JP2007278916A - Method and device for inspecting flaw of cast piece - Google Patents

Method and device for inspecting flaw of cast piece Download PDF

Info

Publication number
JP2007278916A
JP2007278916A JP2006107245A JP2006107245A JP2007278916A JP 2007278916 A JP2007278916 A JP 2007278916A JP 2006107245 A JP2006107245 A JP 2006107245A JP 2006107245 A JP2006107245 A JP 2006107245A JP 2007278916 A JP2007278916 A JP 2007278916A
Authority
JP
Japan
Prior art keywords
slab
electromagnetic wave
crack
defect
cast piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006107245A
Other languages
Japanese (ja)
Inventor
Junichi Yotsutsuji
淳一 四辻
Akio Nagamune
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006107245A priority Critical patent/JP2007278916A/en
Publication of JP2007278916A publication Critical patent/JP2007278916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspection method of a cast piece, capable of increasing lift-off and capable of inspecting cracks of a cast piece in a high temperature state, immediately after casting without having to widen the observation range, and to provide a flaw inspection device therefor. <P>SOLUTION: The flaw inspection method of the cast piece has a radiation step of radiating an electromagnetic wave toward the surface of the cast piece, a step of measuring the reflection intensity of electromagnetic waves reflected from the surface of the cast piece and a step of detecting a crack flaw of the cast piece, on the basis of the reflection intensity. Furthermore, the flaw inspection device of the cast piece has a radiation means for radiating the electromagnetic waves toward the surface of the cast piece that they converge to the surface of the cast piece, a measuring means for measuring the reflection intensity of the electromagnetic waves reflected from the surface of the cast piece and a flaw detection means for detecting the crack flaw of the cast piece, on the basis of the reflection intensity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造にて製造されるスラブ鋳片の欠陥検査方法及び欠陥検査装置に関するものである。   The present invention relates to a defect inspection method and a defect inspection apparatus for a slab slab manufactured by continuous casting.

鋼の連続鋳造では、溶鋼を水冷構造の鋳型に注入して冷却し、鋳型との接触面に凝固シェルを生成させながら、この凝固シェルを鋳型下方に連続的に引き抜き、途中冷却水にて凝固層を発達させ、全体が凝固した後ある長さにて切断し、鋳片を製造している。
鋳片の冷却過程の際、その冷却速度を早くすれば鋳片の引き抜き速度を早くすることが出来、その結果鋳片の製造速度も早くなり、生産量を増やすことができる。
In continuous casting of steel, molten steel is poured into a water-cooled mold and cooled, and a solidified shell is formed on the contact surface with the mold, and this solidified shell is continuously drawn below the mold and solidified with cooling water on the way. The layer is developed and cut to a certain length after the whole solidifies to produce a slab.
In the cooling process of the slab, if the cooling rate is increased, the drawing speed of the slab can be increased. As a result, the manufacturing speed of the slab is increased, and the production amount can be increased.

しかしながら、鋳片はその厚みが200〜300mmであり、表層から中心部までを同じ冷却状態に保つことは困難である。その結果、表層と内部にて温度差が発生する。温度の低い部分は温度の高い部分に比べ体積的に収縮することになる。表層の収縮が進むと、表層に応力が発生し、それが大きい場合に表層割れが発生してしまう。特に角型鋳片の角部は表面積が広くなるため温度が低くなり、割れが発生し易い。   However, the slab has a thickness of 200 to 300 mm, and it is difficult to keep the same cooling state from the surface layer to the center. As a result, a temperature difference occurs between the surface layer and the inside. The low temperature portion shrinks in volume compared to the high temperature portion. When the shrinkage of the surface layer proceeds, stress is generated on the surface layer, and when it is large, surface layer cracking occurs. In particular, the corner portion of the square slab has a large surface area, so the temperature is low and cracking is likely to occur.

このような割れが発生し検査にて見つけた場合、後の工程にて表層部を研削し割れ部を除去する作業が追加される。検査にて見落とした場合は、その割れ部分がきっかけとなり後の工程にて破断が生じたり表面に模様上の欠陥として残るなど、操業に大きな影響を与えることになる。そのため鋳片の割れを早い時点(切断直前、直後)で見つける為の欠陥検査装置が必要となっている。   When such a crack occurs and is found by inspection, an operation of grinding the surface layer portion and removing the crack portion in a later process is added. If it is overlooked in the inspection, the cracked part becomes a trigger, and the operation is greatly affected, such as breakage in a later process or remaining as a pattern defect on the surface. For this reason, a defect inspection device is required for finding cracks in the slab at an early point (immediately before and immediately after cutting).

従来、鋳片の割れ検査としては、カメラを設置しモニターする方法も含めて多くは目視であった。画像処理などを加えて自動化しているものも有るが、これらの問題点は、鋳片温度が高いと背景の赤外線の影響が大きく割れが見えくい、開口部が小さい割れは検出困難となること、スケールが被さると見えなくなること等である。   Conventionally, many inspections of slabs, including the method of installing and monitoring a camera, were visually. Some of them are automated by adding image processing, but these problems are that if the slab temperature is high, the influence of infrared rays in the background is large and cracks are difficult to see, and cracks with small openings are difficult to detect. , It becomes invisible when the scale is covered.

