JPH10311804A - Method and device for measuring defect of material - Google Patents

Method and device for measuring defect of material

Info

Publication number
JPH10311804A
JPH10311804A JP13450997A JP13450997A JPH10311804A JP H10311804 A JPH10311804 A JP H10311804A JP 13450997 A JP13450997 A JP 13450997A JP 13450997 A JP13450997 A JP 13450997A JP H10311804 A JPH10311804 A JP H10311804A
Authority
JP
Japan
Prior art keywords
antenna
defect
crack
detection
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13450997A
Other languages
Japanese (ja)
Inventor
Tetsuo Shoji
哲雄 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAIKON KK
NIPPON HIHAKAI KEISOKU KK
Original Assignee
NIPPON HAIKON KK
NIPPON HIHAKAI KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAIKON KK, NIPPON HIHAKAI KEISOKU KK filed Critical NIPPON HAIKON KK
Priority to JP13450997A priority Critical patent/JPH10311804A/en
Publication of JPH10311804A publication Critical patent/JPH10311804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the presence, position and size of a defect in no contact by carrying an alternating current to a detecting conductor linearly arranged along a material to be measured, and detecting the electromagnetic wave change from the material through an antenna. SOLUTION: A dipole antenna element 7 is arranged opposite to a material to be measured 1 in such a manner as to be horizontally movable through a thin insulating sheet such as paper or plastics. A detecting means 9 comprising a field intensity detector including an amplifier and a phase detector is connected to the antenna element 7 through, for example, a 500 Ω-coaxial cable 8. A detecting conductor 6, for example, consisting of a copper wire 2 nm wide and 36 μm thick is arranged along the material, and a high frequency current of frequency 100 kHz and 1.5 A, for example, is carried thereto from an ac power source 3 to induct an induction current in the material. Since the electric field generated on the material 1 by this induction current is minutely changed by the part of a crack 2, it can be detected by the antenna element 7. Thus, the crack 2 can be easily detected in no contact without breaking the material 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は材料の欠陥計測方法
及び装置、特に金属、セラミックス等の導電性、常磁性
体材料及び強磁性材料の材質変化及びき裂の有無及び程
度を検知する方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a defect of a material, and more particularly to a method and a method for detecting a change in the material of a conductive material such as a metal or a ceramic, a paramagnetic material and a ferromagnetic material, and the presence or absence and degree of a crack. It concerns the device.

【0002】[0002]

【従来の技術】例えば、火力プラントのボイラーヘッダ
ー、タービンロータ及びタービンケーシング等において
は疲労によるき裂が発生した場合、重大な事故につなが
ることになる。このような金属等の表面あるいはその内
部にき裂がある場合、そのき裂の有無や、き裂の深さを
知るようにしたものは既知である。
2. Description of the Related Art For example, if a crack occurs due to fatigue in a boiler header, a turbine rotor, a turbine casing, or the like of a thermal power plant, a serious accident may occur. If there is a crack on the surface or inside of such a metal or the like, it is known to know the presence or absence of the crack and the depth of the crack.

【0003】図3は従来の材料の欠陥計測方法及び装置
の説明図であって、1は導電性,常磁性体材料、2はこ
れに生じたき裂、3は例えば数ボルトの交流電源、4
は、例えば5〜10mm互いに離間する位置で上記材料
1に接触せしめた2組の検知電極、5は上記検知電極
4,4間の電圧を測定する電圧計、6はき裂を検知すべ
き導電性,常磁性体材料1の表面に沿って直線状に配置
した長さが例えば10〜20cmのエナメル線等の検知
導体である。
FIG. 3 is an explanatory view of a conventional method and apparatus for measuring a defect of a material, wherein 1 is a conductive and paramagnetic material, 2 is a crack generated therein, 3 is an AC power supply of, for example, several volts,
Are, for example, two pairs of detection electrodes 5-5 mm in contact with the material 1 at positions separated from each other, 5 is a voltmeter for measuring the voltage between the detection electrodes 4 and 4, and 6 is a conductive electrode for detecting a crack. And a detection conductor such as an enameled wire having a length of, for example, 10 to 20 cm, which is linearly arranged along the surface of the paramagnetic material 1.

