JPH06241999A - Spectral analytical method by laser emission using two step excitation method - Google Patents

Spectral analytical method by laser emission using two step excitation method

Info

Publication number
JPH06241999A
JPH06241999A JP5031697A JP3169793A JPH06241999A JP H06241999 A JPH06241999 A JP H06241999A JP 5031697 A JP5031697 A JP 5031697A JP 3169793 A JP3169793 A JP 3169793A JP H06241999 A JPH06241999 A JP H06241999A
Authority
JP
Japan
Prior art keywords
plasma
laser
excitation
laser light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5031697A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
山本  公
Wataru Tanimoto
亘 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5031697A priority Critical patent/JPH06241999A/en
Publication of JPH06241999A publication Critical patent/JPH06241999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To provide the title device utilized in the element concentration analysis of a solid or molten metal. CONSTITUTION:In a laser emission spectral analyzer, a laser beam from a laser oscillator 1 is convergently emitted on a surface of a sample S, the luminous intensity from plasma 4 formed is measured by a spectroscope 7, and the concentration of a target element is analyzed, by a previously given calibration curve in an analyzer 8. A laser oscillator 9 for excitation is added to the laser emission spectral analyzer, and the laser beam EL for excitation thereof is emitted on the plasma 4 through a prism 10. Thus, in analyzing with the two step excitation method in which the plasma 4 is excited at two steps, the deflection intensity of the laser beam EL passed through the plasma 4 is measured by using a laser beam detector 12. The prism 10 is controlled according to the deflection intensity through an operation controller 14, thereby the positioning of the laser beam EL within the plasma is carried out, and the element analysis can be very accurately done.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体あるいは溶融金属
の元素濃度分析に利用される二段励起法を用いたレーザ
発光分光分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser emission spectroscopic analysis method using a two-step excitation method used for element concentration analysis of solid or molten metal.

【0002】[0002]

【従来の技術】固体あるいは溶融金属の元素濃度分析に
は、その場分析が可能であるレーザ発光分光分析法が利
用されている。この分析法は、図4に示すように、レー
ザ発振装置1からのレーザ光SLをプリズム2,集光レン
ズ3を介して試料Sの面に集光照射し、生成されたプラ
ズマ4から放出される光を集光レンズ3,ハーフミラー
5,集光レンズ6を介して分光器7に導入してその発光
強度を測定し、分析装置8においてあらかじめ与えてお
いた検量線により目的元素の濃度を分析するものである
(たとえば特開昭63− 18249号公報参照)。
2. Description of the Related Art A laser emission spectroscopic method capable of in-situ analysis is used for elemental concentration analysis of solid or molten metal. In this analysis method, as shown in FIG. 4, the laser light SL from the laser oscillator 1 is focused and irradiated on the surface of the sample S through the prism 2 and the condenser lens 3, and is emitted from the generated plasma 4. The emitted light is introduced into the spectroscope 7 through the condensing lens 3, the half mirror 5, and the condensing lens 6, the emission intensity thereof is measured, and the concentration of the target element is determined by the analytical curve previously given in the analyzer 8. It is to be analyzed (see, for example, JP-A-63-18249).

【0003】このようなレーザ発光分光分析法におい
て、より感度を高めるために、近年、二段励起法の開発
が進んでいる(たとえば「レーザ2段励起法による鋼中
Pの分析(1992年春季日本鉄鋼協会講演大会予稿集, CA
MP-ISIJ Vol.5, 1992-445)」参照)。この二段励起法の
一例を図5に示すが、従来のレーザ発光分光分析装置に
励起用レーザ発振装置9を付加して、その励起用レーザ
光ELをプリズム10, 集光レンズ11を介して蒸発用レーザ
光SLで生成された試料Sのプラズマ4の中心部に照射す
ることによって、プラズマ4を二段励起しようとするも
のである。
In such a laser emission spectroscopic method, in order to further enhance the sensitivity, a two-stage excitation method has been developed in recent years (for example, "Analysis of P in steel by the two-stage laser excitation method (spring 1992). Proceedings of the Iron and Steel Institute of Japan Conference, CA
MP-ISIJ Vol.5, 1992-445) "). An example of this two-stage excitation method is shown in FIG. 5, in which an excitation laser oscillator 9 is added to a conventional laser emission spectroscopic analyzer, and the excitation laser light EL is passed through a prism 10 and a condenser lens 11. By irradiating the central portion of the plasma 4 of the sample S generated by the evaporation laser beam SL, the plasma 4 is to be excited in two stages.