これらに対して特許文献1に示すように、電磁波を使用し割れ等の欠陥を検出することが試みられている。また、一般的な非破壊検査方法である渦電流や超音波を利用することも考えられる。
特開平10−311804号公報
On the other hand, as shown in Patent Document 1, attempts have been made to detect defects such as cracks using electromagnetic waves. It is also conceivable to use eddy currents and ultrasonic waves, which are general non-destructive inspection methods.
JP 10-31804 A

しかしながら、渦電流検査や超音波検査を用いた場合は、センサから対象物までの距離(以下リフトオフと呼ぶ)を近くする必要が有り、表面温度が800℃以上に成り得るため、冷却構造などが大型化してしまう。また、表面性状の影響を大きく受ける為、鋳造直後の表面性状の悪い鋳片では信号のS/Nも悪くなる可能性が高い。
リフトオフを大きくすると、表面性状の影響・熱の影響は小さくなると考えられるが、鋳片上のセンサの観察範囲が広がってしまい、小さい割れへの感度不足となる。
However, when eddy current inspection or ultrasonic inspection is used, it is necessary to reduce the distance from the sensor to the object (hereinafter referred to as lift-off), and the surface temperature can be 800 ° C. or higher. It will increase in size. In addition, since it is greatly affected by the surface properties, the S / N of the signal is likely to deteriorate in a slab having poor surface properties immediately after casting.
If the lift-off is increased, the influence of surface properties and the influence of heat are considered to be reduced, but the observation range of the sensor on the slab is expanded, resulting in insufficient sensitivity to small cracks.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、リフトオフを大きくでき、鋳片の割れを鋳造直後の高温の状態で検査し、且つ観察範囲を広げることなく検査する方法とその装置を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to increase the lift-off, inspect the crack of the slab in a high-temperature state immediately after casting, and inspect it without expanding the observation range. And to provide the device.

本発明に係る鋳片欠陥検査方法は、
鋳片表面に存在する割れ欠陥を、電磁波を利用して非接触で検出する欠陥検査方法であって、
電磁波を、鋳片の表面に向けて放射する放射工程と、
鋳片表面で反射した前記電磁波の反射強度を測定する工程と、
前記反射強度に基づき、割れの欠陥を検出する工程とを有することを特徴とするものである。
The slab defect inspection method according to the present invention includes:
A defect inspection method for detecting crack defects existing on the slab surface in a non-contact manner using electromagnetic waves,
A radiation process for radiating electromagnetic waves toward the surface of the slab;
Measuring the reflection intensity of the electromagnetic wave reflected on the slab surface;
And a step of detecting a crack defect based on the reflection intensity.

また、本発明に係る鋳片欠陥検査方法は、
前記放射工程においては、
放射する電磁波を、鋳片表面で集束するように放射することを特徴とするものである。
In addition, the slab defect inspection method according to the present invention,
In the radiation step,
The radiating electromagnetic wave is radiated so as to be focused on the surface of the slab.

また、本発明に係る鋳片欠陥検査方法は、
前記放射工程においては、
鋳片表面に励起される電界が、前記割れ欠陥の割れの方向に対して垂直方向となるように電磁波を放射することを特徴とするものである。
In addition, the slab defect inspection method according to the present invention,
In the radiation step,
The electromagnetic field is emitted so that the electric field excited on the surface of the slab is perpendicular to the cracking direction of the crack defect.

また、本発明に係る鋳片欠陥検査方法は、
電磁波を鋳片表面で集束する集束点の大きさを、最短の検出対象欠陥長の2倍以下とすることを特徴とするものである。
In addition, the slab defect inspection method according to the present invention,
The size of the focusing point for focusing the electromagnetic wave on the surface of the slab is set to be twice or less the shortest defect length to be detected.

また、本発明に係る鋳片欠陥検査方法は、
前記電磁波の波長を、最短の検出対象欠陥長の2倍以下となるような電磁波を用いることを特徴とするものである。
In addition, the slab defect inspection method according to the present invention,
An electromagnetic wave having a wavelength of the electromagnetic wave that is not more than twice the shortest defect length to be detected is used.

また、本発明に係る鋳片欠陥検査装置は、
電磁波を、鋳片表面で集束するように、前記鋳片表面に向けて、放射する放射手段と、
鋳片表面で反射した前記電磁波の反射強度を測定する測定手段と、
前記反射強度に基づき、鋳片の割れ欠陥を検出する欠陥検出手段とを有することを特徴とするものである。
Moreover, the slab defect inspection apparatus according to the present invention is:
Radiation means for radiating electromagnetic waves toward the slab surface so as to focus the electromagnetic wave on the slab surface;
Measuring means for measuring the reflection intensity of the electromagnetic wave reflected by the slab surface;
Defect detecting means for detecting crack defects in the slab based on the reflection intensity.

本発明によれば、電磁波を検査対象点と一致するように集束させるため、伝播経路を長くすることが出来、感度の低減を抑えながらリフトオフを大きくすることが可能となる。
また、鋳片上の観測範囲の小さい領域に電磁波を集中させることにより、小さい欠陥への感度低下を抑えた検査が可能となる。
According to the present invention, since the electromagnetic wave is focused so as to coincide with the inspection target point, the propagation path can be lengthened, and the lift-off can be increased while suppressing the reduction in sensitivity.
In addition, by concentrating electromagnetic waves on a small area of the observation range on the slab, inspection with reduced sensitivity to small defects can be performed.

実施の形態1.
以下、本発明を、スラブ連続鋳造機で溶鋼を鋳造する場合に適用した例を用いて具体的に説明する。
鋼の連続鋳造では、溶鋼を水冷構造の鋳型に注入して冷却し、鋳型との接触面に凝固シェルを生成させながら、この凝固シェルを鋳型下方に連続的に引き抜き、連続鋳造鋳片を製造している。連続鋳造機端では、スラブは所定の長さに切断される。
Embodiment 1 FIG.
Hereinafter, the present invention will be specifically described by using an example applied when casting molten steel with a slab continuous casting machine.
In continuous casting of steel, molten steel is poured into a water-cooled mold and cooled, and a solidified shell is formed on the contact surface with the mold, and the solidified shell is continuously drawn below the mold to produce a continuous cast slab. is doing. At the end of the continuous caster, the slab is cut to a predetermined length.

