JP2013205203A - Defatted state measuring apparatus, defatted state measuring system, and method for measuring defatted state - Google Patents

Defatted state measuring apparatus, defatted state measuring system, and method for measuring defatted state Download PDF

Info

Publication number
JP2013205203A
JP2013205203A JP2012074116A JP2012074116A JP2013205203A JP 2013205203 A JP2013205203 A JP 2013205203A JP 2012074116 A JP2012074116 A JP 2012074116A JP 2012074116 A JP2012074116 A JP 2012074116A JP 2013205203 A JP2013205203 A JP 2013205203A
Authority
JP
Japan
Prior art keywords
excitation light
light
degreasing state
state measuring
degreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074116A
Other languages
Japanese (ja)
Other versions
JP5809593B2 (en
Inventor
Wataru Masuko
亘 増子
Tomiya Goto
富也 後藤
Jun Azuma
洵 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Chemicoat and Co Ltd
Ace Giken Co Ltd
Original Assignee
Hitachi Ltd
Chemicoat and Co Ltd
Ace Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Chemicoat and Co Ltd, Ace Giken Co Ltd filed Critical Hitachi Ltd
Priority to JP2012074116A priority Critical patent/JP5809593B2/en
Publication of JP2013205203A publication Critical patent/JP2013205203A/en
Application granted granted Critical
Publication of JP5809593B2 publication Critical patent/JP5809593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a defatted state measuring apparatus capable of measuring a defatted state of a further local inspection area, and further stably and accurately measuring the defatted state.SOLUTION: A defatted state measuring apparatus 10 comprises: a light source 11 for emitting excitation light to an inspection object 200; a spectroscopic element 12 for dispersing the excitation light into transmitted excitation light S and reflected excitation light; a photo detector 15 that detects the reflected excitation light and outputs the detection result to a light output control circuit 7 for performing feedback control on the intensity of the excitation light; an excitation light condenser lens 13 for condensing the transmitted excitation light S; and a visible light detector 23 that detects light Sf of a visible light component generated when the transmitted excitation light S is applied to the inspection object 200 and outputs the detection result to a signal processing unit 6 for generating information corresponding to the defatted state of the inspection object 200.

Description

本発明は、脱脂状態計測装置、脱脂状態計測システム、及び、脱脂状態計測方法に関し、より詳細には、金属表面の脱脂状態を計測するための脱脂状態計測装置、脱脂状態計測システム、及び、脱脂状態計測方法に関する。   The present invention relates to a degreasing state measuring device, a degreasing state measuring system, and a degreasing state measuring method, and more specifically, a degreasing state measuring device, a degreasing state measuring system, and a degreasing method for measuring a degreasing state of a metal surface. It relates to a state measurement method.

従来、金属、特に鋼板の表面には、その美観及び/又は表面保護のために、メッキ処理や塗装処理が施される。ただし、これらの処理を施す前工程として、鋼板に対して例えばプレス加工や穴あけ加工等の機械加工が施されるので、潤滑用の油脂が金属表面に付着する。また、金属が例えば電気亜鉛メッキ鋼板等の処理鋼板である場合も同様の理由で、その表面に油脂が付着する。   Conventionally, the surface of a metal, particularly a steel plate, is subjected to a plating treatment or a coating treatment for its beauty and / or surface protection. However, as a pre-process for performing these treatments, the steel plate is subjected to machining such as pressing or drilling, so that the lubricating oil adheres to the metal surface. Moreover, when the metal is a treated steel plate such as an electrogalvanized steel plate, for example, oil and fat adhere to the surface for the same reason.

しかし、金属表面に油脂が付着した状態でメッキ処理や塗装処理を行うと、メッキ膜や塗装膜の密着性が低下し、品質が劣化する。それゆえ、このような課題を解消するために、メッキ処理や塗装処理を行う前に、金属表面の油脂を除去するための洗浄工程が行われる。   However, when the plating process or the coating process is performed in a state where the oil or fat is attached to the metal surface, the adhesion of the plating film or the coating film is lowered and the quality is deteriorated. Therefore, in order to solve such a problem, a cleaning process for removing oils and fats on the metal surface is performed before the plating process or the coating process.

金属表面の油脂洗浄は、理想的には、複数回繰り返して行い、完全に油脂を除去することが好ましいが、量産性やコスト等を考慮すると、その洗浄回数にも限界がある。より具体的に説明すると、量産工程では、量産に係る一連の工程を一定の時間内で行う必要があり、洗浄工程に多くの時間を割くことはできない。また、洗浄回数が増えると、洗浄液の使用量が増大し、高コストとなる。さらに、洗浄液は、使用後、通常、産業廃棄物として処理されるので、洗浄液の使用量の増大は、環境問題や省エネルギーの観点では好ましくない。   Ideally, the oil and fat cleaning of the metal surface is repeatedly performed a plurality of times to completely remove the oil and fat, but there are limits to the number of times of cleaning in consideration of mass productivity and cost. More specifically, in the mass production process, it is necessary to perform a series of processes related to mass production within a certain time, and it is not possible to devote much time to the cleaning process. Further, when the number of times of cleaning increases, the amount of cleaning liquid used increases and the cost increases. Furthermore, since the cleaning liquid is usually treated as industrial waste after use, an increase in the amount of the cleaning liquid used is not preferable from the viewpoint of environmental problems and energy saving.

また、洗浄工程を複数回繰り返しても、洗浄後の液(微量の油分を含む)が金属板の隅や凹凸部に付着すると、その液が乾燥した後には、微量の油分及び/又はその残渣が付着した状態となる。なお、以下では、金属表面に残る油分及びその残渣を総称して油脂という。このように金属表面に微量の油脂が残った状態でも、メッキ処理や塗装処理を行うとメッキむらや塗装むらが発生したり、メッキ膜や塗装膜が剥離し易くなったりする。さらに、処理鋼板の場合は、その美観が損なわれる。   In addition, even if the cleaning process is repeated multiple times, if the liquid after cleaning (including a small amount of oil) adheres to the corners or irregularities of the metal plate, after the liquid has dried, a small amount of oil and / or its residue Will be attached. Hereinafter, the oil remaining on the metal surface and its residue are collectively referred to as fats and oils. Even when a small amount of oil or fat remains on the metal surface in this way, plating or coating may cause uneven plating or coating, or the plating film or coating film may be easily peeled off. Furthermore, in the case of a treated steel plate, its aesthetics are impaired.

そこで、上記各種課題を解消するために、メッキ処理や塗装処理の直前に、洗浄工程により金属表面から油脂が完全に除去されているか、あるいは、油脂が問題の無いレベルまで除去されているか、すなわち、金属表面の脱脂状態を計測する必要がある。特に、生産現場では、大掛かりな装置を使用せず、簡単で且つサンプル(製品)を破壊せずに脱脂状態の計測することができる技術が必要になる。   Therefore, in order to solve the above-mentioned various problems, whether the oil or fat has been completely removed from the metal surface by the cleaning process immediately before the plating process or the coating process, or whether the oil or fat has been removed to a level where there is no problem, It is necessary to measure the degreasing state of the metal surface. In particular, on the production site, a technique capable of measuring a degreased state without using a large-scale apparatus and easily and without destroying a sample (product) is required.

ところで、従来の定量的な脱脂状態の計測手法としては、次の各種手法が挙げられる。   By the way, the following various methods are mentioned as a conventional quantitative measurement method of a degreasing state.

(1)重量法
重量法では、サンプルの重量を洗浄工程の前後でそれぞれ測定し、その両者の差に基づいて、脱脂状態を計測する。しかしながら、この手法は、油脂の検出精度が低いことが一般に知られている。また、この手法は、一般に、製品となるサンプル(金属板)の一部を取り出して行われる。すなわち、この手法では、サンプルを破壊する必要があり、生産現場では実用的な手法ではない。
(1) Gravimetric method In the gravimetric method, the weight of the sample is measured before and after the washing step, and the degreased state is measured based on the difference between the two. However, it is generally known that this method has low oil and fat detection accuracy. Moreover, this method is generally performed by taking out a part of a sample (metal plate) to be a product. In other words, this method requires the destruction of the sample and is not a practical method at the production site.

(2)赤外線を用いた手法
一般に、2つ以上の異なる原子が結合した分子に赤外線を照射すると、その分子は、照射された赤外線に含まれる所定波長の成分を吸収して振動する。それゆえ、赤外線を分子に照射して、吸収された波長成分を特定することにより、その物質を特定することができる。このような性質を利用して、物質を特定する装置は従来、種々開発されている。このような検査装置は、赤外線照射部及び検出部をプローブとする信号処理装置として独立して設けることができる。それゆえ、このような赤外線を用いた検査装置は比較的小型であり、生産現場向きのものも多い。
(2) Technique Using Infrared Generally, when a molecule having two or more different atoms bonded thereto is irradiated with infrared rays, the molecules vibrate by absorbing a component of a predetermined wavelength contained in the irradiated infrared rays. Therefore, the substance can be specified by irradiating the molecule with infrared rays and specifying the absorbed wavelength component. Various devices for identifying substances using such properties have been developed in the past. Such an inspection apparatus can be provided independently as a signal processing apparatus using the infrared irradiation unit and the detection unit as probes. Therefore, such an inspection apparatus using infrared rays is relatively small and many are suitable for production sites.

ただし、赤外線を用いた手法で金属表面に残る油脂や汚れ等を検査する場合、その油脂や汚れの物質の成分により、吸収される波長が異なる。それゆえ、特定の成分を検出したい時は、その成分に特有の波長だけを検出すればよいが、そのような成分が不明である場合は、広い波長範囲を調べなければならないので、物質の特定が困難になる。また、この手法では、金属表面の微量の油脂を検出することは困難である。   However, when inspecting oil or dirt remaining on the metal surface by a technique using infrared rays, the wavelength to be absorbed differs depending on the components of the oil or dirt substance. Therefore, when you want to detect a specific component, you only need to detect the wavelength that is unique to that component. However, if you do not know such a component, you must investigate a wide wavelength range, so Becomes difficult. Also, with this technique, it is difficult to detect a small amount of fat on the metal surface.

