having a gently-sloping contour on the rough surface, which cannot be detected or whose shape cannot be discriminated by a conventional optical surface inspection device. <P>SOLUTION: This surface inspection device for inspecting a metal is equipped unitedly with a microwave generator for generating a microwave having the wavelength of 10 μm-1 mm or a microwave having a part of the wavelength, the first optical system for guiding the microwave to the measuring object surface, a microwave detector for detecting a reflected wave from the measuring object surface, the second optical system for guiding the reflected wave to the microwave detector, a moving mechanism for the measuring object, and a signal processor for determining a signal intensity distribution by processing a detection signal at each measuring position and determining the surface shape of the metal from the determined signal intensity distribution. The microwave detector is characterized by being installed on a spatially different position from the rear focal position of the second optical system, and by being equipped unitedly with a mechanism for selecting and detecting spatially the microwave. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属表面の検査装置に関する。   The present invention relates to a metal surface inspection apparatus.

例えば、鋼板のような金属表面の表面検査装置は、平坦な正常部の中から、疵や凹凸といった様々な種類の欠陥や形状不良などの異常箇所を特定し、異常の種類を判別する装置である。従来、このような検査装置には、例えば、(1)CCDカメラを用いた方式(例えば特許文献1)や(2)レーザー光を用いた方式(特許文献2)などがあった。(1)は白色ランプから放射された可視光を被測定対象面である金属表面に照射し、その反射光をCCDカメラで撮影する方式であり、特に照射する光はインコヒーレントであることを特徴とする。また、(2)は可視域のレーザーを直径数mm程度のスポット状に照射し、光検出器を用いて反射光を検出する。両者ともに、可視光を被測定対象面に照射し、該対象面の変化に伴う反射光の違いや偏光の変化を検出することで観察領域が正常或いは異常であるかを判定するものである。両者は光の照射、検出方式の違いによって、検出できる異常の種類が異なるが、大きさがサブmm以上、高低差が数十μm以上の緩やかな起伏を持つ凹凸形状の検出及び判別は難しかった。   For example, a surface inspection device for a metal surface such as a steel plate is a device that identifies various types of defects such as wrinkles and irregularities such as wrinkles and irregularities, and abnormal locations such as shape defects, and discriminates the types of abnormalities. is there. Conventionally, such inspection apparatuses include, for example, (1) a system using a CCD camera (for example, Patent Document 1) and (2) a system using a laser beam (Patent Document 2). (1) is a method in which visible light emitted from a white lamp is irradiated onto a metal surface, which is a surface to be measured, and the reflected light is photographed with a CCD camera. In particular, the irradiated light is incoherent. And In (2), a laser in the visible range is irradiated in a spot shape having a diameter of about several millimeters, and the reflected light is detected using a photodetector. In both cases, it is determined whether the observation region is normal or abnormal by irradiating the surface to be measured with visible light and detecting a difference in reflected light or a change in polarization accompanying the change in the target surface. In both cases, the type of abnormality that can be detected differs depending on the light irradiation and detection method, but it was difficult to detect and discriminate the uneven shape having a gentle undulation with a size of sub-mm or more and a height difference of several tens of μm or more. .

すなわち、(1)CCDカメラを用いた方式は、被測定対象面を写真で撮影した場合と同様の画像が得られ、カメラレンズの倍率を上げて空間分解能を上げれば、大きさが1mm以下の異常も検出できる可能性がある。しかし、この方式では反射光量に基づいた明暗、全体的な形などの情報を抽出するが、対象表面の凹凸情報が得られないため、対象表面の凹凸異常を正確に検出、判別することができなかった。
例えば、金属の製造工程では、スクラッチや異物によって押し込まれた異常などは、その種類や有害度合いが凹凸(深さ)形状と強い相関のある場合があるが、凹凸情報がないために判別は原理上不可能であった。また、工程によっては、本来正常である部位の表面に油や汚れなどが付着することがあるが、CCDカメラ方式では、凹状の異常部と極めて類似した画像が得られるので、これらを判別することができなかった。
一方、(2)レーザー光を用いた方式は、レーザー光を被測定対象面上に集光するため、検出できる異常の大きさはこの集光スポット径に依存する。一般に、比較的遠距離からレーザー光を照射することから集光スポット径はミリオーダーとなり、1mm以下の微小な異常を検出することができなかった。
That is, (1) In the method using a CCD camera, an image similar to that obtained when a surface to be measured is photographed can be obtained. If the spatial resolution is increased by increasing the magnification of the camera lens, the size is 1 mm or less. Anomalies may also be detected. However, this method extracts information such as brightness, darkness, and overall shape based on the amount of reflected light, but it cannot accurately detect and distinguish irregularities on the target surface because it cannot obtain unevenness information on the target surface. There wasn't.
For example, in the metal manufacturing process, abnormalities pushed in by scratches or foreign objects may have a strong correlation between the type and the degree of harmfulness with the unevenness (depth) shape. It was impossible. Also, depending on the process, oil or dirt may adhere to the surface of the part that is normally normal. However, in the CCD camera system, an image very similar to the concave abnormal part can be obtained. I could not.
On the other hand, (2) the method using laser light condenses the laser light on the surface to be measured, and therefore the size of the anomaly that can be detected depends on this condensing spot diameter. In general, since the laser beam is irradiated from a relatively long distance, the diameter of the focused spot is on the order of millimeters, and minute abnormalities of 1 mm or less cannot be detected.