図1は、本発明の実施の形態1に係る鋳片欠陥検査方法を実現する鋳片欠陥検査装置の構造を示すものである。
図1に示す鋳片欠陥検査装置は、電磁波発生装置101、導波管102、誘電体レンズ104、ホーンアンテナ106を有する。
電磁波発生装置101は、例えばネットワークアナライザーにより実現され、ミリ波(1GHz〜数100GHz)を発生させる。
電磁波発生装置101が発生させた電磁波は、導波管102を経由して、ホーンアンテナ106より放射される。
ホーンアンテナ106より放射された電磁波103’は、鋳片表面に到達する。これにより、電磁波の強度は高く保持され、被検体である鋳片との距離を離しても、感度良く検査することが可能となる。なお、集束された電磁波の集束点の大きさは、検出したい割れ欠陥の長さの2倍以下が好ましい。
FIG. 1 shows a structure of a slab defect inspection apparatus that realizes a slab defect inspection method according to Embodiment 1 of the present invention.
The slab defect inspection apparatus shown in FIG. 1 includes an electromagnetic wave generator 101, a waveguide 102, a dielectric lens 104, and a horn antenna 106.
The electromagnetic wave generator 101 is realized by a network analyzer, for example, and generates millimeter waves (1 GHz to several hundreds GHz).
The electromagnetic wave generated by the electromagnetic wave generator 101 is radiated from the horn antenna 106 via the waveguide 102.
The electromagnetic wave 103 ′ radiated from the horn antenna 106 reaches the slab surface. Thereby, the strength of the electromagnetic wave is kept high, and it is possible to inspect with high sensitivity even if the distance from the cast slab which is the subject is increased. In addition, the size of the focused point of the focused electromagnetic wave is preferably not more than twice the length of the crack defect to be detected.

図2は、連続鋳造機の機端に、本実施の形態1に係る鋳片欠陥検査装置205を設置した際の、機端前後の概略図を示すものである。
スラブ201は、機端直後に切断され、所定の長さのスラブ202になる。
スラブ201の段階で冷却状態の不均一度が大きいと、スラブ201に割れ203が生じる。この時点で、割れの有無を検査するため、本実施の形態1に係る鋳片欠陥検査装置205を設置してある。
鋳片欠陥検査装置205にて欠陥が検出された場合は、所定の長さにてスラブ201を切断しスラブ202の状態にした後、部分的に研削する。欠陥部が大きい場合は、欠陥部を含む50cm〜1mほどの領域を切断し、廃棄する場合もある。
FIG. 2 is a schematic view of the slab defect inspection apparatus 205 according to the first embodiment when the slab defect inspection apparatus 205 according to the first embodiment is installed at the end of the continuous casting machine.
The slab 201 is cut immediately after the machine end to become a slab 202 having a predetermined length.
If the non-uniformity of the cooling state is large at the stage of the slab 201, a crack 203 occurs in the slab 201. At this time, the slab defect inspection apparatus 205 according to the first embodiment is installed in order to inspect for cracks.
When a defect is detected by the slab defect inspection device 205, the slab 201 is cut to a predetermined length to form a slab 202, and then partially ground. When the defective part is large, an area of about 50 cm to 1 m including the defective part may be cut and discarded.

ここで、鋳片欠陥検査装置205から放射される電磁波103’の偏波は、スラブ201上に励起される電界が、割れ203に対して垂直になる様に放射される。この理由については、後述の図4を用いて説明する。
放射された電磁波103’は、スラブ201表面の検査対象点にて集束するように設定される。
Here, the polarized wave of the electromagnetic wave 103 ′ radiated from the slab defect inspection apparatus 205 is radiated so that the electric field excited on the slab 201 is perpendicular to the crack 203. The reason for this will be described with reference to FIG.
The emitted electromagnetic wave 103 ′ is set so as to be focused at the inspection target point on the surface of the slab 201.

図3は、図2の鋳片欠陥検査装置205がスラブ201に放射した電磁波の反射の様子を説明するものである。
鋳片欠陥検査装置205は、スラブ201に電磁波103’を放射し、スラブ201表面の割れをスキャンする(図3の上図)。
図3の下図は、割れ203の有無により、反射波の強度が異なる様子を示す。矢印の方向は電磁波の伝播の向きを表し、矢印の長さは電磁波の強度を表している。
割れ203が無い部分をスキャンしているとき(図3の下図(1))は、スラブ201上で電磁波103’は殆ど反射するが、割れ203部分をスキャンしているとき(図3の下図(2))は、電界が一部割れ203に沿って伝播し、電磁波103’は割れ203内で減衰するので、反射強度が小さくなる。
FIG. 3 illustrates a state of reflection of electromagnetic waves radiated to the slab 201 by the slab defect inspection apparatus 205 of FIG.
The slab defect inspection apparatus 205 radiates the electromagnetic wave 103 ′ to the slab 201 and scans the surface of the slab 201 for cracks (upper view in FIG. 3).
The lower diagram of FIG. 3 shows how the intensity of the reflected wave varies depending on the presence or absence of the crack 203. The direction of the arrow represents the propagation direction of the electromagnetic wave, and the length of the arrow represents the intensity of the electromagnetic wave.
When scanning the portion without the crack 203 (lower diagram (1) in FIG. 3), the electromagnetic wave 103 ′ is almost reflected on the slab 201, but when scanning the crack 203 portion (lower diagram in FIG. 3 ( In 2)), since the electric field propagates along the crack 203 and the electromagnetic wave 103 ′ is attenuated in the crack 203, the reflection intensity is reduced.

なお、反射波は別途設ける図示しないアンテナ、もしくは放射に使用したアンテナ(図1のホーンアンテナ106)にて受信し、ネットワークアナライザー(図1の電磁波発生装置101)にて解析する(請求項5に記載の測定手段と欠陥検出手段に相当)。   The reflected wave is received by an antenna (not shown) provided separately or used for radiation (horn antenna 106 in FIG. 1) and analyzed by a network analyzer (electromagnetic wave generator 101 in FIG. 1). Equivalent to the measurement means and defect detection means described).

図4は、図3における反射波の強度と、スラブ201のスキャン位置との関係を示すものである。なお、図4は鋳片の表面内において、欠陥の割れの方向に対して、略垂直方向にスキャンした時の測定例である。
割れ203上をスキャンすると、上述のように反射波が減衰するため、反射強度を解析することにより、反射強度が大きく減衰している部分に割れが存在していることを検出することが可能になる。
FIG. 4 shows the relationship between the intensity of the reflected wave in FIG. 3 and the scan position of the slab 201. FIG. 4 shows a measurement example when scanning is performed in a direction substantially perpendicular to the direction of defect cracking in the surface of the slab.
When the crack 203 is scanned, the reflected wave is attenuated as described above. By analyzing the reflection intensity, it is possible to detect the presence of a crack in a portion where the reflection intensity is greatly attenuated. Become.