【0004】[0004]

【発明が解決しようとする課題】一般に、レーザ光照射
によって生成されるプラズマの中心部には電子や多価イ
オン,中性原子などが高密度で存在しており、そのた
め、このプラズマ中心部の領域からは広い波長にわたる
連続光が放出される。この連続光は目的元素の発光強度
を測定するうえではバックグラウンドになるものであ
り、その影響により分析精度の低下をもたらすことにな
る。一方、プラズマ周辺部では電子や多価イオンの密度
が低いため連続光の強度が低く、図6に示すように周辺
部ほど目的元素の発光強度のS/B比は高い。
In general, electrons, multiply-charged ions, neutral atoms and the like are present at a high density in the center of plasma generated by laser light irradiation. The area emits continuous light over a wide wavelength range. This continuous light becomes a background in measuring the emission intensity of the target element, and due to its influence, the accuracy of analysis is reduced. On the other hand, the intensity of continuous light is low in the peripheral portion of the plasma because the density of electrons and multiply charged ions is low, and as shown in FIG. 6, the S / B ratio of the emission intensity of the target element is higher in the peripheral portion.

【0005】したがって、励起用レーザ光をこのプラズ
マ周辺部の所定位置に集光して照射するようにすれば、
より高感度な分析が可能になる。また、高い分析の再現
性を得るためには、励起用レーザ光は測定ごとにプラズ
マ中の一定位置に照射する必要があり、このようなこと
を実現するためには、励起用レーザ光のプラズマ中の正
確な通過位置を決定することが不可欠である。
Therefore, if the excitation laser light is focused and irradiated at a predetermined position on the periphery of the plasma,
Higher sensitivity analysis becomes possible. Further, in order to obtain a high reproducibility of analysis, it is necessary to irradiate the excitation laser light to a fixed position in the plasma for each measurement, and in order to realize such a thing, the plasma of the excitation laser light It is essential to determine the exact transit location inside.

【0006】しかしながら、上記した従来の二段励起法
においては、励起用レーザ光ELはほぼプラズマ4の中心
部に集光するように照射されるだけであり、正確なプラ
ズマ中の通過位置を測定したり、あるいはプラズマ4中
の所定位置へ正確に照射する手段がなかった。本発明
は、上記のような従来技術の有する課題を解決するべく
なされたものであって、励起レーザ光のプラズマ中の正
確な通過位置を決定して位置決めし得る二段励起法を用
いたレーザ発光分光分析方法を提供することを目的とす
る。
However, in the above-described conventional two-stage excitation method, the excitation laser light EL is irradiated only so as to be focused on the central portion of the plasma 4, and the accurate passage position in the plasma is measured. However, there was no means for accurately irradiating a predetermined position in the plasma 4. The present invention has been made to solve the problems of the above-described conventional techniques, and a laser using a two-stage excitation method that can determine and position an accurate passage position of excitation laser light in plasma. It is an object to provide an emission spectroscopic analysis method.

【0007】[0007]

【課題を解決するための手段】本発明は、レーザ発光分
光分析において二段励起法によるプラズマ中を通過する
レーザ光のプラズマ中での位置決めをする際に、プラズ
マ中の媒質の温度変化に伴う屈折率変化によるレーザ光
の偏向強度を測定して、その偏向強度に応じてレーザ光
を位置決めすることを特徴とする二段励起法を用いたレ
ーザ発光分光分析方法である。
According to the present invention, when positioning the laser light passing through the plasma in the plasma by the two-step excitation method in the laser emission spectroscopy, the temperature of the medium in the plasma changes. This is a laser emission spectroscopic analysis method using a two-step excitation method characterized in that the deflection intensity of laser light due to a change in the refractive index is measured, and the laser light is positioned according to the deflection intensity.

【0008】[0008]

【作 用】本発明者らは、上記の課題を解決すべく鋭意
研究実験を重ねた結果、以下のことを知見した。すなわ
ち、蒸発用レーザ光を試料に照射すると光熱変換によっ
て熱放出が起こり、それによって試料直上のプラズマは
空間的な熱分布を持ち、屈折率が変化する。このプラズ
マ中を励起用レーザ光が通過するとき、屈折率の違いに
よりレーザ光の光路が偏向されることを見出した。
[Operation] The present inventors have found the following as a result of repeated intensive research and experiments to solve the above problems. That is, when the sample is irradiated with the laser beam for evaporation, heat is released by photothermal conversion, whereby the plasma directly above the sample has a spatial heat distribution and the refractive index changes. It was found that when the exciting laser light passes through this plasma, the optical path of the laser light is deflected due to the difference in refractive index.