【0004】この方法及び装置では検知導体6に電源3
から例えば数アンペア程度の交流電流を流し、この結果
材料1内に上記検知導体に6沿って磁気誘導電流が発生
されるようにし、上記検知導体7に沿った上記材料1上
の2点間の電圧を上記材料1に接触している検知電極
4,4によって検出せしめ、次に、上記検知導体6及び
検知電極4,4を任意の方向に移動したとき、上記検知
電極4,4間の電圧が増加すれば、これによってこの検
知電極4,4間にき裂2が存在することを検知する。
In this method and apparatus, the power supply 3 is connected to the sensing conductor 6.
, An alternating current of, for example, about several amperes is caused to flow, and as a result, a magnetically induced current is generated in the material 1 along the detection conductor 6, and between the two points on the material 1 along the detection conductor 7. A voltage is detected by the detection electrodes 4 and 4 that are in contact with the material 1. Then, when the detection conductor 6 and the detection electrodes 4 and 4 are moved in an arbitrary direction, the voltage between the detection electrodes 4 and 4 is detected. Is increased, the presence of the crack 2 between the detection electrodes 4 and 4 is detected.

【0005】[0005]

【発明が解決しようとする課題】然しながら、このよう
な従来の方法では、材料1上に検知電極4を接触せしめ
ておく必要があり、計測の迅速性、再現性に種々の問題
を有する欠点があった。
However, in such a conventional method, it is necessary to keep the detection electrode 4 in contact with the material 1, which has various drawbacks in quickness and reproducibility of measurement. there were.

【0006】本発明は上記の欠点を除くようにしたもの
である。
The present invention has been made to eliminate the above disadvantages.

【0007】[0007]

【課題を解決するための手段】本発明の材料の欠陥計測
方法は、検知導体を被測定材料に沿って線状に配置し、
この検知導体に交流電流を流し、上記材料からの電磁波
をアンテナを介して非接触検出手段により上記材料を破
壊することなく検出し、この検出した電磁波出力から上
記材料の欠陥の有無、位置及び大きさを判断することを
特徴とする。
According to a method of measuring a defect of a material according to the present invention, a detection conductor is linearly arranged along a material to be measured.
An alternating current is passed through the detection conductor, and electromagnetic waves from the material are detected by the non-contact detection means via the antenna without destroying the material. Based on the detected electromagnetic wave output, the presence / absence, position, and size of the material defect are detected. Is determined.

【0008】本発明の材料の欠陥計測装置は、非測定材
料上に配置される検知導体と、上記検知導体に交流電流
を流すための高周波電源と、上記被測定材料上に沿って
移動される、アンテナを有する電磁波検出手段とより成
ることを特徴とする。
According to the defect measuring apparatus for a material of the present invention, a detection conductor disposed on a non-measurement material, a high-frequency power supply for supplying an alternating current to the detection conductor, and the detection conductor are moved along the material to be measured. And an electromagnetic wave detecting means having an antenna.

【0009】上記アンテナはダイポールアンテナまたは
ループアンテナであり、上記電磁波検出手段は電界強度
または磁界強度検出手段である。
The antenna is a dipole antenna or a loop antenna, and the electromagnetic wave detecting means is an electric field intensity or a magnetic field intensity detecting means.

【0010】[0010]