酸化物等が表面にある場合、酸化物の電気的特性によっては、酸化物表面にて反射が大きく、割れによる強度信号の変化が小さい場合も有る。
この場合、割れが表面に存在していても、反射波の強度が検出可能な程度に小さくならないため、割れの検出が難しくなる。
この場合は、周波数を下げるなどして、酸化物の透過性を高め、酸化物表面における反射を小さくして、検出精度を高めることができる。
When an oxide or the like is present on the surface, depending on the electrical characteristics of the oxide, there is a case where reflection on the oxide surface is large and a change in intensity signal due to cracking is small.
In this case, even if a crack exists on the surface, the intensity of the reflected wave does not become small enough to be detected, so that it is difficult to detect the crack.
In this case, the detection accuracy can be increased by reducing the frequency or the like to increase the permeability of the oxide and reduce the reflection on the oxide surface.

なお、電界を割れの方向に対して垂直にする理由は、電気抵抗が大きくなるので、電解の損失が大きくなるためである。さらに、一部は割れ深さ方向へ入り込むので、損失がより大きくなる。損失が大きくなると、反射波の強度の変化を検出しやすくなるため、割れの検出精度も増す。
もし、電界が割れに平行であれば、抵抗は小さくなり、したがって損失も小さくなるので、反射波の信号変化が小さくなり、割れの検出精度は低くなる。
The reason why the electric field is made perpendicular to the cracking direction is that the electric resistance is increased and the loss of electrolysis is increased. Furthermore, since a part goes into the crack depth direction, the loss becomes larger. As the loss increases, it becomes easier to detect a change in the intensity of the reflected wave, so that the crack detection accuracy also increases.
If the electric field is parallel to the crack, the resistance is small, and hence the loss is small. Therefore, the signal change of the reflected wave is small, and the crack detection accuracy is low.

次に、鋳片欠陥検査装置より放射する電磁波の波長について説明する。
使用する電磁波の波長によって、集束できる集束点の最小サイズが決まるので、その結果として検出可能な割れの寸法が定まる。これは、使用する電磁波の波長に対して1/2の長さ以上の割れであれば検出可能であるからである。
例えば本実施の形態1においては、図1の電磁波発生装置101はミリ波を発生させているが、この電磁波の波長が3mmであり、周波数が100GHzである場合、検出可能な割れは長さ1.5mm以上のものである。
検出したい割れの最小長さが1mmだとすれば、波長は2mm以下が必要であり、この場合150GHz以上の周波数を使用する必要が有る。
Next, the wavelength of the electromagnetic wave radiated from the slab defect inspection apparatus will be described.
The minimum size of the focusing point that can be focused is determined by the wavelength of the electromagnetic wave used, and as a result, the size of the detectable crack is determined. This is because it can be detected if it is a crack having a length of 1/2 or more with respect to the wavelength of the electromagnetic wave used.
For example, in the first embodiment, the electromagnetic wave generation device 101 of FIG. 1 generates millimeter waves, but when the wavelength of this electromagnetic wave is 3 mm and the frequency is 100 GHz, the detectable crack has a length of 1. .5 mm or more.
If the minimum length of a crack to be detected is 1 mm, the wavelength needs to be 2 mm or less. In this case, it is necessary to use a frequency of 150 GHz or more.

一般的にスラブ上にて問題となる割れは、長さ数mm以上であるため、10GHz〜300GHzが使用範囲である。もし、対象が10mmを越すような長さであれば、15GHzでもよい。別の表現を用いれば、電磁波の波長は、最短の検出対象欠陥長の2倍以下とするのが好ましい。
この理由は、導波管のサイズが電磁波の半波長のサイズより小さいと、導波管は電磁波を通さないためである。
割れ欠陥部を導波管とみなせば、鋳片欠陥検査装置が放射した電磁波は割れ欠陥部に入っていかないことになり、したがって反射が支配的となり、損失が少なくなるので、割れ欠陥部スキャン時の反射波の信号変化が小さくなる。
すると、反射波の強度を解析することによって割れを検出することが難しくなり、検出精度が低下する。
そのため、鋳片欠陥検査装置より放射する電磁波の波長が、最短の検出対象欠陥長の2倍以下となるように、電磁波の周波数を設定する。
Generally, cracks that are a problem on the slab are several millimeters or more in length, and the use range is 10 GHz to 300 GHz. If the target is longer than 10 mm, 15 GHz may be used. If another expression is used, it is preferable that the wavelength of the electromagnetic wave is not more than twice the shortest defect length to be detected.
This is because the waveguide does not transmit electromagnetic waves when the size of the waveguide is smaller than the half-wave size of the electromagnetic waves.
If the crack defect part is regarded as a waveguide, the electromagnetic wave emitted by the slab defect inspection device will not enter the crack defect part, so that reflection becomes dominant and loss is reduced. The signal change of the reflected wave becomes smaller.
Then, it becomes difficult to detect a crack by analyzing the intensity of the reflected wave, and the detection accuracy is lowered.
Therefore, the frequency of the electromagnetic wave is set so that the wavelength of the electromagnetic wave radiated from the slab defect inspection apparatus is not more than twice the shortest detection target defect length.