【0009】図7はプラズマ中心(蒸発用レーザの照射
中心)からの距離と偏向強度の関係を示したものであ
り、この関係特性により、レーザ光の偏向強度を測定す
ればプラズマ中心からのレーザ光の距離を容易に知るこ
とができる。したがって、本発明によれば、レーザ光の
偏向強度を測定して、その偏向強度に応じてプラズマ中
でのレーザ光の位置決めをすることにより、常に高い精
度での目的元素の分析を行うことが可能である。
FIG. 7 shows the relationship between the distance from the center of the plasma (the irradiation center of the evaporation laser) and the deflection intensity. If the deflection intensity of the laser light is measured based on this relationship characteristic, the laser from the center of the plasma will be measured. The distance of light can be easily known. Therefore, according to the present invention, by measuring the deflection intensity of the laser beam and positioning the laser beam in the plasma according to the deflection intensity, it is possible to always analyze the target element with high accuracy. It is possible.

【0010】[0010]

【実施例】以下に、本発明の実施例について図面を参照
して詳しく説明する。図1は本発明の実施例を示すブロ
ック図であり、従来例と同一部材は同一符号を付して説
明を省略する。図1において、12は励起用レーザ発振装
置9からのプラズマ4中を通過した励起用レーザ光ELを
検出するたとえば4分割フォトダイオードなどのレーザ
光検出器であり、13はこのレーザ光検出器12の検出信号
を増幅するプレアンプ、14は演算制御装置である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. The same members as those in the conventional example are designated by the same reference numerals and the description thereof will be omitted. In FIG. 1, reference numeral 12 is a laser light detector such as a four-division photodiode for detecting the excitation laser light EL that has passed through the plasma 4 from the excitation laser oscillator 9, and 13 is the laser light detector 12 Is a preamplifier for amplifying the detection signal of, and 14 is an arithmetic and control unit.

【0011】ここで、レーザ光検出器12として用いられ
る4分割フォトダイオードは、図2に示すように4分割
とされるフォトダイオード素子a,b,c,dで構成さ
れたものである。また、演算制御装置14からはその演算
結果をもとに励起用レーザ光ELの照射位置を制御する信
号を出力して、プリズム10の角度を制御する。なお、こ
の演算制御装置14にはレーザ発振装置(蒸発用)1と励
起用レーザ発振装置9の照射タイミングを調整する機能
が設けられている。
The four-division photodiode used as the laser light detector 12 is composed of four-division photodiode elements a, b, c and d as shown in FIG. Further, the arithmetic control device 14 outputs a signal for controlling the irradiation position of the excitation laser light EL based on the arithmetic result, and controls the angle of the prism 10. The arithmetic and control unit 14 is provided with a function of adjusting the irradiation timing of the laser oscillator (for evaporation) 1 and the excitation laser oscillator 9.

【0012】そこで、試料Sの面にレーザ発振装置1か
ら蒸発用レーザ光SLを照射してプラズマ4を生成してか
ら所定時間後に励起用レーザ発振装置9から励起用レー
ザ光ELを照射し、プラズマ4を通過した励起用レーザ光
ELの強度をレーザ光検出器12で測定する。いま、励起用
レーザ光ELがプラズマ4の中心部を照射して測定すると
きには、プラズマ4の中心部ではレーザ光の進行方向に
対してその左右の温度分布は対称性をもつので偏向を生
じない。したがって、レーザ光検出器12の左右のフォト
ダイオード素子aとc、bとdのそれぞれの強度和が等
しくなるように、プリズム10の角度を制御して励起用レ
ーザ光ELの照射位置を調整するのである。また、プラズ
マ4の周辺部の特定位置で測定を行いたいときは、4つ
のフォトダイオード素子a,b,c,dにおいて、左側
の素子aとcの強度和と右側の素子bとdの強度和の比
すなわち偏向強度が、所定の値になるように励起用レー
ザ光ELの位置を調整するようにすればよい。
Then, the surface of the sample S is irradiated with the laser light SL for evaporation from the laser oscillator 1 to generate the plasma 4, and after a predetermined time, the laser oscillator EL for excitation is irradiated with the laser light EL for excitation. Excitation laser light passing through the plasma 4
The intensity of EL is measured by the laser light detector 12. Now, when the excitation laser light EL irradiates the central portion of the plasma 4 for measurement, the temperature distribution on the left and right of the central portion of the plasma 4 has symmetry with respect to the traveling direction of the laser light, so that no deflection occurs. . Therefore, the irradiation position of the excitation laser light EL is adjusted by controlling the angle of the prism 10 so that the sum of the intensities of the left and right photodiode elements a and c, b and d of the laser light detector 12 becomes equal. Of. Further, when it is desired to perform measurement at a specific position in the peripheral portion of the plasma 4, in the four photodiode elements a, b, c, d, the sum of the intensities of the left elements a and c and the intensities of the right elements b and d. The position of the excitation laser light EL may be adjusted so that the sum ratio, that is, the deflection intensity, becomes a predetermined value.