更に、いずれの方式でも、対象面が可視光を乱反射するような粗面である場合、異常部を形作る断面形状の輪郭がなだらかな傾斜を持つ凹凸異常を検出することができなかった。例えば、金属の製造工程では、砥石がけなど特別な表面加工を施して初めて顕在化できる異常がこれに該当する。この異常は砥石がけなどの操作を行わない限り目視でも認識することが不可能であることから、原理上(1)の方式では検出が不可能である。尚、(2)の方式では表面の凹凸によってレーザー光の反射方向が変化するため、この変化を捉えることで凹凸情報が得られる可能性もあるが、表面の粗度が原因となって反射光が散乱し、異常部の凹凸による反射光の変化を著しく低下させること、更にスペックルノイズもS/Nを低下させる方向に働くことなどから、大きさが1mm以上あっても凹凸が100μm程度以下の異常を検出することはできなかった。
特許第3063523号公報 特開平6−308051号公報
Furthermore, in any of the methods, when the target surface is a rough surface that irregularly reflects visible light, it is not possible to detect irregularities in which the contour of the cross-sectional shape forming the abnormal part has a gentle slope. For example, in a metal manufacturing process, this is an abnormality that can be manifested only after a special surface treatment such as grinding of a grindstone. Since this abnormality cannot be recognized visually unless an operation such as grinding of a grindstone is performed, in principle, it cannot be detected by the method (1). In the method (2), since the reflection direction of the laser beam changes due to the unevenness of the surface, there is a possibility that unevenness information can be obtained by capturing this change, but the reflected light is caused by the roughness of the surface. Scatters and remarkably reduces the change in reflected light due to irregularities in abnormal parts, and speckle noise also works in the direction of reducing S / N, etc. Even if the size is 1 mm or more, the irregularities are about 100 μm or less. It was not possible to detect any abnormalities.
Japanese Patent No. 3063523 JP-A-6-308051

本発明は、従来の光学式表面検査装置では検出或いは形状の識別が不可能であった、粗面中のなだらかな輪郭を持つ数十μm程度及びそれ以下の凹凸形状を検出、識別することを課題とする。   The present invention detects and identifies uneven shapes of about several tens of μm or less having a smooth outline in a rough surface, which cannot be detected or identified by a conventional optical surface inspection apparatus. Let it be an issue.

前記課題は、以下の(1)から(3)の発明により解決される。
(1)金属を検査するための表面検査装置において、波長10μm〜1mmのマイクロ波或いは、その一部の波長のマイクロ波を発生するマイクロ波発生器と、該マイクロ波を被測定対象面に導く第1の光学系と、被測定対象面からの反射波を検出するマイクロ波検出器と、前記反射波を前記マイクロ波検出器に導く第2の光学系と、被測定対象の移動機構と、測定位置ごとの検出信号を処理して信号強度分布を求め、求めた信号強度分布から前記金属の表面形状を決定する信号処理器とを兼ね備えた表面検査装置であって、前記マイクロ波検出器は、前記第2の光学系の後焦点位置と空間的に異なる位置に設置され、かつ、マイクロ波を空間的に選別して検出する機構を兼ね備えたことを特徴とする表面検査装置。
(2)前記マイクロ波発生器は、1ピコ秒以下の可視波長域のパルス光(可視パルス光)を発生させる光発生器と、該可視パルス光をマイクロ波に変換する機構(変換器)と、該可視光を該変換器に導く光学系とを備えており、1ピコ秒以下のパルスマイクロ波を発生するものであり、かつ、前記マイクロ波検出器は、該パルスマイクロ波が形成する電界によって屈折率が変化する材料と、該材料を照射する可視パルスレーザーと、該パルスレーザーの偏光変化を検出する機構からなることを特徴とする(1)項に記載の表面検査装置。
(3)前記信号処理器は、検出信号を周波数成分毎に処理することを特徴とする(1)又は(2)項に記載の表面検査装置。
The above problems are solved by the following inventions (1) to (3).
(1) In a surface inspection apparatus for inspecting metal, a microwave generator that generates a microwave having a wavelength of 10 μm to 1 mm or a part of the wavelength, and the microwave is guided to a surface to be measured. A first optical system, a microwave detector for detecting a reflected wave from the surface to be measured, a second optical system for guiding the reflected wave to the microwave detector, a moving mechanism for the object to be measured, A surface inspection apparatus that combines a signal processor for processing a detection signal for each measurement position to determine a signal intensity distribution and determining a surface shape of the metal from the obtained signal intensity distribution, wherein the microwave detector is A surface inspection apparatus which is installed at a position spatially different from the back focal position of the second optical system and has a mechanism for spatially selecting and detecting microwaves.
(2) The microwave generator includes a light generator that generates pulsed light (visible pulsed light) in a visible wavelength region of 1 picosecond or less, and a mechanism (converter) that converts the visible pulsed light into microwaves. An optical system that guides the visible light to the converter, and generates a pulsed microwave of 1 picosecond or less, and the microwave detector generates an electric field generated by the pulsed microwave. The surface inspection apparatus according to item (1), comprising: a material whose refractive index changes according to the above; a visible pulse laser that irradiates the material; and a mechanism that detects a change in polarization of the pulse laser.
(3) The surface inspection apparatus according to (1) or (2), wherein the signal processor processes a detection signal for each frequency component.

課題を解決するための手段(1)項に記載のマイクロ波を用いた表面検査装置において、本発明者らは、被測定対象が平面である場合に比べ、輪郭のなだらかな数十μm程度の凹凸がマイクロ波に対して凹或いは凸面ミラーの様に作用し、マイクロ波の集光位置を元々の焦点位置からずらす効果のあること、この効果を第2の光学系の焦点位置からずらした位置にマイクロ波検出器を設置し、且つ、集光した近傍のマイクロ波の例えば中心領域のみを選択的に検出することによってマイクロ波強度として検出できること、更に検出された信号は被測定対象表面の凹凸によって反転した極性を示すことを見出した。
また、パルスマイクロ波を発生して被測定面に照射し、反射マイクロ波を検出する(2)項に記載の表面検査装置は、検出用の可視レーザー光が特定の空間領域を抽出する役割を果たし、マイクロ波を空間的に選別して検出する機構が不要になる特徴がある。
In the surface inspection apparatus using the microwave according to item (1) for solving the problem, the present inventors have a smooth outline of about several tens of μm compared to the case where the object to be measured is a plane. The unevenness acts on the microwave like a concave or convex mirror, and has the effect of shifting the focusing position of the microwave from the original focal position, and the position where this effect is shifted from the focal position of the second optical system A microwave detector is installed on the surface, and the microwave intensity can be detected by selectively detecting, for example, only the central region of the collected nearby microwave, and the detected signal is uneven on the surface of the object to be measured. Was found to show the reversed polarity.
In addition, the surface inspection apparatus according to the item (2) that generates pulsed microwaves, irradiates the surface to be measured, and detects reflected microwaves, and has a role in which a visible laser beam for detection extracts a specific spatial region. In fact, there is a feature that a mechanism for spatially selecting and detecting microwaves becomes unnecessary.