ここで、感度良く割れを検出するためには、割れの方向によって電磁波の偏波を変える必要が有る。
これには、90°偏波を変えた二つの鋳片欠陥検査装置を設置しても良いし、一つの鋳片欠陥検査装置を回転させて実現してもよい。
実際には鋳片の長手方向(連続鋳造における引き抜き方向)へ割れる縦割れが比較的多いと思われるため、このような場合は電界偏波が鋳片幅方向となるように鋳片欠陥検査装置を設置すればよい。
一方、スラブ中央では、縦割れ、コーナー部付近では幅方向に割れる横割れが多くなる場合もあるので、そのような場合には電界偏波を鋳片長手方向にすればよい。このように、欠陥の割れ方向が部位で変わるので、検査対象に合わせて偏波を変える必要がある。
Here, in order to detect a crack with high sensitivity, it is necessary to change the polarization of the electromagnetic wave depending on the direction of the crack.
For this purpose, two slab defect inspection apparatuses with 90 ° polarized waves may be installed, or a single slab defect inspection apparatus may be rotated.
Actually, it seems that there are relatively many vertical cracks that break in the longitudinal direction of the slab (drawing direction in continuous casting). In such a case, the slab defect inspection device is set so that the electric field polarization is in the slab width direction. Should be installed.
On the other hand, in the center of the slab, there are cases where vertical cracks and lateral cracks that break in the width direction increase in the vicinity of the corner portion. In such a case, the electric field polarization may be set in the longitudinal direction of the slab. As described above, since the cracking direction of the defect changes depending on the part, it is necessary to change the polarization according to the inspection object.

図2において、鋳片欠陥検査装置205は、切断されたスラブ202上に設置されても良いし、さらにスラブの冷却床などに設置しても良い。
また、スラブは一度酸化膜を削った状態にすることにより、表面性状が安定化し、割れの検出感度が良くなることもあるため、切削後に検査する位置に鋳片欠陥検査装置205を取り付けても良い。
In FIG. 2, the slab defect inspection device 205 may be installed on the cut slab 202, or may be installed on a cooling floor of the slab.
In addition, once the slab has been shaved, the surface properties may be stabilized and the crack detection sensitivity may be improved. Therefore, even if the slab defect inspection device 205 is attached at the position to be inspected after cutting. good.

図5は、図2における連続鋳造機の周辺機器等について説明するものである。
一つのスラブ内の欠陥位置・個数によっては、当初予定の製造製品を変更したり、出荷先を変更するなどの処置をとる場合がある。
そのため、スラブの欠陥位置・個数は、鋳片欠陥検査装置205より記録システム206に出力して同システムに記録し、下工程へ連絡するように、構成することができる。
また、欠陥が多い場合は冷却工程が不適切な場合も考えられるため、上工程へフィードバックして、スラブ冷却装置207の冷却水制御等を最適化するように構成することができる。
このようにして、スラブ上の欠陥情報をデータベース化し、最適な処置を施すことにより、下工程での欠陥の発生、品質的に不適当な製品の製造、不適切な操業の継続等を、避けることができる。
FIG. 5 explains peripheral devices and the like of the continuous casting machine in FIG.
Depending on the position and number of defects in one slab, there are cases in which measures such as changing the initially planned manufactured product or changing the shipping destination are taken.
Therefore, the slab defect position / number can be output from the slab defect inspection apparatus 205 to the recording system 206, recorded in the system, and communicated to the lower process.
In addition, when there are many defects, the cooling process may be inappropriate. Therefore, it is possible to provide feedback to the upper process and optimize the cooling water control of the slab cooling device 207.
In this way, defect information on the slab is made into a database and optimal measures are taken to avoid the occurrence of defects in the lower process, production of products that are inappropriate in quality, and continuation of inappropriate operations. be able to.

本実施の形態1においては、電磁波発生装置101としてネットワークアナライザーを用いたが、GUNタイプ等の発振器とパワーメータ等の受信機を用いても良い。   In the first embodiment, a network analyzer is used as the electromagnetic wave generator 101. However, an oscillator such as a GUN type and a receiver such as a power meter may be used.

以上のように、本実施の形態1に係る鋳片欠陥検査装置によれば、電磁波を、鋳片の検査対象点に向けて放射する放射手段(ホーンアンテナ106及び誘電体レンズ104)と、検査対象点で反射した前記電磁波の反射強度を測定する測定手段(ネットワークアナライザ101)と、前記反射強度に基づき、検査対象点の欠陥を検出する欠陥検出手段(ネットワークアナライザ101で兼用)とを有するので、感度の低減を抑えながらリフトオフを大きくすることができるので、スラブが高温である環境下への鋳片欠陥検査装置設置も可能となる。   As described above, according to the slab defect inspection apparatus according to the first embodiment, the radiation means (horn antenna 106 and dielectric lens 104) that radiates electromagnetic waves toward the inspection target point of the slab, and the inspection Since it has a measurement means (network analyzer 101) for measuring the reflection intensity of the electromagnetic wave reflected at the target point, and a defect detection means (also used by the network analyzer 101) for detecting a defect at the inspection target point based on the reflection intensity. Since the lift-off can be increased while suppressing the reduction in sensitivity, the slab defect inspection apparatus can be installed in an environment where the slab is at a high temperature.

また、前記放射手段(ホーンアンテナ106及び誘電体レンズ104)は、放射する電磁波の集束点が、検査対象点と一致するように集束させるので、電磁波の伝播経路を長くすることが出来、鋳片上の観測範囲の小さい領域に電磁波を集中させることにより、小さい欠陥への感度低下を抑えた検査が可能となる。   Further, since the radiating means (horn antenna 106 and dielectric lens 104) focuses the radiated electromagnetic wave so that the focal point of the radiated electromagnetic wave coincides with the point to be inspected, the propagation path of the electromagnetic wave can be lengthened, and the slab By concentrating electromagnetic waves in a small area of the observation range, inspection with reduced sensitivity to small defects can be performed.

また、前記放射手段(ホーンアンテナ106及び誘電体レンズ104)は、鋳片上表面に励起される電界が、鋳片に存在する割れの方向に対して垂直方向となるように電磁波を放射するので、電気抵抗が大きくなり、電解の損失が大きくなるため、割れをスキャンしている時の反射波の強度変化を検出しやすくなり、割れの検出精度が増す。   Further, the radiation means (horn antenna 106 and dielectric lens 104) radiates electromagnetic waves so that the electric field excited on the upper surface of the slab is perpendicular to the direction of cracks existing in the slab. Since the electrical resistance increases and the loss of electrolysis increases, it becomes easier to detect the intensity change of the reflected wave when scanning for cracks, and the crack detection accuracy increases.