【発明の実施の形態】以下図面によって本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明においては図3に示す材料1に接触
せしめる検知電極4及び電圧計5を用いる代わりに、図
1に示すように、例えば3mmの間隔で互いに離間して
配置した、直径0.25mm、水平長さ12mmの2本
のダイポールアンテナ素子7と、このアンテナ素子7に
夫々例えば50Ω同軸ケーブル8を介して接続した増幅
器及び位相検出器を含む電界強度検知器とより成る非接
触検出手段9とを用い、材料1上に紙やプラスチック等
の薄い絶縁シート(図示せず)を介して上記アンテナ素
子7を対接し、X−Y移動手段(図示せず)によって
X,Y方向に移動自在ならしめると共に、上記検知導体
6として例えば幅2mm、厚さ35μmの銅線を用い、
これに電源3から例えば 周波数100KHz、1.5
アンペアの高周波電流を流すようにする。
In the present invention, instead of using the detection electrode 4 and the voltmeter 5 which are brought into contact with the material 1 shown in FIG. 3, as shown in FIG. Non-contact detection means comprising two dipole antenna elements 7 having a length of 25 mm and a horizontal length of 12 mm, and an electric field strength detector including an amplifier and a phase detector connected to the antenna elements 7 via, for example, a 50Ω coaxial cable 8. 9, the antenna element 7 is brought into contact with the material 1 via a thin insulating sheet (not shown) such as paper or plastic, and is moved in the X and Y directions by XY moving means (not shown). At the same time, a copper wire having a width of 2 mm and a thickness of 35 μm is used as the detection conductor 6, for example.
Then, from the power supply 3, for example, a frequency of 100 kHz, 1.5
A high-frequency current of ampere is applied.

【0012】なお、上記同軸ケーブル8としては接地さ
れた金属外被を有するもの、例えばセミリジッド同軸ケ
ーブル等を用いるのが好ましい。
The coaxial cable 8 preferably has a grounded metal jacket, for example, a semi-rigid coaxial cable.

【0013】また、上記検知導体6とアンテナ素子7を
一個の探触子として一体に移動する代わりに、アンテナ
素子7を検知導体6と相対的に移動せしめるようにして
も良い。
Further, instead of moving the detection conductor 6 and the antenna element 7 integrally as one probe, the antenna element 7 may be moved relatively to the detection conductor 6.

【0014】本発明の材料の欠陥計測方法及び装置は上
記のとおりであるから、検知導体6に高周波電流を流し
た場合、材料1に流れる誘導電流によって材料1上に生
ずる電界はき裂2部分において微小変化し、この微小変
化がダイポールアンテナ素子7がき裂2部分に移動した
とき、これによって検出されるため、き裂2を非接触で
且つ材料1を破壊することなく極めて容易に検知できる
ようになる。
Since the method and apparatus for measuring a defect of a material according to the present invention are as described above, when a high-frequency current is applied to the detection conductor 6, the electric field generated on the material 1 by the induced current flowing through the material 1 is caused by the crack 2 The small change is detected when the dipole antenna element 7 moves to the crack 2 portion, so that the crack 2 can be detected very easily without contact and without breaking the material 1. become.

【0015】なお、上記2本のダイポールアンテナ素子
7の向きが上記き裂2の方向と一致したとき、検出出力
が最大となる。従って、これにより、き裂2が材料1内
でどのように延びているかも判定することができる。
When the direction of the two dipole antenna elements 7 matches the direction of the crack 2, the detection output becomes maximum. Thus, it can also be determined how the crack 2 extends in the material 1.

【0016】また、検出力のピークはき裂2の深さが大
きくなれば減少することからき裂2の深さも推定するこ
とができる。
Further, since the peak of the detection power decreases as the depth of the crack 2 increases, the depth of the crack 2 can also be estimated.

【0017】なお、以上は材料1のき裂2を検知する場
合を説明したが、き裂2の有無にかかわらず上記検出出
力は材料1の材質によって異なることから、あらかじめ
既知の材質の材料につきその出力を測定しておけば、こ
れを参照して未知の材料の材質あるいは既知の材料の経
年的変化をも検知することができる。
In the above description, the case where the crack 2 of the material 1 is detected has been described. However, regardless of the presence or absence of the crack 2, the detection output varies depending on the material of the material 1. If the output is measured, it is possible to detect a material of an unknown material or a secular change of a known material by referring to the output.

【0018】本発明の他の実施例においては、図2に示
すようにダイポールアンテナ素子7と電界強度検出器と
を用いる代わりに先端を例えば直径3mmのループ状と
したループアンテナ素子10と磁界強度検出器を用いた
非接触検出手段11とを用いるようにする。
In another embodiment of the present invention, as shown in FIG. 2, instead of using a dipole antenna element 7 and an electric field intensity detector, a loop antenna element 10 having a 3 mm-diameter loop-shaped tip and a magnetic field intensity are used. Non-contact detecting means 11 using a detector is used.