更に、検出したパルス波形を複数の周波数成分に分解して処理する(3)項に記載の表面検査装置は、パルスマイクロ波が被測定対象面で複数の集光スポット径を持つことを利用しており、分解した周波数に応じて複数の空間分解能で測定することができるため、検出または識別の性能が向上する。こうした知見に基づき、従来の可視光を用いた方法或いは、被測定対象からの反射光のうち、正反射成分を遮蔽し、散乱成分のみを検出する方式では実現できなかった微小且つなだらかな表面凹凸の検出、識別装置を提案する。   Furthermore, the surface inspection apparatus described in the item (3) that processes the detected pulse waveform by decomposing it into a plurality of frequency components uses the fact that the pulse microwave has a plurality of focused spot diameters on the surface to be measured. Since the measurement can be performed with a plurality of spatial resolutions according to the resolved frequency, the detection or identification performance is improved. Based on this knowledge, minute and gentle surface irregularities that could not be realized by conventional methods using visible light or methods that shield only the specular reflection component of the reflected light from the measurement target and detect only the scattering component We propose a detection and identification device.

本発明は、従来の光学式表面検査装置では検出が不可能であった、粗面中にある微小な凹凸形状を検出し、様々な形態の異常をその種類や有害度合いに応じて的確に判別することができる。   The present invention detects minute irregularities in a rough surface, which could not be detected by a conventional optical surface inspection apparatus, and accurately discriminates various forms of abnormalities according to the type and degree of harmfulness. can do.

本発明の詳細について、図を用いて以下で説明する。
I)基本構成
課題を解決するための手段(1)項に記載の発明は、例えば図1のように実現できる。マイクロ波発生器1から放射されたマイクロ波2は、単数或いは複数のポリエチレンレンズ又はミラーからなる第1の光学系3を通り、被測定対象8の表面上にビーム径数mm程度に集光される。被測定対象8表面の法線方向に関して、照射方向と対称な鏡面反射方向を軸として第2の光学系4を設置し、反射マイクロ波2をマイクロ波検出器6の検出面上に導く。検出器の前にマイクロ波を空間的に選択できる空間フィルタ5を設置し、該マイクロ波の一部が検出されるようにする。信号処理器7はマイクロ波検出器6からの信号と同時に、被測定対象の移動機構8から位置情報を受け取り、被測定対象の位置に応じた信号変化を検出することができる。
The details of the present invention will be described below with reference to the drawings.
I) Basic Configuration Means for Solving the Problems The invention described in item (1) can be realized as shown in FIG. The microwave 2 radiated from the microwave generator 1 passes through the first optical system 3 composed of one or a plurality of polyethylene lenses or mirrors, and is condensed on the surface of the measurement target 8 to a beam diameter of about several millimeters. The With respect to the normal direction of the surface of the object 8 to be measured, the second optical system 4 is installed with a mirror reflection direction symmetric to the irradiation direction as an axis, and the reflected microwave 2 is guided onto the detection surface of the microwave detector 6. A spatial filter 5 capable of spatially selecting a microwave is installed in front of the detector so that a part of the microwave is detected. The signal processor 7 can receive position information from the moving mechanism 8 to be measured simultaneously with the signal from the microwave detector 6, and can detect a signal change corresponding to the position of the measured object.

測定を開始する際に、予め平坦なミラー或いは正常部などを移動機構8上に設置し、参照信号をとっておく。その後、検査対象を設置し、測定信号と参照信号との比をとったものを検出信号とする。移動機構7には検査時に必要な被測定対象9表面とほぼ平行なX−Y方向に駆動できる機構の他、被測定対象の厚みや傾斜に応じて測定前に調整するZ方向及び回転方向の移動機構も有している。被測定対象をX−Y方向に移動させると、入射するマイクロ波2の照射位置と異常部との相対位置によって、検出器が受光する光量が変化し、異常の大きさや種類に応じた信号パターンが得られる。   When starting the measurement, a flat mirror or a normal part is set on the moving mechanism 8 in advance and a reference signal is taken. After that, an inspection target is installed, and a detection signal is obtained by taking a ratio between the measurement signal and the reference signal. In addition to a mechanism that can be driven in the XY direction substantially parallel to the surface of the measurement target 9 necessary for inspection, the moving mechanism 7 has a Z direction and a rotation direction that are adjusted before measurement according to the thickness and inclination of the measurement target. It also has a moving mechanism. When the object to be measured is moved in the XY direction, the amount of light received by the detector changes depending on the relative position between the irradiation position of the incident microwave 2 and the abnormal part, and a signal pattern corresponding to the magnitude and type of the abnormality Is obtained.