また、前記放射手段(ホーンアンテナ106及び誘電体レンズ104)は、検査対象点に到達する電磁波の波長が、最短の検出対象欠陥長の2倍以下となるような電磁波を用いるので、鋳片表面の割れに沿って入射波が伝播しやすくなり、割れにおける反射波の強度変化が大きくなるので、割れの検出精度が増す。   In addition, the radiating means (horn antenna 106 and dielectric lens 104) uses an electromagnetic wave such that the wavelength of the electromagnetic wave reaching the inspection target point is not more than twice the shortest detection target defect length. The incident wave easily propagates along the crack of the crack, and the intensity change of the reflected wave in the crack increases, so that the crack detection accuracy increases.

実施の形態2.
図6は、本発明の実施の形態2に係る鋳片欠陥検査装置における電磁波発生手段について説明するものである。
実施の形態1においては、図1に示すように、誘電体レンズ104を用いて電磁波103を集束点に集束させている。
集束させる方法としては上記誘電体レンズの他に、図6に示すパラボラアンテナを用いることもできる。
図6において、電磁波発生装置601は所定の波長の電磁波を発生させ、放射器602により放射する。
放射された電磁波は、パラボラ反射鏡603及び双曲面鏡604にて反射し、伝播路605を経由して、焦点606において集束するように構成される。
検査対象である鋳片表面で反射した反射波は、別途設けたアンテナ(図示せず)等により受信され、図示しない解析装置等により強度を分析し、割れを検出する。
Embodiment 2. FIG.
FIG. 6 explains electromagnetic wave generation means in the slab defect inspection apparatus according to Embodiment 2 of the present invention.
In the first embodiment, as shown in FIG. 1, the electromagnetic wave 103 is focused on a focusing point using a dielectric lens 104.
As a focusing method, a parabolic antenna shown in FIG. 6 can be used in addition to the dielectric lens.
In FIG. 6, an electromagnetic wave generator 601 generates an electromagnetic wave having a predetermined wavelength and radiates it by a radiator 602.
The radiated electromagnetic wave is reflected by the parabolic reflector 603 and the hyperboloidal mirror 604 and is focused at the focal point 606 via the propagation path 605.
The reflected wave reflected from the surface of the slab to be inspected is received by an antenna (not shown) or the like provided separately, and the strength is analyzed by an analysis device (not shown) to detect cracks.

図7は、本発明の実施の形態2に係る鋳片欠陥検査装置における電磁波発生手段の、別の実現方法について説明するものである。
電磁波を集束させる方法としては、図7に示すような、複数のアンテナを利用したフェーズドアレイアンテナを使用することもできる。
アンテナ群701は、位相差を持たせたアンテナをアレイ状に並べたものである。
位相器群702は、アンテナ群701の個々のアンテナ毎に設けられた位相器の集合である。
個々のアンテナの電磁波位相を、位相器で変換することにより、任意の方向に電磁波を発生させることができるので、集束点において個々のアンテナの電磁波を集束させることができ、実施の形態1の図1における誘電体レンズ104と同等の集束効果を奏することができる。
FIG. 7 explains another method of realizing the electromagnetic wave generating means in the slab defect inspection apparatus according to Embodiment 2 of the present invention.
As a method of focusing electromagnetic waves, a phased array antenna using a plurality of antennas as shown in FIG. 7 can be used.
The antenna group 701 is an array of antennas having a phase difference.
The phase shifter group 702 is a set of phase shifters provided for each antenna of the antenna group 701.
Since the electromagnetic wave phase of each antenna is converted by a phase shifter, the electromagnetic wave can be generated in an arbitrary direction. Therefore, the electromagnetic wave of each antenna can be focused at the focusing point. 1 can achieve the same focusing effect as the dielectric lens 104 in FIG.

本発明の実施の形態1に係る鋳片欠陥検査方法を実現する鋳片欠陥検査装置の構造を示すものである。1 shows a structure of a slab defect inspection apparatus that realizes a slab defect inspection method according to Embodiment 1 of the present invention. 連続鋳造機の機端に、本実施の形態1に係る鋳片欠陥検査装置205を設置した際の、機端前後の概略図を示すものである。BRIEF DESCRIPTION OF THE DRAWINGS The schematic before and after a machine end at the time of installing the slab defect inspection apparatus 205 which concerns on this Embodiment 1 in the machine end of a continuous casting machine is shown. 図2の鋳片欠陥検査装置205がスラブ201に放射した電磁波の反射の様子を説明するものである。The state of reflection of electromagnetic waves radiated to the slab 201 by the slab defect inspection apparatus 205 of FIG. 2 will be described. 図3における反射波の強度と、スラブ201のスキャン位置との関係を示すものである。FIG. 4 shows the relationship between the intensity of the reflected wave in FIG. 3 and the scan position of the slab 201. FIG. 図2における連続鋳造機の周辺機器等について説明するものである。The peripheral equipment of the continuous casting machine in FIG. 2 will be described. 本発明の実施の形態2に係る鋳片欠陥検査装置における電磁波発生手段について説明するものである。The electromagnetic wave generation means in the slab defect inspection apparatus according to Embodiment 2 of the present invention will be described. 本発明の実施の形態2に係る鋳片欠陥検査装置における電磁波発生手段の、別の実現方法について説明するものである。Another realization method of the electromagnetic wave generation means in the slab defect inspection apparatus according to Embodiment 2 of the present invention will be described.

符号の説明Explanation of symbols

101 電磁波発生装置、102 導波管、103 電磁波、103’ 電磁波、104 誘電体レンズ、106 ホーンアンテナ、201 スラブ、202 スラブ(切断後)、203 割れ、205 欠陥検査装置、206 記録システム、207 スラブ冷却装置、208 ロール、601 電磁波発生装置、602 放射器、603 パラボラ反射鏡、604 双曲面鏡、605 伝播路、606 焦点、701 アンテナ群、702 位相器群。
DESCRIPTION OF SYMBOLS 101 Electromagnetic wave generator, 102 Waveguide, 103 Electromagnetic wave, 103 'Electromagnetic wave, 104 Dielectric lens, 106 Horn antenna, 201 Slab, 202 Slab (after cutting), 203 Crack, 205 Defect inspection apparatus, 206 Recording system, 207 Slab Cooling device, 208 roll, 601 electromagnetic wave generator, 602 radiator, 603 parabolic reflector, 604 hyperboloid mirror, 605 propagation path, 606 focal point, 701 antenna group, 702 phaser group.