(3)紫外線を用いた手法(例えば特許文献1参照)
有機物である油脂等に、紫外線を照射すると蛍光現象が発生する(可視光が発生する)ことは、従来、よく知られている。この現象において、例えば、照射する紫外線量をUVとし、発生する蛍光量をVLとすると、両者の間にはVL=η×UVという関係が成立する。なお、この関係式中の定数ηは紫外線が照射された際の物質の蛍光変換効率(発光効率)であり、この値は油脂などの物質の成分量により異なる。ただし、本発明者らの検証によると、この蛍光変換効率ηの値は、油脂の種類による差が小さいことが分かっている。
(3) Method using ultraviolet rays (for example, see Patent Document 1)
It has been well known that when an organic oil or fat is irradiated with ultraviolet rays, a fluorescent phenomenon occurs (visible light is generated). In this phenomenon, for example, assuming that the amount of ultraviolet rays to be irradiated is UV and the amount of generated fluorescence is VL, a relationship of VL = η × UV is established between the two. The constant η in this relational expression is the fluorescence conversion efficiency (light emission efficiency) of the substance when irradiated with ultraviolet rays, and this value varies depending on the amount of components of the substance such as fats and oils. However, according to the verification by the present inventors, it is known that the value of the fluorescence conversion efficiency η has a small difference depending on the type of oil.

また、従来の定性的な脱脂状態の計測手法としては、次の各種手法が挙げられる。   Moreover, the following various methods are mentioned as a conventional qualitative degreasing state measurement method.

(1)プロセス管理による手法
一般に、品質管理の分野において、脱脂を含む塗装処理やメッキ処理などの表面処理工程の本質的な良否判定を、工程終了後における生産現場での一般的な検査(例えば外観検査等)で行うことは、その工程の特性上、困難である。例えば、塗装膜の密着性等の品質の良否は、非破壊試験となる外観検査だけでは判断できない。それゆえ、これらの表面処理工程は、特殊工程と呼ばれる。
(1) Method by process control Generally, in the field of quality control, the essential quality determination of surface treatment processes such as painting and plating processes including degreasing is performed by general inspection at the production site after the process (for example, It is difficult to perform in appearance inspection etc. due to the characteristics of the process. For example, quality such as adhesion of a coating film cannot be judged only by appearance inspection as a nondestructive test. Therefore, these surface treatment processes are called special processes.

このような表面処理工程では、例えば機械加工や組立加工などの工程と異なり、生産ライン上で水処理(薬品処理も含み)プロセスを連続的に行う。そのため、各プロセスでの例えば温度、薬品濃度、時間等の因子を、日常点検等で管理及び維持し、製品の品質を確保する。   In such a surface treatment process, unlike a process such as machining or assembly, for example, a water treatment (including chemical treatment) process is continuously performed on the production line. For this reason, factors such as temperature, chemical concentration, and time in each process are managed and maintained through daily inspections, etc., to ensure product quality.

それゆえ、プロセス管理の手法では、各プロセスにおける上述した因子が所定条件内に収まっているか否かを判別して、脱脂の程度を判定する。しかしながら、この手法は製品に対して直接検査を行う手法ではないので、この手法で脱脂の程度の良否を直接判定することができない。   Therefore, in the process management method, it is determined whether or not the above-described factors in each process are within a predetermined condition, and the degree of degreasing is determined. However, since this method is not a method for directly inspecting products, it is impossible to directly determine the quality of the degree of degreasing by this method.

(2)目視による手法
この手法は、人間の目による感応検査である。この手法では、金属板の検査面に対して光を斜めに照射し、その際の反射の程度(反射模様)のバラツキを目視で確認して、脱脂状態を判定する。しかしながら、この手法では、定量的な判定ができないだけでなく、判定する人によって判定基準にバラツキが生じるので、判定結果の信頼性が低い。さらに、この手法では、製品の外観のみの判定となり、表面処理そのものの良否を判定することができない。
(2) Visual method This method is a sensitive inspection by human eyes. In this method, light is obliquely applied to the inspection surface of the metal plate, and the degree of reflection (reflection pattern) at that time is visually confirmed to determine the degreasing state. However, with this method, not only a quantitative determination cannot be made, but also the determination criteria vary depending on the person who makes the determination, so the reliability of the determination result is low. Furthermore, with this method, only the appearance of the product is determined, and the quality of the surface treatment itself cannot be determined.

特開平9−113231号公報JP-A-9-113231

上述のように、従来、金属板(検査対象物)の脱脂状態を計測する手法が種々提案されている。しかしながら、この技術分野では、より局所的な検査領域で脱脂状態の計測が可能であり、かつ、より安定して精度よく脱脂状態を計測することができる脱脂状態計測装置の開発が望まれている。   As described above, conventionally, various methods for measuring the degreasing state of a metal plate (inspection object) have been proposed. However, in this technical field, it is desired to develop a degreasing state measuring apparatus that can measure the degreasing state in a more local inspection region and can measure the degreasing state more stably and accurately. .

本発明は、上記要望に応えるためになされたものである。本発明の目的は、より局所的な検査領域で脱脂状態の計測が可能であり、かつ、より安定して精度よく脱脂状態を計測することができる脱脂状態計測装置、脱脂状態計測システム、及び、脱脂状態計測方法を提供することである。   The present invention has been made to meet the above demand. The object of the present invention is to measure the degreasing state in a more local inspection region, and to measure the degreasing state more stably and accurately, the degreasing state measuring system, and It is to provide a degreasing state measuring method.

上記課題を解決するために、本発明の脱脂状態計測装置は、光源と、分光素子と、受光素子と、励起光用集光レンズと、可視光検出器とを備える構成とし、各部を次のように構成する。光源は、検査対象物に励起光を射出する、分光素子は、光源から射出された励起光を透過励起光及び反射励起光に分離する。受光素子は、反射励起光を検出し、該検出結果を、励起光の強度をフィードバック制御する光出力制御回路に出力する。励起光用集光レンズは、透過励起光を集光する。そして、可視光検出器は、透過励起光を検査対象物に照射した際に発生する可視光を検出し、該検出結果を、検査対象物の脱脂状態に対応する情報を生成する信号処理部に出力する。   In order to solve the above problems, the degreasing state measuring device of the present invention comprises a light source, a spectroscopic element, a light receiving element, a condensing lens for excitation light, and a visible light detector. Configure as follows. The light source emits excitation light to the inspection object, and the spectroscopic element separates the excitation light emitted from the light source into transmitted excitation light and reflected excitation light. The light receiving element detects the reflected excitation light and outputs the detection result to a light output control circuit that feedback-controls the intensity of the excitation light. The excitation light condensing lens condenses the transmitted excitation light. The visible light detector detects visible light generated when the inspection object is irradiated with the transmitted excitation light, and outputs the detection result to a signal processing unit that generates information corresponding to the degreasing state of the inspection object. Output.

また、本発明の脱脂状態計測システムは、上記本発明の脱脂状態計測装置と、情報処理装置と備え、情報処理装置は、受光素子での検出結果に基づいて、励起光の強度をフィードバック制御する光出力制御回路、及び、可視光検出器での検出結果に基づいて、検査対象物の脱脂状態に対応する情報を生成する信号処理部を有する構成とする。   The degreasing state measuring system of the present invention includes the above-described degreasing state measuring apparatus of the present invention and an information processing device, and the information processing device feedback-controls the intensity of excitation light based on the detection result of the light receiving element. Based on the detection result of the light output control circuit and the visible light detector, a signal processing unit that generates information corresponding to the degreased state of the inspection object is provided.

さらに、本発明の脱脂状態計測装置は、上記本発明の脱脂状態計測装置を用いた脱脂状態計測方法であり、次の手順で行う。まず、励起光用集光レンズが、透過励起光を集光して検査対象物に透過励起光を照射する。また、受光素子が、反射励起光を検出し、該検出結果を、励起光の強度をフィードバック制御する光出力制御回路に出力する。そして、可視光検出器が、検査対象物に透過励起光を照射した際に発生する可視光を検出し、該検出結果を、検査対象物の脱脂状態に対応する情報を生成する信号処理部に出力する。   Furthermore, the degreasing state measuring device of this invention is a degreasing state measuring method using the said degreasing state measuring device of the said invention, and performs it in the following procedure. First, the condensing lens for excitation light collects the transmitted excitation light and irradiates the inspection object with the transmitted excitation light. The light receiving element detects the reflected excitation light and outputs the detection result to a light output control circuit that feedback-controls the intensity of the excitation light. The visible light detector detects visible light generated when the inspection object is irradiated with transmitted excitation light, and the detection result is generated in a signal processing unit that generates information corresponding to the degreasing state of the inspection object. Output.

本発明では、分光素子により、光源から射出された励起光を透過励起光と反射励起光とに分離する。そして、本発明では、透過励起光を励起光用集光レンズで集光して検査対象物に照射する。それゆえ、励起光を微小な領域(局所的な領域)に照射することができ、その領域における励起光の照度を増大させることができる。また、本発明では、分光素子で分離した反射励起光を受光素子で検出し、その検出結果に基づいて、励起光の強度をフィードバック制御する。それゆえ、本発明では、安定した強度の励起光(透過励起光)を検査対象物に照射することができる。   In the present invention, the excitation light emitted from the light source is separated into transmitted excitation light and reflected excitation light by the spectroscopic element. In the present invention, the transmitted excitation light is collected by the excitation light condensing lens and irradiated to the inspection object. Therefore, a minute region (local region) can be irradiated with the excitation light, and the illuminance of the excitation light in that region can be increased. In the present invention, the reflected excitation light separated by the spectroscopic element is detected by the light receiving element, and the intensity of the excitation light is feedback controlled based on the detection result. Therefore, in the present invention, it is possible to irradiate the inspection object with excitation light (transmission excitation light) having a stable intensity.

上述のように、本発明によれば、局所的な検査領域で脱脂状態を計測することができ、かつ、より安定して精度よく脱脂状態を計測することができる。   As described above, according to the present invention, the degreasing state can be measured in a local inspection region, and the degreasing state can be measured more stably and accurately.