図2(a)は本発明の原理を説明するために、図1における被測定対象9、第2の光学系4、空間フィルタ5及びマイクロ波検出器6の部分を抽出したブロック図である。これらはそれぞれ図2(a)の101、102、103及び104に相当する。本例では光学系102は焦点距離の同じレンズ対で構成されており、被測定対象101からの反射マイクロ波は1枚目のレンズでほぼ平行波となり、2枚目のレンズで検出器104に集光される。この時の焦点位置を図中(ii)で示しており、この位置より光学系102に近い側に検出器104を設置し、例えばピンホールの様な空間フィルタ103でマイクロ波の中心部分を抽出する。   FIG. 2A is a block diagram in which portions to be measured 9, the second optical system 4, the spatial filter 5, and the microwave detector 6 in FIG. 1 are extracted in order to explain the principle of the present invention. These correspond to 101, 102, 103, and 104 in FIG. In this example, the optical system 102 is composed of a pair of lenses having the same focal length, and the reflected microwave from the object to be measured 101 becomes a substantially parallel wave by the first lens, and becomes the detector 104 by the second lens. Focused. The focal position at this time is indicated by (ii) in the figure. A detector 104 is installed on the side closer to the optical system 102 than this position, and the central portion of the microwave is extracted by a spatial filter 103 such as a pinhole. To do.

図2(b)は図(a)の検出器位置(i)と(ii)におけるマイクロ波の強度分布を示す。被測定対象101が平面である場合、被測定対象の表面で反射したマイクロ波は(ii)の位置に比較的緩やかに集光されるので、そのマイクロ波の強度分布106は位置(i)、(ii)によらず類似した形状を示す。これに対し、被測定対象101が凹(凸)状である場合は検出位置によって顕著な差を生じる。検出位置(ii)では、被測定対象に凹凸があっても、マイクロ波の強度分布に大きな差はなく、結果として図(c)の(ii)のような極めて小さい信号しか検出できない。一方、検出位置(i)では、被測定対象の凹凸によって信号が減少或いは増加する。この時、信号変化の著しい中心部分を空間フィルタ103によって選択的に検出するようにすると、その信号は図(c)の(i)中にある109、110の様に極性を示す。これは被測定対象の凹凸が極性の異なる焦点距離を持つ反射ミラーとして作用するためであり、表面の凹凸や曲率に応じて反射マイクロ波の焦点位置と広がり角度が変化し、位置をずらした検出器と空間フィルタを組み合わせることで初めて信号強度の変化として捉えることができる。尚、本例では、検出器の位置を光学系に近い側にずらしているが、遠いほうにずらしても全く同様の効果を得ることができる。また、本例では検出器の位置をずらす場合のみ記述しているが、光学系を調整することで焦点位置をずらしても同様である。   FIG. 2B shows the microwave intensity distribution at the detector positions (i) and (ii) in FIG. When the object to be measured 101 is a flat surface, the microwave reflected by the surface of the object to be measured is condensed relatively gently at the position (ii), so that the intensity distribution 106 of the microwave is the position (i), It shows a similar shape regardless of (ii). On the other hand, when the object to be measured 101 has a concave (convex) shape, a significant difference occurs depending on the detection position. At the detection position (ii), even if the object to be measured has irregularities, there is no great difference in the intensity distribution of the microwave, and as a result, only a very small signal as shown in (ii) of FIG. On the other hand, at the detection position (i), the signal decreases or increases due to the unevenness of the measurement target. At this time, if the central portion where the signal change is significant is selectively detected by the spatial filter 103, the signal shows polarity as indicated by 109 and 110 in (i) of FIG. This is because the unevenness of the object to be measured acts as a reflection mirror having a focal length with different polarities, and the focal position and spread angle of the reflected microwave change according to the unevenness and curvature of the surface, and the detection is shifted. It is possible to grasp as a change in signal intensity only by combining a vessel and a spatial filter. In this example, the position of the detector is shifted to the side closer to the optical system, but the same effect can be obtained even if the position is shifted farther. Further, in this example, only the case where the position of the detector is shifted is described, but the same applies even if the focal position is shifted by adjusting the optical system.

II)パルスマイクロ波を用いた場合
(2)項に記載のパルス波を用いた検出装置は、例えば、図3に示すような方式で実現できる。本発明の波長領域におけるマイクロ波を発生、検出するには、パルスレーザーによる光サンプリング技術を用いることが考えられ、検出用レーザーとマイクロ波との時間的な遅延機構が必要となる。まず可視或いは赤外パルスレーザー201を、ビーム・スプリッタ202を用いて2つに分岐し、一方をマイクロ波発生用、他方をマイクロ波検出用に用いる。マイクロ波発生には例えば、半導体基板上の微小なアンテナに集光する方式や、レーザー径を拡大して特定の結晶方向に切り出された非線形光学素子に照射する方式、いわゆる光混合と呼ばれる方式などがある。いずれかの方式によりマイクロ波発生素子205から発生されたパルス状のマイクロ波206は、光学系207を通して被測定面217上に照射され、反射マイクロ波はレンズ208、211からなる第2の光学系220によって電気光学素子212に導かれる。この素子は光学系220の焦点位置から前あるいは後方向にずらして設置してある。電気光学素子212はマイクロ波の強度を屈折率変化に変換するもので、マイクロ波が照射されている時間内にレーザー光219が通過すると、レーザーの偏光が変化する。この時、レーザー光が通過する領域のみの屈折率変化を検出することになるので、結果として空間フィルタの機能を併せ持つ。これを偏光変化が検出できる検出器213で受信すると、レーザー光でサンプリングされたパルス状のマイクロ波を検出することができる。この検出器213は例えば、偏光ビーム・スプリッタと2つの光検出器を組み合わせて実現できる。予めマイクロ波発生用のレーザー光の光路中に光変調器218を設置しておき、光変調器からの信号と同期させて、光検出信号の差分をロックインアンプ214で検出する。レーザー光の遅延機構209で検出用レーザー光の遅延時間を連続的に変化させることによって、被測定対象面で反射したマイクロ波のパルス波形を検出することができる。検出後の信号は、信号処理器215において、周波数分解され、それらの極性やパターンが計算される。
II) In the case of using pulsed microwave The detection device using the pulse wave described in the item (2) can be realized by a method as shown in FIG. In order to generate and detect the microwave in the wavelength region of the present invention, it is conceivable to use an optical sampling technique using a pulse laser, and a time delay mechanism between the detection laser and the microwave is required. First, a visible or infrared pulse laser 201 is branched into two using a beam splitter 202, one for microwave generation and the other for microwave detection. For microwave generation, for example, a method of focusing on a small antenna on a semiconductor substrate, a method of irradiating a nonlinear optical element cut out in a specific crystal direction by expanding the laser diameter, a method called so-called light mixing, etc. There is. The pulsed microwave 206 generated from the microwave generating element 205 by any method is irradiated onto the measurement surface 217 through the optical system 207, and the reflected microwave is a second optical system including the lenses 208 and 211. 220 is guided to the electro-optical element 212. This element is installed shifted from the focal position of the optical system 220 forward or backward. The electro-optic element 212 converts the intensity of the microwave into a change in refractive index. When the laser light 219 passes within the time during which the microwave is irradiated, the polarization of the laser changes. At this time, since the change in the refractive index of only the region through which the laser beam passes is detected, it also has the function of a spatial filter as a result. When this is received by the detector 213 capable of detecting a change in polarization, a pulsed microwave sampled with a laser beam can be detected. For example, the detector 213 can be realized by combining a polarization beam splitter and two photodetectors. An optical modulator 218 is installed in advance in the optical path of the laser beam for generating microwaves, and the difference between the optical detection signals is detected by the lock-in amplifier 214 in synchronization with the signal from the optical modulator. By continuously changing the delay time of the detection laser beam by the laser beam delay mechanism 209, the pulse waveform of the microwave reflected from the measurement target surface can be detected. The detected signal is frequency-resolved in the signal processor 215, and the polarity and pattern thereof are calculated.