【0013】蒸発用レーザSLとしてパルスエネルギー2
JのYAGレーザを、励起用レーザELとしてパルスエネ
ルギー250mJ のYAGレーザをそれぞれ用いて、鋼中の
Mn元素を分析する際に、本発明法を適用した。このと
き、レーザ光検出器12として4分割フォトダイオードを
用いた。その結果を図3に示した。この図から明らかな
ように、本発明法による分析精度は約1%以内に収まっ
ており、従来法の精度約5%に比して向上していること
がわかる。
Pulse energy 2 as laser SL for evaporation
The method of the present invention was applied to the analysis of Mn element in steel by using a YAG laser of J and a YAG laser having a pulse energy of 250 mJ as the excitation laser EL. At this time, a four-division photodiode was used as the laser light detector 12. The results are shown in Fig. 3. As is clear from this figure, the analysis accuracy of the method of the present invention is within about 1%, which is improved compared to the accuracy of about 5% of the conventional method.

【0014】なお、上記実施例において、レーザ光検出
器12として4分割フォトダイオードを用いるとして説明
したが、本発明はこれに限るものではなく、たとえばフ
ォトダイオードアレイとか、あるいはナイフエッジで部
分的にレーザ光をカットしてその後フォトダイオードで
強度を測定する手段を用いることができる。
In the above embodiment, the laser light detector 12 is described as a four-division photodiode, but the present invention is not limited to this. For example, a photodiode array or a knife edge is partially used. A means for cutting the laser light and then measuring the intensity with a photodiode can be used.

【0015】[0015]

【発明の効果】以上説明したように、本発明の二段励起
レーザ発光分光分析法によれば、励起用レーザのプラズ
マ中の通過位置を正確に決定することができるようにし
たので、これにより目的元素の分析精度を向上させるこ
とが可能であるとともに、繰り返し精度も向上させるこ
とが可能である。
As described above, according to the two-stage excitation laser emission spectroscopic analysis method of the present invention, the passage position of the excitation laser in the plasma can be accurately determined. It is possible to improve the analysis accuracy of the target element and also improve the repetition accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の概要を示すブロック図であ
る。
FIG. 1 is a block diagram showing an outline of an embodiment of the present invention.

【図2】本発明に用いられるレーザ光検出器の一例を示
す概要図である。
FIG. 2 is a schematic diagram showing an example of a laser light detector used in the present invention.

【図3】本発明法と従来法での分析結果の推移を比較し
て示す特性図である。
FIG. 3 is a characteristic diagram showing changes in analysis results of the method of the present invention and the conventional method in comparison.

【図4】レーザ発光分光分析法の従来例の概要を示すブ
ロック図である。
FIG. 4 is a block diagram showing an outline of a conventional example of laser emission spectroscopy.

【図5】二段励起レーザ発光分光分析法の従来例の概要
を部分的に示すブロック図である。
FIG. 5 is a block diagram partially showing an outline of a conventional example of a two-stage excitation laser emission spectral analysis method.

【図6】二段励起レーザ発光分光分析法でのプラズマ中
心からの距離とS/B比の関係を示す特性図である。
FIG. 6 is a characteristic diagram showing the relationship between the distance from the plasma center and the S / B ratio in the two-stage excitation laser emission spectroscopy.

【図7】プラズマ中心からの距離と偏向強度の関係を示
す特性図である。
FIG. 7 is a characteristic diagram showing the relationship between the distance from the plasma center and the deflection intensity.