本発明の一実施形態に係る脱脂状態計測装置の概略構成図である。It is a schematic block diagram of the degreasing state measuring device which concerns on one Embodiment of this invention. 信号処理部の回路ブロック構成図である。It is a circuit block block diagram of a signal processing part. 光出力制御部の回路ブロック構成図である。It is a circuit block block diagram of a light output control part. 本発明の一実施形態に係る脱脂状態計測装置における脱脂状態の計測処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the measurement process of the degreasing state in the degreasing state measuring apparatus which concerns on one Embodiment of this invention. 比較例の脱脂状態計測装置の概略構成図である。It is a schematic block diagram of the degreasing state measuring apparatus of a comparative example. 比較例の脱脂状態計測装置による計測例1の様子を示す図である。It is a figure which shows the mode of the measurement example 1 by the degreasing state measuring apparatus of a comparative example. 比較例の脱脂状態計測装置による計測例2の様子を示す図である。It is a figure which shows the mode of the measurement example 2 by the degreasing state measuring apparatus of a comparative example. 比較例の脱脂状態計測装置による計測例3の様子を示す図である。It is a figure which shows the mode of the measurement example 3 by the degreasing state measuring apparatus of a comparative example. 変形例1の脱脂状態計測装置の概略構成図である。It is a schematic block diagram of the degreasing state measuring apparatus of the modification 1. 変形例2の脱脂状態計測装置の概略構成図である。It is a schematic block diagram of the degreasing state measuring apparatus of the modification 2. 変形例3の脱脂状態計測装置の概略構成図である。It is a schematic block diagram of the degreasing state measuring apparatus of the modification 3.

以下に、本発明に係る脱脂状態計測装置及び脱脂状態計測方法の一実施形態を、図面を参照しながら説明する。ただし、本発明は以下の例に限定されない。   Hereinafter, an embodiment of a degreasing state measuring apparatus and a degreasing state measuring method according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

[脱脂状態計測装置の構成]
図1(a)及び(b)に、本発明の一実施形態に係る脱脂状態計測装置の概略構成を示す。図1(a)は、図1(b)中のA−A断面図であり、図1(b)は、検査対象物(金属板200)から見た脱脂状態計測装置10の下面図である。なお、本実施形態では、検査対象物が、例えば鋼板等の金属板200である場合の例を説明する。
[Configuration of Degreasing State Measuring Device]
1A and 1B show a schematic configuration of a degreasing state measuring apparatus according to an embodiment of the present invention. Fig.1 (a) is AA sectional drawing in FIG.1 (b), FIG.1 (b) is a bottom view of the degreasing state measuring apparatus 10 seen from the test target (metal plate 200). . In the present embodiment, an example in which the inspection object is a metal plate 200 such as a steel plate will be described.

脱脂状態計測装置10は、筐体1と、筐体1を支持する4本の支持脚2と、筐体1に内蔵された、2つの励起光出力部3、蛍光検出部4及び処理回路部5とを備える。また、脱脂状態計測装置10(処理回路部5)は、外部の表示装置8に電気的に接続され、脱脂状態計測装置10での計測結果は、表示装置8に出力され、表示装置8は、その計測結果を表示する。   The degreasing state measuring apparatus 10 includes a housing 1, four support legs 2 that support the housing 1, two excitation light output units 3, a fluorescence detection unit 4, and a processing circuit unit built in the housing 1. 5. Further, the degreasing state measuring device 10 (processing circuit unit 5) is electrically connected to an external display device 8, and the measurement result of the degreasing state measuring device 10 is output to the display device 8, and the display device 8 is The measurement result is displayed.

筐体1は、図1(a)及び(b)に示すように、略直方体状の箱部材で構成される。なお、筐体1の形状は、この例に限定されず、任意に設定することができる。また、筐体1は、例えば鉄板等により構成することができるが、本発明はこれに限定されず、筐体1の形成材料は、例えば必要とする強度、重量等の条件を考慮して適宜設定することができる。   As illustrated in FIGS. 1A and 1B, the housing 1 is configured by a substantially rectangular parallelepiped box member. In addition, the shape of the housing | casing 1 is not limited to this example, It can set arbitrarily. Further, the housing 1 can be constituted by, for example, an iron plate or the like, but the present invention is not limited to this, and the forming material of the housing 1 is appropriately determined in consideration of conditions such as required strength and weight. Can be set.

本実施形態では、筐体1の底板部1a(励起光Sの出射側の板部)には、図1(b)に示すように、各励起光S(透過励起光)の光路上、及び、金属板200(油脂)から発生する蛍光Sfの光路上に、それぞれ開口部1b、及び、開口部1cを設ける。   In the present embodiment, as shown in FIG. 1B, the bottom plate portion 1a of the housing 1 (the plate portion on the emission side of the excitation light S) is on the optical path of each excitation light S (transmission excitation light), and The opening 1b and the opening 1c are provided on the optical path of the fluorescence Sf generated from the metal plate 200 (oil or fat).

また、本実施形態では、蛍光検出部4は、筐体1の底板部1a付近に設けられ、かつ、励起光Sの照射位置(油脂検出領域D)の直上に配置される。なお、蛍光検出部4の金属板200からの高さは、任意に設定することができるが、蛍光Sfの検出感度の向上という観点では、金属板200に対して、より近い位置に、蛍光検出部4を配置することが好ましい。また、蛍光検出部4の配置位置は、油脂から発生する蛍光を検出できる位置であれば、任意の位置に設定することができ、励起光Sの照射位置の直上からずれた位置に配置してもよい。しかしながら、蛍光Sfの検出感度の向上という観点では、蛍光検出部4を、図1(a)に示すように、励起光Sの照射位置の直上に設けることが好ましい。   Moreover, in this embodiment, the fluorescence detection part 4 is provided in the baseplate part 1a vicinity of the housing | casing 1, and is arrange | positioned just above the irradiation position (oil-fat detection area | region D) of the excitation light S. FIG. Note that the height of the fluorescence detection unit 4 from the metal plate 200 can be arbitrarily set, but in terms of improving the detection sensitivity of the fluorescence Sf, the fluorescence detection is performed at a position closer to the metal plate 200. It is preferable to arrange the portion 4. Further, the arrangement position of the fluorescence detection unit 4 can be set to any position as long as the fluorescence generated from the oil and fat can be detected, and is arranged at a position shifted from immediately above the irradiation position of the excitation light S. Also good. However, from the viewpoint of improving the detection sensitivity of the fluorescence Sf, it is preferable to provide the fluorescence detection unit 4 immediately above the irradiation position of the excitation light S as shown in FIG.

さらに、本実施形態では、2つの励起光出力部3は、筐体1の対向する2つの側板部1d(図1(b)の例では、幅が狭い方の側板部1d)付近にそれぞれ設けられる。この際、2つの励起光出力部3は、図1(a)に示すように、蛍光検出部4に対して対称的な位置に配置され、かつ、互いに同じ高さに配置される。また、2つの励起光出力部3は、2つの励起光出力部3から金属板200に斜め照射される各励起光Sの照射位置が互いに同じ位置となるように配置される。なお、励起光Sの照射角度は、任意に設定することができる。   Furthermore, in the present embodiment, the two excitation light output units 3 are provided in the vicinity of the two opposing side plate portions 1d of the housing 1 (in the example of FIG. 1B, the narrower side plate portion 1d). It is done. At this time, as shown in FIG. 1A, the two excitation light output units 3 are arranged at symmetrical positions with respect to the fluorescence detection unit 4 and are arranged at the same height. Further, the two excitation light output units 3 are arranged so that the irradiation positions of the excitation lights S that are obliquely irradiated onto the metal plate 200 from the two excitation light output units 3 are the same position. The irradiation angle of the excitation light S can be set arbitrarily.

4本の支持脚2は、図1(b)に示すように、筐体1の底板部1aの4つの角部にそれぞれ設けられる。なお、4本の支持脚2は、その長さが調整可能となるように、筐体1の底板部1aに取り付けられる。また、本実施形態では、各支持脚2は棒状部材で構成するが、本発明はこれに限定されず、各支持脚2の形状は任意に設定することができる。   The four support legs 2 are respectively provided at four corners of the bottom plate portion 1a of the housing 1 as shown in FIG. The four support legs 2 are attached to the bottom plate portion 1a of the housing 1 so that the length thereof can be adjusted. Moreover, in this embodiment, although each support leg 2 is comprised with a rod-shaped member, this invention is not limited to this, The shape of each support leg 2 can be set arbitrarily.

本実施形態では、図1(a)に示すように、金属板200(検査対象物)の脱脂状態を計測する際には、4本の支持脚2の筐体1側とは反対側の端部を金属板200に接触させて、脱脂状態計測装置10を金属板200上に載置する。すなわち、脱脂状態計測装置10を、4本の支持脚2を介して金属板200上に載置して、金属板200の脱脂状態を計測する。それゆえ、本実施形態の脱脂状態計測装置10では、検査時に、金属板200の油脂検出領域Dが外部から目視可能な状態(開放状態)となる。この場合、例えば励起光Sの焦点位置を目視で確認及び調整することができ、使い勝手が良くなるなど利点が得られる。   In this embodiment, as shown to Fig.1 (a), when measuring the degreasing | defatting state of the metal plate 200 (inspection object), the edge on the opposite side to the housing | casing 1 side of the four support legs 2 is shown. The degreasing state measuring device 10 is placed on the metal plate 200 with the part in contact with the metal plate 200. That is, the degreasing state measuring device 10 is placed on the metal plate 200 via the four support legs 2 and the degreasing state of the metal plate 200 is measured. Therefore, in the degreasing state measuring apparatus 10 of the present embodiment, the oil / fat detection region D of the metal plate 200 is in a state (open state) that is visible from the outside during the inspection. In this case, for example, the focal position of the excitation light S can be visually confirmed and adjusted, and advantages such as improved usability can be obtained.

なお、本実施形態では、脱脂状態計測装置10を、4本の支持脚2を介して金属板200上に載置する構成例を示したが、脱脂状態計測装置10の保持(支持)形態は、この例に限定されない。例えば、金属板200に接しないように設けられた支持部材(例えば金属板200を載せる台等に固定された支持部材)を用いて脱脂状態計測装置10を保持する構成にしてもよいし、例えば、脱脂状態計測装置10を周囲の壁や天井などに吊り下げて、脱脂状態計測装置10を保持する構成にしてもよい。   In addition, in this embodiment, although the structural example which mounts the degreasing state measuring apparatus 10 on the metal plate 200 via the four support legs 2, the holding | maintenance (support) form of the degreasing state measuring apparatus 10 was shown. However, the present invention is not limited to this example. For example, the degreasing state measuring apparatus 10 may be configured to be held using a support member provided so as not to contact the metal plate 200 (for example, a support member fixed to a table or the like on which the metal plate 200 is placed). The degreasing state measuring device 10 may be suspended from a surrounding wall or ceiling to hold the degreasing state measuring device 10.