この時、被測定面217に照射されるマイクロ波206の集光径はパルス波形を構成する周波数成分毎に異なっており、高い(低い)周波数ほど小さな(大きな)集光径となる。これは、複数の空間分解能で測定することと等価であり、パルスの周波数帯域を選ぶことによって、異常部のサイズに応じて感度を高くするよう調整できる。特に、パルス幅が1ピコ秒以下である場合、数テラヘルツ以上の広い周波数帯域を持つことから検出信号の多重性が増し、かつ、高い精度でパルス波の時間遅延に基づく位相情報も検出できるため、検出や識別の性能が向上するという特徴がある。
以上述べた装置を用いることで、幅がミリオーダーで数十μm以下の凹凸の大きさや断面形状の急峻度合いなど、従来判別が困難だった異常の検出やその種類を的確に判別することができる。
At this time, the condensing diameter of the microwave 206 irradiated to the measurement surface 217 is different for each frequency component constituting the pulse waveform, and the higher (lower) frequency becomes the smaller (larger) condensing diameter. This is equivalent to measurement with a plurality of spatial resolutions, and can be adjusted to increase sensitivity according to the size of the abnormal part by selecting the frequency band of the pulse. In particular, when the pulse width is 1 picosecond or less, since it has a wide frequency band of several terahertz or more, the multiplicity of the detection signal is increased, and phase information based on the time delay of the pulse wave can be detected with high accuracy. The detection and identification performance is improved.
By using the apparatus described above, it is possible to accurately determine the types of abnormalities that have been difficult to distinguish, such as the size of irregularities with a width of several tens of micrometers or less in the order of millimeters and the sharpness of the cross-sectional shape. .

図4を用いて実施例の一つを説明する。301はYAGレーザーなどで励起されたチタンサファイアレーザーであり、パルス圧縮技術を用いて100フェムト秒程度の短パルスを発生する。これは1kHzの繰り返し周波数で波長775nmの可視光を出力する。これを可視光用のビーム・スプリッタ302を用いて励起用と検出用の2つのビームに分岐する。光変調機303はチョッパー或いは音響光学モジュレータであり、500Hzの周波数でレーザーを変調する。この時、レーザーパルスの2つに1つを通過させるように、レーザーの発振信号とチョッパーとの同期を取っておく。光学系304は、例えば焦点距離が−25mmの凹レンズと75mmの凸レンズとを組み合わせたテレスコープであり、この場合はビーム径を3倍に拡げることができる。本例ではレーザーのビーム径が約8mmで、テレスコープを通過後24mm程度に拡大される。これを2次の非線形係数を持つZnTe結晶305に照射する。この結晶は〈110〉面でカットされており、厚みが1〜2mmである。これをレーザー光軸に垂直に設置し、面内で回転させて最適な角度に調整すると、1ピコ秒以下の短パルスマイクロ波を発生させることができる。ZnTeの大きさはレーザーの径より大きく30mm程度とした。ZnTe305と凹面鏡307、被測定対象308の間の距離はそれぞれ凹面鏡の軸はずし焦点距離と同じ120mmに設定した。凹面鏡307はマイクロ波を被測定対象に導く弟1の光学系とマイクロ波を検出器に導く弟2の光学系で共有されている。これは、マイクロ波を被測定対象308に垂直に照射するためであり、マイクロ波に対するビーム・スプリッタ306をZnTeと凹面鏡307との間に設置することで実現される。凹面鏡307と319との間は240mmであるが、凹面鏡319と検出用のZnTe311間は115mmになっている。   One embodiment will be described with reference to FIG. 301 is a titanium sapphire laser excited by a YAG laser or the like, and generates a short pulse of about 100 femtoseconds using a pulse compression technique. This outputs visible light having a wavelength of 775 nm at a repetition frequency of 1 kHz. This is split into two beams for excitation and detection using a beam splitter 302 for visible light. The light modulator 303 is a chopper or an acousto-optic modulator and modulates a laser at a frequency of 500 Hz. At this time, the laser oscillation signal and the chopper are synchronized so that one of the two laser pulses is passed. The optical system 304 is a telescope that combines, for example, a concave lens having a focal length of −25 mm and a convex lens having a 75 mm focal length. In this case, the beam diameter can be expanded three times. In this example, the laser beam diameter is about 8 mm, and is expanded to about 24 mm after passing through the telescope. This is irradiated to a ZnTe crystal 305 having a second-order nonlinear coefficient. This crystal is cut in the <110> plane and has a thickness of 1 to 2 mm. When this is installed perpendicularly to the laser optical axis and rotated in the plane to adjust to an optimum angle, a short pulse microwave of 1 picosecond or less can be generated. The size of ZnTe was set to about 30 mm larger than the diameter of the laser. The distances between the ZnTe 305, the concave mirror 307, and the measurement target 308 were set to 120 mm, which is the same as the focal length of the concave mirror. The concave mirror 307 is shared by the younger brother 1 optical system that guides the microwave to the object to be measured and the younger brother 2 optical system that guides the microwave to the detector. This is for irradiating the measurement object 308 perpendicularly with a microwave, and is realized by installing a beam splitter 306 for the microwave between ZnTe and the concave mirror 307. The distance between the concave mirrors 307 and 319 is 240 mm, but the distance between the concave mirror 319 and the detection ZnTe 311 is 115 mm.