【符号の説明】[Explanation of symbols]

1 レーザ発振装置(蒸発用) 4 プラズマ 7 分光器 8 分析装置 9 励起用レーザ発振装置 12 レーザ光検出器 13 プレアンプ 14 演算制御装置 S 試料 SL レーザ光(蒸発用レーザ光) EL 励起用レーザ光 1 laser oscillator (for evaporation) 4 plasma 7 spectroscope 8 analyzer 9 laser oscillator for excitation 12 laser light detector 13 preamplifier 14 arithmetic control device S sample SL laser light (laser light for evaporation) EL laser light for excitation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発光分光分析において二段励起
法によるプラズマ中を通過するレーザ光のプラズマ中で
の位置決めをする際に、プラズマ中の媒質の温度変化に
伴う屈折率変化によるレーザ光の偏向強度を測定して、
その偏向強度に応じてレーザ光を位置決めすることを特
徴とする二段励起法を用いたレーザ発光分光分析方法。
1. When the laser light passing through the plasma by the two-step excitation method is positioned in the plasma in the laser emission spectroscopy, the deflection of the laser light due to the change in the refractive index of the medium in the plasma due to the temperature change. Measure the strength,
A laser emission spectroscopic analysis method using a two-step excitation method, characterized in that the laser light is positioned according to the deflection intensity.
JP5031697A 1993-02-22 1993-02-22 Spectral analytical method by laser emission using two step excitation method Pending JPH06241999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5031697A JPH06241999A (en) 1993-02-22 1993-02-22 Spectral analytical method by laser emission using two step excitation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5031697A JPH06241999A (en) 1993-02-22 1993-02-22 Spectral analytical method by laser emission using two step excitation method

Publications (1)

Publication Number Publication Date
JPH06241999A true JPH06241999A (en) 1994-09-02

Family

ID=12338270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5031697A Pending JPH06241999A (en) 1993-02-22 1993-02-22 Spectral analytical method by laser emission using two step excitation method

Country Status (1)

Country Link
JP (1) JPH06241999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008897A (en) * 1999-01-19 1999-12-28 National Research Council Of Canada Method and apparatus for materials analysis by enhanced laser induced plasma spectroscopy
US6661511B2 (en) 2001-01-16 2003-12-09 National Research Council Of Canada Method and apparatus for enhanced laser-induced plasma spectroscopy using mixed-wavelength laser pulses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008897A (en) * 1999-01-19 1999-12-28 National Research Council Of Canada Method and apparatus for materials analysis by enhanced laser induced plasma spectroscopy
US6661511B2 (en) 2001-01-16 2003-12-09 National Research Council Of Canada Method and apparatus for enhanced laser-induced plasma spectroscopy using mixed-wavelength laser pulses

Similar Documents

Publication Publication Date Title
CA1220643A (en) Method of laser emission spectroscopic analysis of steel and apparatus therefor
US5798832A (en) Process and device for determining element compositions and concentrations
US6661511B2 (en) Method and apparatus for enhanced laser-induced plasma spectroscopy using mixed-wavelength laser pulses
US6657721B1 (en) Method for quantitative analysis of atomic components of materials by LIBS spectroscopy measurements
JPH0915156A (en) Spectroscopic measuring method and measuring device
JPH07198610A (en) Analysis of element by optical emission spectrometry in plasma generated with laser under presence of argon
Ciucci et al. CF-LIPS: a new approach to LIPS spectra analysis
KR20110077388A (en) Method for analyzing of heavy metals
JP2008256585A (en) Elemental analyzer and elemental analysis method
JP2002189004A (en) X-ray analyzer
US4690558A (en) Method of laser emission spectroscopical analysis and apparatus therefor
JPH0694605A (en) Spectral photographing device using pulse electromagnetic wave source and interferometer
JPH01321340A (en) Laser double stage excitation emission analysis method and apparatus
JPH06241999A (en) Spectral analytical method by laser emission using two step excitation method
JP2000162164A (en) Resonance laser ionized neutral particle mass spectrometer and spectrometry
JP3909999B2 (en) Molten metal analysis method and apparatus
JP2000055809A (en) Raman microspectroscope and method therefor
CA1232469A (en) Method of laser emission spectroscopical analysis and apparatus therefor
RU2303255C1 (en) Laser atomic emissive spectrometer "laes"
CN215525538U (en) LIBS backscattering collection target detection device
Burakov et al. Determination of carbon in low-alloy steels by laser atomic-emission spectroscopy in air
JPH0875651A (en) Method for emission spectrochemical analysis by laser
JP2895816B2 (en) ICP emission spectrometer
JPH10206330A (en) Laser emission spectral analysis method and device therefor
JPH04274743A (en) Laser emission analysis method

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060206

Free format text: JAPANESE INTERMEDIATE CODE: A523