【0019】この実施例においても上記実施例と同様の
作用効果を有する。
This embodiment has the same operation and effect as the above embodiment.

【0020】なお、本発明におけるアンテナは電磁波を
受信できるものであれば、同軸ケーブルの心線をその外
側でL字状に曲げたものの他、L字状に曲げずに、その
外側に延びる心線の端部に断面涙状とした素子を接続し
たものとしても良い。
If the antenna according to the present invention is capable of receiving electromagnetic waves, the coaxial cable core may be bent into an L-shape outside the coaxial cable, or a core extending outside without being bent into an L-shape. A tear-shaped element may be connected to the end of the line.

【0021】[0021]

【発明の効果】上記のように本発明によれば、完全非接
触で且非破壊的に材料のき裂の有無や、材質の欠陥及び
経年変化等を極めて容易に検知できるようになる大きな
利益がある。
As described above, according to the present invention, there is a great advantage that the presence or absence of a crack in a material, the defect of the material and the secular change can be detected very easily in a completely non-contact and non-destructive manner. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の材料の欠陥計測方法及び装置の説明図
である。
FIG. 1 is an explanatory diagram of a method and an apparatus for measuring a defect of a material according to the present invention.

【図2】本発明の他の実施例における材料の欠陥計測方
法及び装置の説明図である。
FIG. 2 is an explanatory view of a method and an apparatus for measuring a defect of a material according to another embodiment of the present invention.

【図3】従来の材料の欠陥計測方法及び装置の説明図で
ある。
FIG. 3 is an explanatory view of a conventional method and apparatus for measuring a defect of a material.

【符号の説明】[Explanation of symbols]

1 材料 2 き裂 3 交流電源 4 検知電極 5 電圧計 6 検知導体 7 ダイポールアンテナ素子 8 同軸ケーブル 9 検出手段 10 ループアンテナ素子 11 検出手段 DESCRIPTION OF SYMBOLS 1 Material 2 Crack 3 AC power supply 4 Detecting electrode 5 Voltmeter 6 Detector conductor 7 Dipole antenna element 8 Coaxial cable 9 Detecting means 10 Loop antenna element 11 Detecting means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 検知導体を被測定材料に沿って線状に配
置し、 この検知導体に交流電流を流し、 上記材料からの電磁波をアンテナを介して非接触検出手
段により上記材料を破壊することなく検出し、 この検出した電磁波出力から上記材料の欠陥を判断する
ことを特徴とする材料の欠陥計測方法。
1. A method in which a detection conductor is linearly arranged along a material to be measured, an alternating current is passed through the detection conductor, and electromagnetic waves from the material are destroyed by a non-contact detection means via an antenna. A method for measuring the defect of the material, wherein the defect of the material is determined from the detected electromagnetic wave output.
【請求項2】 非測定材料上に配置される検知導体と、
上記検知導体に交流電流を流すための高周波電源と、上
記被測定材料上に沿って移動される、アンテナを有する
電磁波検出手段とより成ることを特徴とする材料の欠陥
計測装置。
2. A sensing conductor disposed on a non-measurement material,
An apparatus for measuring a defect of a material, comprising: a high-frequency power supply for supplying an alternating current to the detection conductor; and an electromagnetic wave detection means having an antenna, which is moved along the material to be measured.
【請求項3】 上記アンテナがダイポールアンテナであ
り、上記電磁波検出手段が電界強度検出手段であること
を特徴とする請求項2記載の材料の欠陥計測装置。
3. An apparatus according to claim 2, wherein said antenna is a dipole antenna, and said electromagnetic wave detecting means is electric field intensity detecting means.
【請求項4】 上記アンテナがループアンテナであり、
上記電磁波検出手段が磁界強度検出手段である請求項2
記載の材料の欠陥計測装置。
4. The antenna according to claim 1, wherein the antenna is a loop antenna,
3. The apparatus according to claim 2, wherein said electromagnetic wave detecting means is a magnetic field intensity detecting means.
Defect measuring device for the described material.
JP13450997A 1997-05-09 1997-05-09 Method and device for measuring defect of material Pending JPH10311804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13450997A JPH10311804A (en) 1997-05-09 1997-05-09 Method and device for measuring defect of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13450997A JPH10311804A (en) 1997-05-09 1997-05-09 Method and device for measuring defect of material