一方、検出用レーザーは移動ステージ上に設置されたミラー対或いは、コーナーキューブミラーを通過する際に、パルスマイクロ波に対して−5から20ピコ秒程度の遅延が生じるように調整する。これを可視光に対するビーム・スプリッタ309でマイクロ波と同軸になるよう合成し、ZnTe結晶311上に集光する。ビーム・スプリッタは薄膜に金属蒸着したペリカルビーム・スプリッタとよばれるもので、反射率は10%である。ZnTe311はマイクロ波が照射されると内部の屈折率が変化し、この間にレーザーパルスが通過するとレーザーの偏光がマイクロ波強度に応じて変化する。この偏光変化を波長板312、偏光ビーム・スプリッタ313及び2つのPINフォトダイオード314で検出する。マイクロ波が照射されない状態で、予めフォトダイオードに入射するレーザー光の割合が1:1になるように波長板を調整しておく。ロックインアンプ315はチョッパー303の変調周波数成分に同期して、2つのPINフォトダイオードの受光信号を差分検出する。検出したパルス信号はPC316でフーリエ変換され、周波数成分に分解される。同時に、PC316からステージ317を用いて被測定対象を移動させ、被測定対象と同期して信号強度を検出する。図5は本手法で得られた検出画像であり、周波数が1テラヘルツの信号強度を被測定対象の位置毎にプロットしたものである。これらは対象の凹/凸に応じて信号の極性が反転し、その曲率に応じて信号強度が変化するので、対象の形状を的確に識別することができる。   On the other hand, the detection laser is adjusted so as to cause a delay of about −5 to 20 picoseconds with respect to the pulsed microwave when passing through a mirror pair or a corner cube mirror installed on the moving stage. This is synthesized so as to be coaxial with the microwave by the beam splitter 309 for visible light, and condensed on the ZnTe crystal 311. The beam splitter is called a peripheral beam splitter in which a thin film is metal-deposited and has a reflectivity of 10%. When ZnTe 311 is irradiated with microwaves, its internal refractive index changes, and when a laser pulse passes during this time, the polarization of the laser changes according to the microwave intensity. This polarization change is detected by the wave plate 312, the polarization beam splitter 313, and the two PIN photodiodes 314. The wavelength plate is adjusted in advance so that the ratio of the laser light incident on the photodiode is 1: 1 in a state where the microwave is not irradiated. The lock-in amplifier 315 detects the difference between the light reception signals of the two PIN photodiodes in synchronization with the modulation frequency component of the chopper 303. The detected pulse signal is Fourier transformed by the PC 316 and decomposed into frequency components. At the same time, the measurement target is moved from the PC 316 using the stage 317, and the signal intensity is detected in synchronization with the measurement target. FIG. 5 is a detection image obtained by this method, in which the signal intensity with a frequency of 1 terahertz is plotted for each position of the measurement target. Since the polarity of the signal is inverted according to the concave / convex of the target and the signal intensity changes according to the curvature, the shape of the target can be accurately identified.

本発明に関わる装置の基本構成を表すブロック図である。It is a block diagram showing the basic composition of the device concerning the present invention. 本発明の原理の説明図である。It is explanatory drawing of the principle of this invention. パルスマイクロ波を用いた検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the test | inspection apparatus using a pulse microwave. 本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 本発明の実施例で得られた測定信号を示す図である。It is a figure which shows the measurement signal obtained in the Example of this invention.