次に、筐体1に内蔵される各部の構成を説明する。   Next, the structure of each part built in the housing | casing 1 is demonstrated.

(1)励起光出力部の構成
本実施形態では、励起光出力部3を2つ設け、2つの励起光出力部3は、互いに同じ構成とする。各励起光出力部3は、金属板200の表面の局所的な油脂検出領域Dに励起光Sを集光して照射する。例えば、各励起光出力部3は、直径が約5mm〜10mm程度の油脂検出領域Dに励起光Sを集光して照射する。これにより、高照度の励起光Sを、局所的な油脂検出領域Dに照射することができる。また、本実施形態のように、励起光出力部3(励起光源11)を複数設けることにより、局所的な油脂検出領域Dに、より強くて安定した強度を有する励起光Sを照射することができ、油脂の検出感度をより向上させることができる。
(1) Configuration of Excitation Light Output Unit In the present embodiment, two excitation light output units 3 are provided, and the two excitation light output units 3 have the same configuration. Each excitation light output unit 3 collects and irradiates the excitation light S on a local oil detection region D on the surface of the metal plate 200. For example, each excitation light output unit 3 condenses and irradiates the excitation light S on the oil / fat detection region D having a diameter of about 5 mm to 10 mm. Thereby, the local oil-and-fat detection area | region D can be irradiated with the excitation light S of high illumination intensity. Further, as in the present embodiment, by providing a plurality of excitation light output units 3 (excitation light sources 11), the local fat / oil detection region D can be irradiated with excitation light S having stronger and more stable intensity. It is possible to improve the oil and fat detection sensitivity.

なお、励起光出力部3(後述の励起光源11)の個数は2個に限定されず、励起光出力部3を1個だけ設けてもよいし、3個以上設けてもよい。励起光出力部3の個数は、例えば、脱脂状態計測装置10の寸法、必要とする感度等を考慮して、適宜設定される。   The number of excitation light output units 3 (excitation light source 11 described later) is not limited to two, and only one excitation light output unit 3 may be provided, or three or more excitation light output units 3 may be provided. The number of the excitation light output units 3 is appropriately set in consideration of, for example, the size of the degreasing state measuring device 10 and the required sensitivity.

各励起光出力部3は、励起光源11(光源)と、分光素子12と、集光レンズ13(励起光用集光レンズ)と、長波長カットフィルタ14と、制御用受光素子15(受光素子)とを備える。分光素子12、集光レンズ13及び長波長カットフィルタ14は、励起光源11の出力側に、励起光Sの光路に沿って、この順で配置される。また、制御用受光素子15は、分光素子12で反射(分光)される、励起光源11の出射光の一部(反射励起光)の光路上に配置される。   Each excitation light output unit 3 includes an excitation light source 11 (light source), a spectroscopic element 12, a condensing lens 13 (excitation light condensing lens), a long wavelength cut filter 14, and a control light receiving element 15 (light receiving element). ). The spectroscopic element 12, the condenser lens 13, and the long wavelength cut filter 14 are arranged in this order along the optical path of the excitation light S on the output side of the excitation light source 11. The control light receiving element 15 is disposed on the optical path of a part of the emitted light from the excitation light source 11 (reflected excitation light) that is reflected (spectral) by the spectroscopic element 12.

励起光源11は、励起光Sの光源であり、例えば波長が約300nm〜400nm程度の紫外線の光源等で構成される。励起光源11を紫外線光源で構成する場合には、励起光源11は、例えばLED(発光ダイオード)等の発光素子で構成される。なお、励起光源11から射出される光は紫外線に限定されず、油脂に光を照射した際に油脂で蛍光が励起される波長の光であれば任意の波長の光を用いることができる。   The excitation light source 11 is a light source of the excitation light S, and is composed of, for example, an ultraviolet light source having a wavelength of about 300 nm to 400 nm. When the excitation light source 11 is composed of an ultraviolet light source, the excitation light source 11 is composed of a light emitting element such as an LED (light emitting diode). The light emitted from the excitation light source 11 is not limited to ultraviolet light, and light having an arbitrary wavelength can be used as long as the light has a wavelength at which fluorescence is excited by the oil when the oil is irradiated with light.

また、図1(a)及び(b)には示さないが、励起光源11は、処理回路部5内の後述の光出力制御部7に電気的に接続される(図3参照)。そして、本実施形態では、励起光源11の発光強度は、光出力制御部7によりフィードバック制御される。   Although not shown in FIGS. 1A and 1B, the excitation light source 11 is electrically connected to a light output control unit 7 described later in the processing circuit unit 5 (see FIG. 3). In the present embodiment, the light emission intensity of the excitation light source 11 is feedback-controlled by the light output control unit 7.

分光素子12は、例えばビームスプリッターやハーフミラーなどの光学素子で構成される。分光素子12は、励起光源11からの出射光(励起光)を、集光レンズ13側に透過する光(透過励起光)と、制御用受光素子15側に反射(供給)する光(反射励起光)とに分離する。本実施形態では、励起光源11からの出射光のうち、例えば約10〜20%程度の光を制御用受光素子15側に反射するような分光素子12を用いる。   The spectroscopic element 12 is composed of an optical element such as a beam splitter or a half mirror. The spectroscopic element 12 transmits the light emitted from the excitation light source 11 (excitation light) to the condenser lens 13 side (transmission excitation light) and the light reflected (supplied) to the control light receiving element 15 side (reflection excitation). Separated into light). In the present embodiment, a spectroscopic element 12 that reflects, for example, about 10 to 20% of the light emitted from the excitation light source 11 to the control light receiving element 15 side is used.

集光レンズ13は、分光素子12を透過した励起光S(透過励起光)を集光して、より小さなスポット径の励起光Sを生成する。なお、集光レンズ13の構成(配置位置、焦点距離等)は、その焦点が局所的な油脂検出領域Dに合うように設定される。これにより、励起光Sを油脂検出領域Dに集中して照射することができ、油脂検出領域Dにおける励起光Sの照度を増大させることができる。   The condensing lens 13 condenses the excitation light S (transmission excitation light) transmitted through the spectroscopic element 12 and generates the excitation light S having a smaller spot diameter. The configuration of the condenser lens 13 (arrangement position, focal length, etc.) is set so that its focal point matches the local oil detection region D. Thereby, the excitation light S can be concentrated and irradiated to the oil detection region D, and the illuminance of the excitation light S in the oil detection region D can be increased.

長波長カットフィルタ14は、励起光源11からの出射光に含まれる可視光成分を除去する。また、本実施形態では、長波長カットフィルタ14を、集光レンズ13の光出射面に密着させて配置する。これにより、油脂の検出に不要な可視光成分の金属板200側への漏れ出しをできる限り防止することができ、金属板200に照射される励起光Sに含まれる不要な可視光成分をより低減することができる。なお、図1(a)には、長波長カットフィルタ14を、筐体1の底板部1aに設けられた開口部1bと離して配置する例を示すが、本発明はこれに限定されず、例えば、底板部1aの開口部1bを長波長カットフィルタ14で塞ぐように、長波長カットフィルタ14を配置してもよい。   The long wavelength cut filter 14 removes a visible light component contained in the light emitted from the excitation light source 11. In the present embodiment, the long wavelength cut filter 14 is disposed in close contact with the light exit surface of the condenser lens 13. Thereby, it is possible to prevent leakage of visible light components unnecessary for the detection of oil and fat to the metal plate 200 side as much as possible, and more unnecessary visible light components included in the excitation light S irradiated on the metal plate 200 can be prevented. Can be reduced. FIG. 1 (a) shows an example in which the long wavelength cut filter 14 is disposed apart from the opening 1b provided in the bottom plate 1a of the housing 1, but the present invention is not limited to this. For example, the long wavelength cut filter 14 may be disposed so as to block the opening 1b of the bottom plate 1a with the long wavelength cut filter 14.

制御用受光素子15は、例えば励起光(紫外線等)検出用のフォトダイオード等の受光素子により構成され、分光素子12から供給される光(反射励起光)を検出し、該検出光を電気信号に変換する。また、制御用受光素子15は、処理回路部5内の後述する光出力制御部7に電気的に接続され、変換された電気信号(検出結果)を、光出力制御部7に出力する。   The control light receiving element 15 is composed of a light receiving element such as a photodiode for detecting excitation light (ultraviolet light or the like), for example, detects light (reflected excitation light) supplied from the spectroscopic element 12, and uses the detected light as an electrical signal. Convert to The control light receiving element 15 is electrically connected to a light output control unit 7 described later in the processing circuit unit 5, and outputs the converted electric signal (detection result) to the light output control unit 7.

(2)蛍光検出部の構成
蛍光検出部4は、金属板200に付着した油脂で発光する蛍光Sf(可視光)を検出する。蛍光検出部4は、集光レンズ21(可視光用集光レンズ)と、短波長カットフィルタ22と、可視光検出器23とを備える。短波長カットフィルタ22及び集光レンズ21は、可視光検出器23の蛍光Sfの受光面側(蛍光Sfの入射面側)に、蛍光Sfの光路に沿って、この順で配置される。
(2) Configuration of Fluorescence Detection Unit The fluorescence detection unit 4 detects fluorescence Sf (visible light) emitted by oils and fats attached to the metal plate 200. The fluorescence detection unit 4 includes a condensing lens 21 (condensing lens for visible light), a short wavelength cut filter 22, and a visible light detector 23. The short wavelength cut filter 22 and the condenser lens 21 are arranged in this order along the light path of the fluorescence Sf on the light receiving surface side of the fluorescence Sf of the visible light detector 23 (incident surface side of the fluorescence Sf).

集光レンズ21は、金属板200の油脂検出領域Dで発生した蛍光Sfを集光する。また、本実施形態では、集光レンズ21の構成(配置位置、焦点距離等)は、その焦点が局所的な油脂検出領域Dに合うように設定される。なお、集光レンズ21の寸法は、例えば、脱脂状態計測装置10の寸法等を考慮して、適宜設定される。また、図1(a)には、集光レンズ21を、筐体1の底板部1aに設けられた開口部1cと離して配置する例を示すが、本発明はこれに限定されず、例えば、底板部1aの開口部1cを集光レンズ21で塞ぐように、集光レンズ21を配置してもよい。   The condensing lens 21 condenses the fluorescence Sf generated in the oil / fat detection region D of the metal plate 200. In the present embodiment, the configuration (arrangement position, focal length, etc.) of the condensing lens 21 is set so that the focal point thereof matches the local oil detection region D. In addition, the dimension of the condensing lens 21 is suitably set considering the dimension of the degreasing state measuring apparatus 10 etc., for example. FIG. 1A shows an example in which the condenser lens 21 is arranged apart from the opening 1c provided in the bottom plate 1a of the housing 1, but the present invention is not limited to this, for example, The condensing lens 21 may be disposed so that the opening 1c of the bottom plate portion 1a is covered with the condensing lens 21.