Publications (1)

Publication Number Publication Date
JPH10311804A true JPH10311804A (en) 1998-11-24

Family

ID=15129995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13450997A Pending JPH10311804A (en) 1997-05-09 1997-05-09 Method and device for measuring defect of material

Country Status (1)

Country Link
JP (1) JPH10311804A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211504A2 (en) * 2000-09-20 2002-06-05 Neocera, Inc. Apparatus for localized measurement of complex permittivity of a material
JP2004045143A (en) * 2002-07-10 2004-02-12 Kansai Electric Power Co Inc:The Nondestructive inspection method and nondestructive inspection apparatus by superconducting quantum interference device
JP2007278916A (en) * 2006-04-10 2007-10-25 Jfe Steel Kk Method and device for inspecting flaw of cast piece
JP2008175638A (en) * 2007-01-17 2008-07-31 Toshiba Corp Device and method for detecting defect of structural material
KR20200126132A (en) * 2019-04-29 2020-11-06 영남대학교 산학협력단 Apparatus for conductor crack detection using electromagnetic wave and cutoff cavity probe and crack detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211504A2 (en) * 2000-09-20 2002-06-05 Neocera, Inc. Apparatus for localized measurement of complex permittivity of a material
EP1211504A3 (en) * 2000-09-20 2003-09-10 Neocera, Inc. Apparatus for localized measurement of complex permittivity of a material
JP2004045143A (en) * 2002-07-10 2004-02-12 Kansai Electric Power Co Inc:The Nondestructive inspection method and nondestructive inspection apparatus by superconducting quantum interference device
JP2007278916A (en) * 2006-04-10 2007-10-25 Jfe Steel Kk Method and device for inspecting flaw of cast piece
JP2008175638A (en) * 2007-01-17 2008-07-31 Toshiba Corp Device and method for detecting defect of structural material
KR20200126132A (en) * 2019-04-29 2020-11-06 영남대학교 산학협력단 Apparatus for conductor crack detection using electromagnetic wave and cutoff cavity probe and crack detection method

Similar Documents

Publication Publication Date Title
US4593245A (en) Eddy current method for detecting a flaw in semi-conductive material
JP2698749B2 (en) Combined coating thickness gauge for non-ferrous coatings on iron substrates and non-conductive coatings on conductive substrates
US4706020A (en) High frequency eddy current probe with planar, spiral-like coil on flexible substrate for detecting flaws in semi-conductive material
US4528856A (en) Eddy current stress-strain gauge
WO1997023762A3 (en) Process and device for determining the thickness of an electrically conductive layer
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US6377040B1 (en) Eddy current probe and process for checking the edges of metal articles
EP0181512B1 (en) Eddy current diagnostic equipment
JPH0251071A (en) Detection of plasma and circuit construction thereof
JPH10311804A (en) Method and device for measuring defect of material
EP1176420A3 (en) Method and apparatus for inspecting components
WO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JP3189136B2 (en) Method and apparatus for measuring material deterioration
Hoshikawa et al. A new ECT probe with rotating direction eddy current
JPS57144456A (en) Non-destructive inspecting device
WO2000004375A1 (en) Microwave measuring instrument and methods of measuring with microwaves
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
SE9804080L (en) Electrical measuring component and use thereof
SU1056027A1 (en) Method of locating flaws in material
US3355661A (en) Apparatus for measuring the conductivity of electrolyte
RU2110784C1 (en) Method of checking of metal object corrosion rate
Rajotte Eddy‐current method for measuring the electrical conductivity of metals
Yagi et al. Inspection of metal surface containing cracks by small antennas
JPS5713349A (en) Inspection device for electromagnetic induction
RU1835043C (en) Arrangement for measuring of thickness of conducting coatings on dielectric base

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040506

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061114