符号の説明Explanation of symbols

1:マイクロ波発生器
2:マイクロ波
3:マイクロ波を被測定対象面に導く第1の光学系
4:反射マイクロ波を検出器に導く第2の光学系
5:空間フィルタ
6:マイクロ波検出器
7:信号処理器
8:被測定対象の移動機構
9:被測定対象
101:被測定対象
102:マイクロ波を検出器に導く光学系
103:空間フィルタ
104:マイクロ波の検出器
105:被測定対象が凸状の場合の検出器前面におけるマイクロ波形状
106:被測定対象が平面の場合の検出器前面におけるマイクロ波形状
107:被測定対象が凹状の場合の検出器前面におけるマイクロ波形状
108:マイクロ波の選択領域
109:被測定対象が凸状の場合の検出信号
110:被測定対象が凹状の場合の検出信号
201:可視或いは赤外のパルスレーザー
202:ビーム・スプリッタ
203:ミラー
204:集光或いは拡大光学系
205:マイクロ波発生素子
206:パルスマイクロ波
207:マイクロ波を被測定対象に導く第1の光学系
208、211:レンズ
209:レーザー光の遅延機構
210:ダイクロイックミラー
212:電気光学素子
213:偏光変化を検出する検出器
214:ロックインアンプ
215:信号処理器
216:被測定対象の移動機構
217:被測定対象
218:光変調器
219:レーザー光
220:反射マイクロ波を検出器に導く第2の光学系
221:同期機構
301:チタンサファイアレーザー
302:ビーム・スプリッタ
303:チョッパー
304:テレスコープ
305:ZnTe結晶
306:マイクロ波に対するビーム・スプリッタ
307、319:凹面鏡
308:被測定対象
309:レーザー光に対するビーム・スプリッタ
310:ダイクロイックミラー
312:ZnTe結晶
313:偏光ビーム・スプリッタ
314:PINフォトダイオード
315:ロックインアンプ
316:PC
317:移動ステージ
318:同期信号送信機
1: Microwave generator 2: Microwave 3: First optical system that guides the microwave to the surface to be measured 4: Second optical system that guides the reflected microwave to the detector 5: Spatial filter 6: Microwave detection Device 7: Signal processor 8: Measuring object moving mechanism 9: Object to be measured 101: Object to be measured 102: Optical system 103: Spatial filter 104: Microwave detector 105: Object to be measured Microwave shape 106 on the front surface of the detector when the object is convex: Microwave shape 107 on the front surface of the detector when the object to be measured is a flat surface 107: Microwave shape 108 on the front surface of the detector when the object to be measured is concave: Microwave selection area 109: detection signal 110 when measurement target is convex 110: detection signal 201 when measurement target is concave 201: visible or infrared pulse laser 202: beam Splitter 203: Mirror 204: Condensing or magnifying optical system 205: Microwave generator 206: Pulsed microwave 207: First optical system 208 for guiding the microwave to the measurement target, 211: Lens 209: Laser light delay mechanism 210: Dichroic mirror 212: Electro-optical element 213: Detector 214 for detecting a change in polarization 214: Lock-in amplifier 215: Signal processor 216: Measurement target moving mechanism 217: Measurement target 218: Optical modulator 219: Laser light 220: Second optical system 221 for guiding the reflected microwave to the detector: Synchronization mechanism 301: Titanium sapphire laser 302: Beam splitter 303: Chopper 304: Telescope 305: ZnTe crystal 306: Beam splitter 307 for microwave 319: Concave mirror 308: Pair to be measured 309: beam splitter 310 to laser beam: dichroic mirror 312: ZnTe crystal 313: a polarizing beam splitter 314: PIN photodiode 315: lock-in amplifier 316: PC
317: Moving stage 318: Synchronization signal transmitter

Claims (3)

金属を検査するための表面検査装置において、波長10μm〜1mmのマイクロ波或いは、その一部の波長のマイクロ波を発生するマイクロ波発生器と、該マイクロ波を被測定対象面に導く第1の光学系と、被測定対象面からの反射波を検出するマイクロ波検出器と、前記反射波を前記マイクロ波検出器に導く第2の光学系と、被測定対象の移動機構と、測定位置ごとの検出信号を処理して信号強度分布を求め、求めた信号強度分布から前記金属の表面形状を決定する信号処理器とを兼ね備えた表面検査装置であって、前記マイクロ波検出器は、前記第2の光学系の後焦点位置と空間的に異なる位置に設置され、かつ、マイクロ波を空間的に選別して検出する機構を兼ね備えたことを特徴とする表面検査装置。 In a surface inspection apparatus for inspecting metal, a microwave generator that generates a microwave having a wavelength of 10 μm to 1 mm or a part of the wavelength, and a first that guides the microwave to a measurement target surface An optical system, a microwave detector for detecting a reflected wave from the surface to be measured, a second optical system for guiding the reflected wave to the microwave detector, a moving mechanism for the object to be measured, and each measurement position A surface inspection apparatus having a signal processor that determines a surface shape of the metal from the obtained signal intensity distribution by processing the detection signal of A surface inspection apparatus characterized in that it is installed at a position spatially different from the rear focal position of the two optical systems and also has a mechanism for spatially selecting and detecting microwaves. 前記マイクロ波発生器は、1ピコ秒以下の可視波長域のパルス光(可視パルス光)を発生させる光発生器と、該可視パルス光をマイクロ波に変換する機構(変換器)と、該可視光を該変換器に導く光学系とを備えており、1ピコ秒以下のパルスマイクロ波を発生するものであり、かつ、前記マイクロ波検出器は、該パルスマイクロ波が形成する電界によって屈折率が変化する材料と、該材料を照射する可視パルスレーザーと、該パルスレーザーの偏光変化を検出する機構からなることを特徴とする請求項1に記載の表面検査装置。 The microwave generator includes a light generator that generates pulsed light (visible pulsed light) in a visible wavelength region of 1 picosecond or less, a mechanism (converter) that converts the visible pulsed light into microwaves, and the visible light. An optical system that guides light to the converter, and generates a pulsed microwave of 1 picosecond or less, and the microwave detector has a refractive index by an electric field formed by the pulsed microwave. The surface inspection apparatus according to claim 1, comprising: a material that changes, a visible pulse laser that irradiates the material, and a mechanism that detects a change in polarization of the pulse laser. 前記信号処理器は、検出信号を周波数成分に分解して処理することを特徴とする請求項1又は2に記載の表面検査装置。 The surface inspection apparatus according to claim 1, wherein the signal processor processes the detection signal by decomposing it into frequency components.
JP2004021016A 2004-01-29 2004-01-29 Surface inspection device Expired - Lifetime JP4369766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021016A JP4369766B2 (en) 2004-01-29 2004-01-29 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021016A JP4369766B2 (en) 2004-01-29 2004-01-29 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2005214758A true JP2005214758A (en) 2005-08-11
JP4369766B2 JP4369766B2 (en) 2009-11-25