上記構成の集光レンズ21を可視光検出器23の受光面側に設けることにより、油脂で発生した蛍光Sfを効率よく集光して、可視光検出器23に導くことができる。それゆえ、本実施形態では、油脂で発生した蛍光Sfの検出感度をより向上させることができる。なお、例えば、励起光出力部3(励起光源11)の個数を増やして、十分強い光力の蛍光Sfを油脂で発生させることができる場合には、集光レンズ21を設けなくてもよい。   By providing the condensing lens 21 having the above configuration on the light receiving surface side of the visible light detector 23, the fluorescence Sf generated by the oil and fat can be efficiently condensed and guided to the visible light detector 23. Therefore, in the present embodiment, it is possible to further improve the detection sensitivity of the fluorescence Sf generated by the fats and oils. For example, when the number of the excitation light output units 3 (excitation light sources 11) can be increased and the fluorescence Sf having a sufficiently strong light power can be generated with oils and fats, the condenser lens 21 may not be provided.

短波長カットフィルタ22は、可視光検出器23に漏れ込む不要な励起光S(例えば紫外線)の光成分を除去する。また、本実施形態では、短波長カットフィルタ22を、可視光検出器23の受光面に密着させて配置する。これにより、可視光検出器23への不要な励起光Sの漏れ込みをできる限り防止することができる。   The short wavelength cut filter 22 removes unnecessary light components of the excitation light S (for example, ultraviolet rays) that leaks into the visible light detector 23. In this embodiment, the short wavelength cut filter 22 is disposed in close contact with the light receiving surface of the visible light detector 23. Thereby, unnecessary leakage of the excitation light S to the visible light detector 23 can be prevented as much as possible.

なお、本実施形態では、上述のように不要な光成分(可視光成分及び励起光成分)を除去するために干渉フィルタ(長波長カットフィルタ14及び短波長カットフィルタ22)を用いる例を説明したが、本発明はこれに限定されない。例えば、干渉フィルタの代わりに、小型の分光器を用いてもよい。また、上述した不要な光成分(可視光成分及び励起光成分)が、油脂で発生した蛍光成分の検出(脱脂状態の計測)に大きな影響を与えない場合には、長波長カットフィルタ14及び短波長カットフィルタ22を設けない構成にしてもよい。   In the present embodiment, as described above, an example in which interference filters (the long wavelength cut filter 14 and the short wavelength cut filter 22) are used to remove unnecessary light components (visible light component and excitation light component) has been described. However, the present invention is not limited to this. For example, a small spectroscope may be used instead of the interference filter. In addition, when the above-described unnecessary light components (visible light component and excitation light component) do not significantly affect the detection of fluorescent components generated in fats and oils (measurement of a degreased state), the long wavelength cut filter 14 and the short wavelength filter 14 The wavelength cut filter 22 may not be provided.

可視光検出器23は、例えば可視光検出用のフォトダイオード等の受光素子で構成される。可視光検出器23は、金属板200の油脂検出領域Dで発生した蛍光Sfを、集光レンズ21及び短波長カットフィルタ22を介して受光し、該受光した蛍光Sfを電気信号に変換する。また、可視光検出器23は、処理回路部5内の後述する信号処理部6に電気的に接続され、変換された電気信号(検出結果)を、信号処理部6に出力する。   The visible light detector 23 is composed of a light receiving element such as a visible light detection photodiode, for example. The visible light detector 23 receives the fluorescence Sf generated in the oil / fat detection region D of the metal plate 200 via the condenser lens 21 and the short wavelength cut filter 22, and converts the received fluorescence Sf into an electric signal. The visible light detector 23 is electrically connected to a signal processing unit 6 (described later) in the processing circuit unit 5, and outputs the converted electric signal (detection result) to the signal processing unit 6.

(3)処理回路部の構成
処理回路部5は、脱脂状態計測装置10の各種動作を駆動するための回路部である。そして、本実施形態では、処理回路部5に、信号処理部6及び光出力制御部7が実装される。なお、図1(a)には示さないが、処理回路部5は、各回路部を駆動するための電源回路も備える。
(3) Configuration of Processing Circuit Unit The processing circuit unit 5 is a circuit unit for driving various operations of the degreasing state measuring apparatus 10. In the present embodiment, the signal processing unit 6 and the light output control unit 7 are mounted on the processing circuit unit 5. Although not shown in FIG. 1A, the processing circuit unit 5 also includes a power supply circuit for driving each circuit unit.

(3−1)信号処理部
信号処理部6は、可視光検出器23から入力される蛍光Sfの検出結果に基づいて、金属板200の油脂検出領域Dの脱脂状態に対応する情報(検出信号)を生成する。ここで、図2に、信号処理部6の内部ブロック構成を示す。
(3-1) Signal Processing Unit The signal processing unit 6 uses information (detection signal) corresponding to the degreasing state of the oil / fat detection region D of the metal plate 200 based on the detection result of the fluorescence Sf input from the visible light detector 23. ) Is generated. Here, FIG. 2 shows an internal block configuration of the signal processing unit 6.

信号処理部6は、バンドパスフィルタ31と、第1の増幅回路32と、矩形波発振回路33と、同期検波回路34と、ゼロ点調整回路35と、第2の増幅回路36とを備える。また、バンドパスフィルタ31、第1の増幅回路32、同期検波回路34、ゼロ点調整回路35及び第2の増幅回路36は、可視光検出器23の検出結果の入力側からこの順で電気的に接続される。さらに、矩形波発振回路33の出力端子は、同期検波回路34に接続され、第2の増幅回路36の出力端子は、外部の表示装置8に接続される。   The signal processing unit 6 includes a bandpass filter 31, a first amplifier circuit 32, a rectangular wave oscillation circuit 33, a synchronous detection circuit 34, a zero point adjustment circuit 35, and a second amplifier circuit 36. The band-pass filter 31, the first amplifier circuit 32, the synchronous detection circuit 34, the zero point adjustment circuit 35, and the second amplifier circuit 36 are electrically connected in this order from the detection result input side of the visible light detector 23. Connected to. Further, the output terminal of the rectangular wave oscillation circuit 33 is connected to the synchronous detection circuit 34, and the output terminal of the second amplification circuit 36 is connected to the external display device 8.

バンドパスフィルタ31は、可視光検出器23で検出された検出信号から不要な電気的ノイズを除去する。具体的には、バンドパスフィルタ31は、励起光源11を駆動する矩形波電流の周波数付近の帯域の信号成分を通過させ、その信号を第1の増幅回路32に出力する。   The bandpass filter 31 removes unnecessary electrical noise from the detection signal detected by the visible light detector 23. Specifically, the band pass filter 31 passes a signal component in a band near the frequency of the rectangular wave current that drives the excitation light source 11 and outputs the signal to the first amplifier circuit 32.

第1の増幅回路32は、バンドパスフィルタ31で抽出された所定周波数帯域の信号を増幅し、その増幅信号(周期信号)を同期検波回路34に出力する。   The first amplifier circuit 32 amplifies the signal in the predetermined frequency band extracted by the bandpass filter 31 and outputs the amplified signal (periodic signal) to the synchronous detection circuit 34.

矩形波発振回路33は、励起光源11に供給される駆動信号(交流の電流信号)に同期した矩形波信号(例えば約1kHzの矩形波信号)を生成し、該矩形波信号を同期検波回路34に出力する。   The rectangular wave oscillating circuit 33 generates a rectangular wave signal (for example, a rectangular wave signal of about 1 kHz) that is synchronized with the drive signal (AC current signal) supplied to the excitation light source 11, and the rectangular wave signal is synchronized with the synchronous detecting circuit 34. Output to.

同期検波回路34は、第1の増幅回路32から入力された周期信号、及び、矩形波発振回路33から入力された矩形波信号を用いて同期検波を行い、入力された周期信号を直流信号に変換する。そして、同期検波回路34は、変換された直流信号をゼロ点調整回路46に出力する。なお、同期検波回路34から出力される直流信号のレベルは、可視光検出器23で検出された可視光(蛍光Sfを含む)の光量に対応した値となる。   The synchronous detection circuit 34 performs synchronous detection using the periodic signal input from the first amplifier circuit 32 and the rectangular wave signal input from the rectangular wave oscillation circuit 33, and converts the input periodic signal into a DC signal. Convert. Then, the synchronous detection circuit 34 outputs the converted DC signal to the zero point adjustment circuit 46. The level of the DC signal output from the synchronous detection circuit 34 is a value corresponding to the amount of visible light (including fluorescence Sf) detected by the visible light detector 23.

なお、本実施形態の脱脂状態計測装置10では、励起光出力部3に長波長カットフィルタ14を設け、かつ、蛍光検出部4に短波長カットフィルタ22を設けて、可視光検出器23に入射される不要な可視光成分(励起光源11の出射光に含まれる可視光成分)をできる限り除去するが、不要な可視光成分を完全に除去することができない。それゆえ、可視光検出器23で検出される可視光には多少、不要な可視光成分が含まれる。また、本実施形態の構成では、信号処理部6の回路内のドリフト等の影響も存在する。すなわち、同期検波回路34から出力される直流信号は、微量の不要な可視光成分や信号処理部6の回路内のドリフトなどの影響(誤差)を含んだ信号となる。   In the degreasing state measuring apparatus 10 of the present embodiment, the excitation light output unit 3 is provided with the long wavelength cut filter 14, and the fluorescence detection unit 4 is provided with the short wavelength cut filter 22 to enter the visible light detector 23. The unnecessary visible light component (visible light component included in the light emitted from the excitation light source 11) is removed as much as possible, but the unnecessary visible light component cannot be completely removed. Therefore, the visible light detected by the visible light detector 23 includes some unnecessary visible light components. In the configuration of the present embodiment, there is an influence such as drift in the circuit of the signal processing unit 6. That is, the DC signal output from the synchronous detection circuit 34 is a signal including an influence (error) such as a minute amount of unnecessary visible light components and drift in the circuit of the signal processing unit 6.