Claims (6)

鋳片表面に存在する割れ欠陥を、電磁波を利用して非接触で検出する欠陥検査方法であって、
電磁波を、鋳片の表面に向けて放射する放射工程と、
鋳片表面で反射した前記電磁波の反射強度を測定する工程と、
前記反射強度に基づき、割れの欠陥を検出する工程とを有することを特徴とする鋳片欠陥検査方法。
A defect inspection method for detecting crack defects existing on the slab surface in a non-contact manner using electromagnetic waves,
A radiation process for radiating electromagnetic waves toward the surface of the slab;
Measuring the reflection intensity of the electromagnetic wave reflected on the slab surface;
A slab defect inspection method comprising: detecting a crack defect based on the reflection intensity.
前記放射工程においては、
放射する電磁波を、鋳片表面で集束するように放射することを特徴とする請求項1に記載の鋳片欠陥検査方法。
In the radiation step,
The slab defect inspection method according to claim 1, wherein the radiated electromagnetic wave is radiated so as to be focused on the slab surface.
前記放射工程においては、
鋳片表面に励起される電界が、前記割れ欠陥の割れの方向に対して垂直方向となるように電磁波を放射することを特徴とする請求項1又は請求項2に記載の鋳片欠陥検査方法。
In the radiation step,
The slab defect inspection method according to claim 1 or 2, wherein an electromagnetic wave is radiated so that an electric field excited on a slab surface is in a direction perpendicular to a crack direction of the crack defect. .
電磁波を鋳片表面で集束する集束点の大きさを、最短の検出対象欠陥長の2倍以下とすることを特徴とする請求項1ないし請求項3のいずれかに記載の鋳片欠陥検査方法。   The slab defect inspection method according to any one of claims 1 to 3, wherein the size of the focusing point for focusing the electromagnetic wave on the slab surface is set to be twice or less the shortest detection target defect length. . 前記電磁波の波長を、最短の検出対象欠陥長の2倍以下となるような電磁波を用いることを特徴とする請求項1ないし請求項4のいずれかに記載の鋳片欠陥検出方法。   The slab defect detection method according to any one of claims 1 to 4, wherein the electromagnetic wave is used such that the wavelength of the electromagnetic wave is not more than twice the shortest detection target defect length. 電磁波を、鋳片表面で集束するように、前記鋳片表面に向けて、放射する放射手段と、
鋳片表面で反射した前記電磁波の反射強度を測定する測定手段と、
前記反射強度に基づき、鋳片の割れ欠陥を検出する欠陥検出手段とを有することを特徴とする鋳片欠陥検査装置。
Radiation means for radiating electromagnetic waves toward the slab surface so as to focus the electromagnetic wave on the slab surface;
Measuring means for measuring the reflection intensity of the electromagnetic wave reflected by the slab surface;
A slab defect inspection apparatus comprising defect detection means for detecting a crack defect in a slab based on the reflection intensity.
JP2006107245A 2006-04-10 2006-04-10 Method and device for inspecting flaw of cast piece Pending JP2007278916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107245A JP2007278916A (en) 2006-04-10 2006-04-10 Method and device for inspecting flaw of cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107245A JP2007278916A (en) 2006-04-10 2006-04-10 Method and device for inspecting flaw of cast piece

Publications (1)

Publication Number Publication Date
JP2007278916A true JP2007278916A (en) 2007-10-25

Family

ID=38680502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107245A Pending JP2007278916A (en) 2006-04-10 2006-04-10 Method and device for inspecting flaw of cast piece

Country Status (1)

Country Link
JP (1) JP2007278916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204055A (en) * 2009-03-05 2010-09-16 Toyama Prefecture Concrete internal inspection apparatus
CN106707037A (en) * 2017-01-23 2017-05-24 电子科技大学 Material electromagnetic property parameter lossless reflection measuring method and device
CN113899874A (en) * 2021-11-17 2022-01-07 重庆钢铁股份有限公司 Evaluation and detection method for low-power detection of intermediate cracks of continuous casting slabs
JP2023016726A (en) * 2021-07-23 2023-02-02 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for manufacturing metal band material
CN117783156A (en) * 2023-12-27 2024-03-29 北京西管安通检测技术有限责任公司 Nondestructive testing method and device for nonmetallic material and electronic equipment

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126083A (en) * 1978-03-23 1979-09-29 Hiyuutetsuku Kk Device for detecting surface flaw of continuously cast steel ingot
JPS55129734A (en) * 1979-01-20 1980-10-07 Lambda Ind Science Nondestructive scratch detector
JPS60173445A (en) * 1984-02-20 1985-09-06 Nippon Steel Corp Detection of flaw of slab at hot in continuous casting
JPS60179638A (en) * 1984-02-28 1985-09-13 Kawasaki Steel Corp Detector for surface defect of hot metallic material
JPH01112142A (en) * 1987-10-26 1989-04-28 Aichi Steel Works Ltd Surface state measuring device for continuously cast piece
JPH10104171A (en) * 1996-09-09 1998-04-24 Lucent Technol Inc Optical system and object inspecting method using the same
JPH10185782A (en) * 1996-10-24 1998-07-14 Hamamatsu Photonics Kk Method for assigning fluorescent single molecule on substrate surface, and method for visualizing structure defect on substrate surface
JPH10311804A (en) * 1997-05-09 1998-11-24 Nippon Haikon Kk Method and device for measuring defect of material
JP2002122551A (en) * 2000-10-18 2002-04-26 Kanagawa Acad Of Sci & Technol Defect detecting device and method
JP2004069571A (en) * 2002-08-08 2004-03-04 Nippon Steel Corp Surface inspection apparatus
JP2004144542A (en) * 2002-10-23 2004-05-20 Omron Corp Device and method for detecting object
JP2004156987A (en) * 2002-11-06 2004-06-03 Hitachi Constr Mach Co Ltd Nondestructive evaluation apparatus and microwave irradiation apparatus
JP2005043230A (en) * 2003-07-23 2005-02-17 Institute Of Physical & Chemical Research Defect detection method and device of elongate member
JP2005214758A (en) * 2004-01-29 2005-08-11 Nippon Steel Corp Surface inspection device
JP2005233783A (en) * 2004-02-19 2005-09-02 Shogo Tanaka Position telemetering method using electromagnetic-wave radar