Family

ID=34904778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021016A Expired - Lifetime JP4369766B2 (en) 2004-01-29 2004-01-29 Surface inspection device

Country Status (1)

Country Link
JP (1) JP4369766B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278916A (en) * 2006-04-10 2007-10-25 Jfe Steel Kk Method and device for inspecting flaw of cast piece
JP2009186333A (en) * 2008-02-06 2009-08-20 Nippon Steel Corp Oxide film thickness measuring method and oxide film thickness measuring device
JP2011091591A (en) * 2009-10-22 2011-05-06 Mitsui Eng & Shipbuild Co Ltd Device apparatus and method manufacturing the same
WO2012086128A1 (en) * 2010-12-22 2012-06-28 株式会社日立ハイテクノロジーズ Defect inspection method and defect inspection device
JP2013152220A (en) * 2011-12-27 2013-08-08 Jfe Steel Corp Surface inspection apparatus and surface inspection method
JP2013228328A (en) * 2012-04-26 2013-11-07 Jfe Steel Corp Surface inspection device and surface inspection method
JP2013228329A (en) * 2012-04-26 2013-11-07 Jfe Steel Corp Surface inspection device and defect measurement method
US9164042B2 (en) 2011-02-10 2015-10-20 Hitachi High-Technologies Corporation Device for detecting foreign matter and method for detecting foreign matter
DE102016101566A1 (en) * 2016-01-28 2017-08-03 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Measuring method and measuring device for determining a material thickness or layer thickness of a test object
JP2019158820A (en) * 2018-03-16 2019-09-19 Jfeエンジニアリング株式会社 Base processing inspection device and method for inspecting base processing
CN113030006A (en) * 2021-03-08 2021-06-25 西南科技大学 Reflection-type terahertz micro-flow sensor with irregular U-shaped metal microstructure
CN113267465A (en) * 2021-05-13 2021-08-17 重庆邮电大学 Terahertz dual-mode imaging system and method based on time domain spectroscopy technology

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278916A (en) * 2006-04-10 2007-10-25 Jfe Steel Kk Method and device for inspecting flaw of cast piece
JP2009186333A (en) * 2008-02-06 2009-08-20 Nippon Steel Corp Oxide film thickness measuring method and oxide film thickness measuring device
JP2011091591A (en) * 2009-10-22 2011-05-06 Mitsui Eng & Shipbuild Co Ltd Device apparatus and method manufacturing the same
US8908171B2 (en) 2010-12-22 2014-12-09 Hitachi High-Technologies Corporation Defect inspection method and defect inspection device
WO2012086128A1 (en) * 2010-12-22 2012-06-28 株式会社日立ハイテクノロジーズ Defect inspection method and defect inspection device
US9164042B2 (en) 2011-02-10 2015-10-20 Hitachi High-Technologies Corporation Device for detecting foreign matter and method for detecting foreign matter
JP2013152220A (en) * 2011-12-27 2013-08-08 Jfe Steel Corp Surface inspection apparatus and surface inspection method
JP2013228329A (en) * 2012-04-26 2013-11-07 Jfe Steel Corp Surface inspection device and defect measurement method
JP2013228328A (en) * 2012-04-26 2013-11-07 Jfe Steel Corp Surface inspection device and surface inspection method
DE102016101566A1 (en) * 2016-01-28 2017-08-03 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Measuring method and measuring device for determining a material thickness or layer thickness of a test object
JP2019158820A (en) * 2018-03-16 2019-09-19 Jfeエンジニアリング株式会社 Base processing inspection device and method for inspecting base processing
CN113030006A (en) * 2021-03-08 2021-06-25 西南科技大学 Reflection-type terahertz micro-flow sensor with irregular U-shaped metal microstructure
CN113030006B (en) * 2021-03-08 2022-03-25 西南科技大学 Reflection-type terahertz micro-flow sensor with irregular U-shaped metal microstructure
CN113267465A (en) * 2021-05-13 2021-08-17 重庆邮电大学 Terahertz dual-mode imaging system and method based on time domain spectroscopy technology

Also Published As

Publication number Publication date
JP4369766B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US8305568B2 (en) Surface inspection method and surface inspection apparatus
US9080991B2 (en) Illuminating a specimen for metrology or inspection
US7180586B2 (en) System for detection of wafer defects
JP5187843B2 (en) Semiconductor inspection apparatus and inspection method
US7567343B2 (en) Method and apparatus for detecting defects on a wafer
US8711347B2 (en) Defect inspection method and device therefor
KR101332786B1 (en) Method and apparatus for detecting and/or classifying defects
JP4369766B2 (en) Surface inspection device
JP5712079B2 (en) Defect inspection apparatus and defect inspection method
US11175220B2 (en) Surface defect measuring apparatus and method by microscopic scattering polarization imaging
JPH0650903A (en) Apparatus and method for detecting surface particle
US7002695B2 (en) Dual-spot phase-sensitive detection
KR101445463B1 (en) Defect inspection method and device thereof
US6943898B2 (en) Apparatus and method for dual spot inspection of repetitive patterns
JP3940336B2 (en) Surface inspection device
JP2013152220A (en) Surface inspection apparatus and surface inspection method
WO2021199340A1 (en) Defect inspection device and defect inspection method
JP2005037213A (en) Detecting apparatus and imaging apparatus using the same
JP2006326604A (en) Laser beam machining apparatus
JP2006326604A6 (en) Laser processing equipment
JPH0470536A (en) Apparatus for measuring threshold value of laser damage
JP2013228328A (en) Surface inspection device and surface inspection method
Uno et al. Optical detection of mechanically damaged areas on manufactured metal parts by spatial frequency filtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R151 Written notification of patent or utility model registration

Ref document number: 4369766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350