そこで、本実施形態では、同期検波回路34の出力側にゼロ点調整回路35を設け、この回路により、上述した誤差を補正し、油脂で発生した蛍光Sfに対応する信号(金属板200の油脂検出領域Dの脱脂状態に対応する情報)をより高精度に抽出する。   Therefore, in the present embodiment, a zero point adjustment circuit 35 is provided on the output side of the synchronous detection circuit 34, and this circuit corrects the above-described error, and a signal corresponding to the fluorescence Sf generated in the oil and fat (the oil and fat of the metal plate 200). Information corresponding to the degreasing state of the detection region D) is extracted with higher accuracy.

具体的には、ゼロ点調整回路35では、次のような補正処理を行う。まず、励起光Sの照射位置(油脂検出領域D)に油脂が存在しない場合の直流信号の値を予め測定し、その値を直流信号のゼロレベルの基準値とする。そして、同期検波回路34から入力される直流信号のゼロレベルを予め算出した直流信号のゼロレベルの基準値に合わせることにより、同期検波回路34から入力される直流信号を補正する。この結果、ゼロ点調整回路35から、油脂で発生した蛍光Sfに対応する直流信号のみを出力することができる。そして、ゼロ点調整回路35は、抽出した蛍光Sfに対応する直流信号を第2の増幅回路36に出力する。   Specifically, the zero point adjustment circuit 35 performs the following correction process. First, the value of the direct current signal when no oil or fat is present at the irradiation position of the excitation light S (oil and fat detection region D) is measured in advance, and the value is set as a zero-level reference value of the direct current signal. Then, the DC signal input from the synchronous detection circuit 34 is corrected by adjusting the zero level of the DC signal input from the synchronous detection circuit 34 to the reference value of the zero level of the DC signal calculated in advance. As a result, only the DC signal corresponding to the fluorescence Sf generated by the oil and fat can be output from the zero point adjustment circuit 35. Then, the zero point adjustment circuit 35 outputs a DC signal corresponding to the extracted fluorescence Sf to the second amplification circuit 36.

なお、上述した微量の不要な可視光成分や信号処理部6の回路内のドリフトなどにより発生する誤差が、油脂で発生した蛍光Sfの検出に大きな影響を与えない場合には、同期検波回路34から出力される直流信号を補正せず、直接、第2の増幅回路36に出力してもよい。   Note that the synchronous detection circuit 34 is used when an error caused by the above-described minute amount of unnecessary visible light component or drift in the circuit of the signal processing unit 6 does not greatly affect the detection of the fluorescence Sf generated by the oil or fat. The direct current signal output from the first amplifier circuit 36 may be directly output to the second amplifier circuit 36 without being corrected.

第2の増幅回路36は、ゼロ点調整回路35から出力された直流信号に対してゲイン調整を行い、増幅する。そして、第2の増幅回路36は、増幅した直流信号を表示装置8に出力する。   The second amplification circuit 36 performs gain adjustment on the DC signal output from the zero point adjustment circuit 35 and amplifies it. Then, the second amplifier circuit 36 outputs the amplified DC signal to the display device 8.

表示装置8は、第2の増幅回路36から入力された直流信号(油脂の検出結果)を電圧信号に変換して表示する。この際、その数値の表示形態はアナログ表示であってもよいし、デジタル表示であってもよい。ユーザーは、この表示結果に基づいて、金属板200の油脂検出領域Dに油脂が付着しているか否かを判定する。なお、本実施形態では、信号処理部6内に、第2の増幅回路36の出力信号に基づいて金属板200の油脂検出領域Dに油脂が付着しているか否かを判定する判定部を設けてもよい。この場合、表示装置8では、油脂の付着の有無(判定結果)だけを表示するようにしてもよい。   The display device 8 converts the DC signal (oil detection result) input from the second amplifier circuit 36 into a voltage signal and displays it. At this time, the display form of the numerical value may be an analog display or a digital display. Based on the display result, the user determines whether or not the oil / fat is attached to the oil / fat detection region D of the metal plate 200. In the present embodiment, a determination unit is provided in the signal processing unit 6 to determine whether or not the oil / fat is attached to the oil / fat detection region D of the metal plate 200 based on the output signal of the second amplifier circuit 36. May be. In this case, the display device 8 may display only the presence / absence (determination result) of the adhesion of oil and fat.

(3−2)光出力制御部
光出力制御部7は、制御用受光素子15で検出される分光素子12で反射された光(反射励起光)の検出結果に基づいて、励起光源11の光出力(励起光Sの強度)をフィードバック制御する。ここで、図3に、光出力制御部7の内部ブロック構成を示す。
(3-2) Light Output Control Unit The light output control unit 7 uses the light from the excitation light source 11 based on the detection result of the light reflected by the spectroscopic element 12 detected by the control light receiving element 15 (reflection excitation light). The output (intensity of the excitation light S) is feedback controlled. Here, FIG. 3 shows an internal block configuration of the light output controller 7.

光出力制御部7は、増幅回路41と、PID(Proportional/Integral/Derivative)制御部42と、LED直流電源43とを備える。   The light output control unit 7 includes an amplifier circuit 41, a PID (Proportional / Integral / Derivative) control unit 42, and an LED DC power supply 43.

増幅回路41は、制御用受光素子15に電気的に接続され、制御用受光素子15で検出された反射励起光に対応する交流の電気信号(周期信号)を直流信号に変換し、該変換された直流信号を増幅する。また、増幅回路41は、PID制御部42に接続され、増幅した直流信号(プロセス信号)をPID制御部42に出力する。   The amplification circuit 41 is electrically connected to the control light receiving element 15 and converts an alternating electrical signal (periodic signal) corresponding to the reflected excitation light detected by the control light receiving element 15 into a direct current signal. Amplifies the received DC signal. The amplifier circuit 41 is connected to the PID control unit 42 and outputs the amplified DC signal (process signal) to the PID control unit 42.

PID制御部42は、比例制御、積分制御及び微分制御を組み合わせて、増幅回路41から入力されたプロセス信号が、予め設定された所定の設定値に収束するように、LED直流電源43の操作信号(制御信号)を生成する。具体的には、増幅回路41から入力されたプロセス信号と、予め設定された所定の設定値とを比較し、その比較結果に対応する操作信号を生成する。   The PID control unit 42 combines the proportional control, the integral control, and the derivative control, and the operation signal of the LED DC power source 43 is converged so that the process signal input from the amplifier circuit 41 converges to a predetermined set value. (Control signal) is generated. Specifically, the process signal input from the amplifier circuit 41 is compared with a predetermined setting value set in advance, and an operation signal corresponding to the comparison result is generated.

また、PID制御部42は、LED直流電源43に接続され、生成した操作信号(制御信号)をLED直流電源43に出力し、励起光Sの強度(励起光源11の光出力)が最適値になるように制御する。本実施形態では、励起光Sが励起光源11から射出されている間は、PID制御を繰り返し行う。なお、励起光Sの強度の制御手法としては、PID制御以外の手法も用いることができ、PID制御と同様に、励起光Sの強度をフィードバック制御することができる手法であれば、任意の制御手法を用いることができる。   The PID control unit 42 is connected to the LED DC power source 43, outputs the generated operation signal (control signal) to the LED DC power source 43, and the intensity of the excitation light S (the light output of the excitation light source 11) becomes an optimum value. Control to be. In the present embodiment, while the excitation light S is emitted from the excitation light source 11, PID control is repeatedly performed. As a method for controlling the intensity of the excitation light S, a technique other than the PID control can be used. As with the PID control, any control can be used as long as the intensity of the excitation light S can be feedback controlled. Techniques can be used.

LED直流電源43は、励起光源11の電流源であり、PID制御部42から入力される操作信号に基づいて、所定電流値の駆動信号(電流信号)を励起光源11に供給する。   The LED DC power supply 43 is a current source of the excitation light source 11 and supplies a drive signal (current signal) having a predetermined current value to the excitation light source 11 based on an operation signal input from the PID control unit 42.

本実施形態では、光出力制御部7内の増幅回路41、PID制御部42及びLED直流電源43の回路セットを、励起光源11(励起光出力部3)毎に設ける。この場合、各励起光源11の励起光Sの強度を個別に精度良く制御することができるので、油脂の検出精度も向上する。なお、本発明はこれに限定されず、複数の励起光源11に対して増幅回路41、PID制御部42及びLED直流電源43の回路セットを共通して設け、装置構成をより簡易にしてもよい。この場合、例えば、各制御用受光素子15で検出された交流の電気信号の平均値に基づいて生成されたプロセス信号と所定の設定値とをPID制御部42で比較することにより、各励起光Sの強度をフィードバック制御することができる。   In the present embodiment, a circuit set of the amplification circuit 41, the PID control unit 42, and the LED DC power source 43 in the light output control unit 7 is provided for each excitation light source 11 (excitation light output unit 3). In this case, since the intensity of the excitation light S of each excitation light source 11 can be individually controlled with high accuracy, the oil / fat detection accuracy is also improved. The present invention is not limited to this, and the circuit configuration of the amplifier circuit 41, the PID control unit 42, and the LED DC power supply 43 may be provided in common for the plurality of excitation light sources 11 to further simplify the apparatus configuration. . In this case, for example, the PID control unit 42 compares the process signal generated based on the average value of the alternating electrical signal detected by each control light receiving element 15 with each excitation light. The intensity of S can be feedback controlled.

[脱脂状態計測装置の動作]
次に、本実施形態の脱脂状態計測装置10における脱脂状態の検出動作を、図4を参照しながら説明する。なお、図4は、本実施形態の脱脂状態計測装置10における脱脂状態の検出処理の手順を示すフローチャートである。
[Operation of degreasing state measuring device]
Next, the detection operation of the degreasing state in the degreasing state measuring apparatus 10 of this embodiment is demonstrated, referring FIG. In addition, FIG. 4 is a flowchart which shows the procedure of the detection process of the degreasing state in the degreasing state measuring apparatus 10 of this embodiment.