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126083A (en) * 1978-03-23 1979-09-29 Hiyuutetsuku Kk Device for detecting surface flaw of continuously cast steel ingot
JPS55129734A (en) * 1979-01-20 1980-10-07 Lambda Ind Science Nondestructive scratch detector
JPS60173445A (en) * 1984-02-20 1985-09-06 Nippon Steel Corp Detection of flaw of slab at hot in continuous casting
JPS60179638A (en) * 1984-02-28 1985-09-13 Kawasaki Steel Corp Detector for surface defect of hot metallic material
JPH01112142A (en) * 1987-10-26 1989-04-28 Aichi Steel Works Ltd Surface state measuring device for continuously cast piece
JPH10104171A (en) * 1996-09-09 1998-04-24 Lucent Technol Inc Optical system and object inspecting method using the same
JPH10185782A (en) * 1996-10-24 1998-07-14 Hamamatsu Photonics Kk Method for assigning fluorescent single molecule on substrate surface, and method for visualizing structure defect on substrate surface
JPH10311804A (en) * 1997-05-09 1998-11-24 Nippon Haikon Kk Method and device for measuring defect of material
JP2002122551A (en) * 2000-10-18 2002-04-26 Kanagawa Acad Of Sci & Technol Defect detecting device and method
JP2004069571A (en) * 2002-08-08 2004-03-04 Nippon Steel Corp Surface inspection apparatus
JP2004144542A (en) * 2002-10-23 2004-05-20 Omron Corp Device and method for detecting object
JP2004156987A (en) * 2002-11-06 2004-06-03 Hitachi Constr Mach Co Ltd Nondestructive evaluation apparatus and microwave irradiation apparatus
JP2005043230A (en) * 2003-07-23 2005-02-17 Institute Of Physical & Chemical Research Defect detection method and device of elongate member
JP2005214758A (en) * 2004-01-29 2005-08-11 Nippon Steel Corp Surface inspection device
JP2005233783A (en) * 2004-02-19 2005-09-02 Shogo Tanaka Position telemetering method using electromagnetic-wave radar

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011047799; 坂真澄,外: 'マイクロ波による金属材料表面上の閉じた疲労き裂の非破壊評価' 非破壊検査 第50巻,第9号, 20010901, P.607-611 *
JPN6013042094; 'Surface inspection of cast billets' Steel times Vol.213,No.1, 198501, P.35 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204055A (en) * 2009-03-05 2010-09-16 Toyama Prefecture Concrete internal inspection apparatus
CN106707037A (en) * 2017-01-23 2017-05-24 电子科技大学 Material electromagnetic property parameter lossless reflection measuring method and device
CN106707037B (en) * 2017-01-23 2019-04-09 电子科技大学 A kind of lossless reflectance measurement methods of material electromagnetic property parameters and device
JP2023016726A (en) * 2021-07-23 2023-02-02 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for manufacturing metal band material
JP7440576B2 (en) 2021-07-23 2024-02-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for producing metal strip material
CN113899874A (en) * 2021-11-17 2022-01-07 重庆钢铁股份有限公司 Evaluation and detection method for low-power detection of intermediate cracks of continuous casting slabs
CN113899874B (en) * 2021-11-17 2024-04-12 重庆钢铁股份有限公司 Evaluation and detection method for intermediate crack of low-power inspection of continuous casting slab
CN117783156A (en) * 2023-12-27 2024-03-29 北京西管安通检测技术有限责任公司 Nondestructive testing method and device for nonmetallic material and electronic equipment

Similar Documents

Publication Publication Date Title
US9506862B2 (en) Welded portion inspection apparatus and inspection method thereof
Salski et al. Non-destructive testing of carbon-fibre-reinforced polymer materials with a radio-frequency inductive sensor
US9839979B2 (en) System for evaluating weld quality using eddy currents
CN109269985B (en) High-frequency ultrasonic online monitoring method for internal defects of metal moving molten pool
JP2007278916A (en) Method and device for inspecting flaw of cast piece
US20110296922A1 (en) Emat for inspecting thick-section welds and weld overlays during the welding process
CN108169282A (en) Differential type induced with laser THERMAL IMAGING NONDESTRUCTIVE TESTING system and method
CN203216857U (en) Infrared detection device for metal defects
US20230135790A1 (en) Defect detection method, defect detection device, and additive manufacturing device
JP2004279144A (en) Ultrasonic inspection method and device
US20220146252A1 (en) Non-Contact Non-Destructive Testing Method and System
US4509369A (en) Near surface inspection system
JP2013246097A (en) Nondestructive inspection method for exfoliation in coating layer, and nondestructive inspection system
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JP2007057414A (en) Test piece for sensitivity calibration of ultrasonic testing, and its manufacturing method
Ghasr et al. 3D millimeter wave imaging of vertical cracks and its application for the inspection of HDPE pipes
RU2592044C1 (en) Method for ultrasonic measurement and ultrasonic measuring device
CN116053155A (en) Method and system for detecting depth of damaged layer on surface of silicon wafer
JP5133651B2 (en) Laser welding evaluation method
WO2017123112A1 (en) Ultrasonic testing of continuously cast workpiece
TW201643424A (en) Steel material cleanliness evaluation method and cleanliness evaluation device
JP2005249536A (en) Non-destructive inspection method for concrete, and nondestructive inspection-machine therefor
JP2007132739A (en) Nondestructive inspection method of concrete, and nondestructive inspection machine thereof
CN113959954B (en) Laser ultrasonic energy compensation method and system for nondestructive testing of pipes
Xiong et al. Transmissive laser lock-in thermography for highly sensitive and online imaging of real interfacial bubbles in wafer bonding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827