まず、脱脂状態計測装置10は、2つの励起光源11を発光させ、各励起光源11から所定波長の光(例えば紫外線)を金属板200の表面に対して斜め照射する(ステップS1)。この際、本実施形態では、各分光素子12を透過した各励起光Sを対応する集光レンズ13により集光して、該集光された各励起光Sを金属板200表面の所定の局所的な油脂検出領域Dに照射する。   First, the degreasing state measuring apparatus 10 causes the two excitation light sources 11 to emit light, and obliquely irradiates the surface of the metal plate 200 with light of a predetermined wavelength (for example, ultraviolet rays) from each excitation light source 11 (step S1). At this time, in the present embodiment, each excitation light S transmitted through each spectroscopic element 12 is condensed by the corresponding condenser lens 13, and each condensed excitation light S is given to a predetermined local area on the surface of the metal plate 200. Irradiated to a typical oil and fat detection region D.

次いで、制御用受光素子15は、励起光Sが金属板200に照射されている間、分光素子12から反射される光(反射励起光)を検出する。そして、光出力制御部7は、制御用受光素子15での検出結果に基づいて、励起光源11の光出力(励起光Sの強度)をPID制御により最適化する(ステップS2)。なお、ステップS2における励起光Sの強度のフィードバック制御処理は、励起光Sが金属板200に照射されている間、繰り返し行われる。   Next, the control light receiving element 15 detects the light (reflected excitation light) reflected from the spectroscopic element 12 while the excitation light S is irradiated on the metal plate 200. The light output controller 7 optimizes the light output of the excitation light source 11 (intensity of the excitation light S) by PID control based on the detection result of the control light receiving element 15 (step S2). Note that the feedback control process of the intensity of the excitation light S in step S2 is repeatedly performed while the excitation light S is irradiated on the metal plate 200.

次いで、可視光検出器23は、油脂検出領域Dへの励起光Sの照射により、油脂検出領域Dで発生した可視光(蛍光Sf)を検出し、該検出した信号(検出結果)を信号処理部6に出力する(ステップS3)。   Next, the visible light detector 23 detects visible light (fluorescence Sf) generated in the oil / fat detection region D by irradiating the oil / fat detection region D with the excitation light S, and performs signal processing on the detected signal (detection result). It outputs to the part 6 (step S3).

次いで、信号処理部6(ゼロ点調整回路35)は、可視光検出器23で検出された信号に含まれる上述した微量の不要な可視光成分や信号処理部6の回路内のドリフトなどの影響(誤差)を除去し(ゼロ点調整を行い)、可視光検出器23の検出信号を補正する(ステップS4)。本実施形態では、この処理により、脱脂状態に対応する情報を生成する。   Next, the signal processing unit 6 (zero point adjustment circuit 35) affects the above-described minute amount of unnecessary visible light components included in the signal detected by the visible light detector 23, drift in the circuit of the signal processing unit 6, and the like. (Error) is removed (zero point adjustment is performed), and the detection signal of the visible light detector 23 is corrected (step S4). In the present embodiment, information corresponding to the degreased state is generated by this process.

次いで、信号処理部6は、ゼロ点調整回路35で補正された油脂の検出信号を外部の表示装置8に出力する。そして、表示装置8は、信号処理部6から出力された油脂の検出結果(脱脂状態に対応する情報)を表示し、ユーザーは、その表示結果に基づいて、金属板200の油脂検出領域D上に油脂が付着しているか否かを判別する(ステップS5)。本実施形態では、このようにして、金属板200の表面に油脂が付着しているか否か判定する。   Next, the signal processing unit 6 outputs the fat and oil detection signal corrected by the zero point adjustment circuit 35 to the external display device 8. And the display apparatus 8 displays the detection result (information corresponding to a degreasing state) of the fats and oils output from the signal processing part 6, and a user is on the fats and oil detection area | region D of the metal plate 200 based on the display result. It is determined whether or not oil or fat is adhered to the surface (step S5). In this embodiment, in this way, it is determined whether oil or fat is attached to the surface of the metal plate 200.

本実施形態の脱脂状態計測装置10では、上述のように、複数の励起光Sを、集光レンズで集光して、金属板200の局所的な油脂検出領域Dに照射する。これにより、より光力の強い励起光Sを局所的な油脂検出領域Dに照射することができ、油脂で発生する蛍光Sfの光力を強くすることができる。また、本実施形態では、各励起光源11の光出力を、個別にPID制御するので、最適な強度の励起光Sを安定して油脂検出領域Dに照射することができる。すなわち、本実施形態の脱脂状態計測装置10では、より局所的な油脂検出領域Dにおいて微量な油脂を検出することができ、かつ、より安定して精度よく脱脂状態を計測することができる。   In the degreasing state measuring apparatus 10 according to the present embodiment, as described above, the plurality of excitation lights S are collected by the condensing lens and irradiated to the local oil detection area D of the metal plate 200. Thereby, the excitation light S with stronger light power can be irradiated to the local oil detection region D, and the light power of the fluorescence Sf generated by the oil can be increased. Moreover, in this embodiment, since the optical output of each excitation light source 11 is individually PID-controlled, it is possible to stably irradiate the fat and oil detection region D with the excitation light S having the optimum intensity. That is, in the degreasing state measuring apparatus 10 of this embodiment, a trace amount of fats and oils can be detected in the more local fat and oil detection region D, and the degreasing state can be measured more stably and accurately.

なお、上記実施形態では、微量の油脂を検出することを目的とする例を説明したが、本発明はこれに限定されない。本発明の脱脂状態計測装置及びその脱脂状態計測手法は、従来の油脂の検出手法で検出可能な量(微量でない量)の油脂の検出にも適用可能である。また、上記実施形態では、脱脂状態計測装置10の検査対象物として、例えば鋼板等の金属板200を例に挙げ説明したが、本発明はこれに限定されない。上記実施形態の脱脂状態計測装置10は、例えば処理鋼板(電気亜鉛メッキ鋼板など)等の検査対象物にも適用可能であり、同様の効果が得られる。   In addition, although the said embodiment demonstrated the example aiming at detecting a trace amount fats and oils, this invention is not limited to this. The degreasing state measuring apparatus and the degreasing state measuring method of the present invention can also be applied to the detection of an amount of fat (not an extremely small amount) that can be detected by a conventional method for detecting fats and oils. Moreover, in the said embodiment, although the metal plate 200, such as a steel plate, was mentioned as an example and demonstrated as an inspection target object of the degreasing state measuring apparatus 10, this invention is not limited to this. The degreasing state measuring apparatus 10 of the said embodiment is applicable also to test objects, such as a processed steel plate (electrogalvanized steel plate etc.), for example, and the same effect is acquired.

[比較例及び各種効果の説明]
ここで、上述した本実施形態の脱脂状態計測装置10で得られる効果を、以下に示す比較例の脱脂状態計測装置と比較しながら、より具体的に説明する。
[Description of comparative examples and various effects]
Here, the effect obtained with the degreasing state measuring apparatus 10 of this embodiment mentioned above is demonstrated more concretely, comparing with the degreasing state measuring apparatus of the comparative example shown below.

本発明者らは、以前に、特願2010−248392において、油脂検出領域を密閉した状態で微量な油脂を検出する脱脂状態計測装置を提案した。図5(a)及び(b)に、特願2010−248392において提案した密閉型の脱脂状態計測装置(比較例)の概略構成図を示す。なお、図5(a)は、比較例の脱脂状態計測装置100の概略構成断面図であり、図5(b)は、脱脂状態計測装置100のミラー103により、密閉(画成)される油脂検出領域Drの範囲を示す図である。   The present inventors have previously proposed a degreasing state measuring device for detecting a small amount of oil and fat in a state where the oil and fat detection region is sealed in Japanese Patent Application No. 2010-248392. 5A and 5B are schematic configuration diagrams of a sealed degreasing state measuring device (comparative example) proposed in Japanese Patent Application No. 2010-248392. 5A is a schematic cross-sectional view of a comparative degreasing state measuring apparatus 100, and FIG. 5B is an oil and fat sealed (defined) by the mirror 103 of the degreasing state measuring apparatus 100. It is a figure which shows the range of the detection area Dr.

比較例の脱脂状態計測装置100は、励起光出力部101と、蛍光検出部102と、お椀状のミラー103とを備える。なお、励起光出力部101は、ミラー103の側面部に取り付けられ、蛍光検出部102は、ミラー103の頂点部に取り付けられる。   The degreasing state measuring apparatus 100 of the comparative example includes an excitation light output unit 101, a fluorescence detection unit 102, and a bowl-shaped mirror 103. The excitation light output unit 101 is attached to the side surface of the mirror 103, and the fluorescence detection unit 102 is attached to the apex of the mirror 103.

励起光出力部101は、励起光源111(紫外線光源)と、長波長カットフィルタ112とで構成され、蛍光検出部102は、集光レンズ121と、短波長カットフィルタ122と、可視光検出器123とで構成される。なお、励起光出力部101内の励起光源111及び長波長カットフィルタ112は、それぞれ、上記本実施形態の励起光出力部3の励起光源11(LED)及び長波長カットフィルタ14と同様に構成される。また、蛍光検出部102内の集光レンズ121、短波長カットフィルタ122及び可視光検出器123は、それぞれ、上記本実施形態の蛍光検出部4の集光レンズ21、短波長カットフィルタ22及び可視光検出器23と同様に構成される。   The excitation light output unit 101 includes an excitation light source 111 (ultraviolet light source) and a long wavelength cut filter 112, and the fluorescence detection unit 102 includes a condenser lens 121, a short wavelength cut filter 122, and a visible light detector 123. It consists of. The excitation light source 111 and the long wavelength cut filter 112 in the excitation light output unit 101 are configured in the same manner as the excitation light source 11 (LED) and the long wavelength cut filter 14 of the excitation light output unit 3 of the present embodiment, respectively. The Further, the condensing lens 121, the short wavelength cut filter 122, and the visible light detector 123 in the fluorescence detection unit 102 are the condensing lens 21, the short wavelength cut filter 22, and the visible light detector 123 of the fluorescence detection unit 4 of the present embodiment, respectively. The configuration is the same as that of the photodetector 23.

比較例の脱脂状態計測装置100では、お椀状のミラー103の開口部を金属板201上に載置することにより、金属板201の油脂の検出領域を密閉状態にする。比較例では、励起光Sを金属板201に照射する際に、励起光Sを集光しないので、ミラー103の開口部により画成された領域Dr全体が、油脂の検出領域(以下、油脂検出領域Drという)となる。   In the degreasing state measuring device 100 of the comparative example, the opening of the bowl-shaped mirror 103 is placed on the metal plate 201 so that the oil / fat detection region of the metal plate 201 is sealed. In the comparative example, since the excitation light S is not collected when the excitation light S is applied to the metal plate 201, the entire region Dr defined by the opening of the mirror 103 is the oil detection region (hereinafter referred to as oil detection). This is referred to as a region Dr).

そして、比較例では、油脂検出領域Drを密閉した状態で、励起光源111からブリュースター角の入射角で励起光S(紫外線)を金属板201に照射することにより、脱脂状態を計測する。ただし、この際、比較例では励起光Sを集光しないので、検出される油脂(蛍光Sf)の量は、油脂検出領域Dr内に残留する油脂の量の平均値となる。また、比較例の脱脂状態計測装置100では、励起光源111の個数や大きさ、及び、可視光検出器123の大きさ等の物理的制約により、油脂検出領域Drの直径は約100mm程度となる。それゆえ、比較例では、直径が約100mm程度の油脂検出領域Drの金属板201の表面に残留する油脂の量の平均値を計測することになる。   In the comparative example, the degreasing state is measured by irradiating the metal plate 201 with excitation light S (ultraviolet light) at an incident angle of Brewster angle from the excitation light source 111 in a state where the oil and fat detection region Dr is sealed. However, in this case, since the excitation light S is not collected in the comparative example, the amount of detected oil (fluorescence Sf) is an average value of the amount of oil remaining in the oil detection region Dr. Further, in the degreasing state measuring apparatus 100 of the comparative example, the diameter of the oil / fat detection region Dr is about 100 mm due to physical restrictions such as the number and size of the excitation light sources 111 and the size of the visible light detector 123. . Therefore, in the comparative example, the average value of the amount of oil remaining on the surface of the metal plate 201 in the oil detection region Dr having a diameter of about 100 mm is measured.

上述した比較例の脱脂状態計測装置100では、次のような各種計測例(計測例1〜3)において、油脂の検出精度が低下する場合がある。   In the degreasing state measuring apparatus 100 of the comparative example described above, in the following various measurement examples (measurement examples 1 to 3), the oil and fat detection accuracy may be lowered.

(1)計測例1
図6(a)及び(b)に、計測例1の様子を示す。なお、図6(a)は、計測例1における脱脂状態計測装置100の動作の様子を示す図であり、図6(b)は、ミラー103により密閉される油脂検出領域Drの範囲を示す図である。
(1) Measurement example 1
FIGS. 6A and 6B show the state of Measurement Example 1. FIG. 6A is a diagram illustrating an operation state of the degreasing state measuring apparatus 100 in the measurement example 1, and FIG. 6B is a diagram illustrating a range of the oil / fat detection region Dr sealed by the mirror 103. It is.

計測例1は、表面面積が20mm×20mm程度の金属板202の脱脂状態を比較例の脱脂状態計測装置100で検出する場合の計測例である。すなわち、計測例1では、図6(a)及び(b)に示すように、検査対象物となる金属板202の表面面積が、ミラー103により密閉される油脂検出領域Drの面積より小さくなる。このような場合には、油脂検出領域Drに、金属板202の表面領域だけでなく、脱脂状態を計測する必要のない領域も含まれることになる。それゆえ、計測例1のような状況で脱脂状態の計測した場合には、その測定結果に、脱脂状態を計測する必要のない領域の脱脂状態の計測結果も含まれることになり、脱脂状態の検出精度が低下する。   The measurement example 1 is a measurement example when the degreasing state of the metal plate 202 having a surface area of about 20 mm × 20 mm is detected by the degreasing state measuring device 100 of the comparative example. That is, in Measurement Example 1, as shown in FIGS. 6A and 6B, the surface area of the metal plate 202 serving as the inspection object is smaller than the area of the oil and fat detection region Dr sealed by the mirror 103. In such a case, the oil / fat detection region Dr includes not only the surface region of the metal plate 202 but also a region where it is not necessary to measure the degreasing state. Therefore, when the degreasing state is measured in the situation as in Measurement Example 1, the measurement result includes the measurement result of the degreasing state in the region where it is not necessary to measure the degreasing state. Detection accuracy decreases.

(2)計測例2
図7(a)及び(b)に、計測例2の様子を示す。なお、図7(a)は、計測例2における脱脂状態計測装置100の動作の様子を示す図であり、図7(b)は、ミラー103により密閉される油脂検出領域Drの範囲を示す図である。
(2) Measurement example 2
7A and 7B show the state of Measurement Example 2. FIG. 7A is a diagram illustrating an operation state of the degreasing state measuring apparatus 100 in the measurement example 2, and FIG. 7B is a diagram illustrating the range of the oil / fat detection region Dr sealed by the mirror 103. It is.

計測例2は、表面の一部に開口部が形成された金属板203の脱脂状態を比較例の脱脂状態計測装置100で検出する場合の計測例である。なお、計測例2では、金属板203全体の表面領域の範囲は、ミラー103により密閉される油脂検出領域Drより大きい場合を考える。また、計測例2では、図7(a)及び(b)に示すように、金属板203の中央付近に、4つの開口部203aが2行×2列の配列形態で形成されている例を示す。   The measurement example 2 is a measurement example in the case where the degreasing state of the metal plate 203 having an opening formed on a part of the surface is detected by the degreasing state measuring device 100 of the comparative example. In measurement example 2, a case is considered where the range of the surface area of the entire metal plate 203 is larger than the oil / fat detection area Dr sealed by the mirror 103. In measurement example 2, as shown in FIGS. 7A and 7B, an example in which four openings 203 a are formed in an array form of 2 rows × 2 columns in the vicinity of the center of the metal plate 203. Show.

計測例2では、図7(a)及び(b)に示すように、油脂検出領域Drに、金属板203の表面領域だけでなく、脱脂状態を計測する必要のない4つの開口部203aの領域も含まれる。それゆえ、計測例2のような状況で脱脂状態の計測した場合には、その測定結果に、脱脂状態を計測する必要のない4つの開口部203aの領域の脱脂状態の計測結果も含まれることになり、脱脂状態の検出精度が低下する。   In the measurement example 2, as shown in FIGS. 7A and 7B, not only the surface area of the metal plate 203 but also the areas of the four openings 203a that do not need to measure the degreasing state in the oil detection area Dr. Is also included. Therefore, when the degreasing state is measured in the situation as in Measurement Example 2, the measurement result includes the measurement result of the degreasing state in the region of the four openings 203a that does not need to be measured. Thus, the detection accuracy of the degreased state decreases.

(3)計測例3
図8(a)及び(b)に、計測例3の様子を示す。なお、図8(a)は、計測例3における脱脂状態計測装置100の動作の様子を示す図であり、図8(b)は、ミラー103により密閉される油脂検出領域Drの範囲を示す図である。
(3) Measurement example 3
8A and 8B show the state of Measurement Example 3. FIG. 8A is a diagram illustrating an operation state of the degreasing state measuring apparatus 100 in the measurement example 3, and FIG. 8B is a diagram illustrating the range of the oil / fat detection region Dr sealed by the mirror 103. It is.

計測例3は、金属板表面に油脂205が局所的に点在して付着し、金属板表面において油脂205の付着量が不均一であるような金属板204の脱脂状態を比較例の脱脂状態計測装置100で検出する場合の計測例である。なお、計測例3では、金属板204全体の表面領域の範囲は、ミラー103により密閉される油脂検出領域Drより大きい場合を考える。   In the measurement example 3, the degreasing state of the metal plate 204 in which the oil and fat 205 are locally scattered and adhered to the surface of the metal plate, and the amount of the oil and fat 205 is nonuniform on the surface of the metal plate is the degreasing state of the comparative example. It is an example of a measurement in the case of detecting with the measuring device 100. In measurement example 3, a case is considered where the range of the surface area of the entire metal plate 204 is larger than the oil / fat detection area Dr sealed by the mirror 103.

計測例3では、油脂205が付着している領域の計測結果と、油脂205が付着していない領域の計測結果との平均値が計測されるので、金属板204上の脱脂状態の検出精度が低下する。   In the measurement example 3, since the average value of the measurement result of the region where the oil 205 is attached and the measurement result of the region where the oil 205 is not attached is measured, the detection accuracy of the degreasing state on the metal plate 204 is high. descend.

上述のように、比較例の脱脂状態計測装置100では、検査対象物(金属板)の大きさ、表面形状、油脂の付着状況などの条件により、脱脂状態の計測精度が低下する場合がある。   As described above, in the degreasing state measuring apparatus 100 of the comparative example, the measurement accuracy of the degreasing state may be lowered depending on conditions such as the size of the inspection object (metal plate), the surface shape, and the state of oil adhesion.

それに対して、本実施形態の脱脂状態計測装置10では、励起光Sを集光レンズ13で集光して、検査対象物(金属板)に照射するので、局所的な範囲(油脂検出領域D)の脱脂状態を検出することができる。それゆえ、本実施形態の脱脂状態計測装置10では、計測例1〜3で示すような状況においても、脱脂状態を計測すべき領域のみに励起光Sを照射することができ、より精度よく脱脂状態を計測することができる。さらに、本実施形態の脱脂状態計測装置10では、励起光Sを集光して検査対象物に照射するので、比較例に比べて、より光力の強い励起光Sを照射することができ、油脂で発生する蛍光Sfの光力も強くすることができる。それゆえ、本実施形態では、比較例に比べて、脱脂状態の検出感度を向上させることができる。   On the other hand, in the degreasing state measuring apparatus 10 of the present embodiment, the excitation light S is collected by the condenser lens 13 and irradiated to the inspection object (metal plate). ) Can be detected. Therefore, in the degreasing state measuring apparatus 10 of the present embodiment, the excitation light S can be irradiated only to the region where the degreasing state is to be measured even in the situation shown in the measurement examples 1 to 3, and the degreasing is more accurately performed. The state can be measured. Furthermore, in the degreasing state measuring apparatus 10 of this embodiment, since the excitation light S is condensed and irradiated onto the inspection object, it is possible to irradiate the excitation light S with stronger light power than the comparative example, The light power of the fluorescence Sf generated by the oil can be increased. Therefore, in this embodiment, it is possible to improve the detection sensitivity of the degreased state as compared with the comparative example.

また、比較例の脱脂状態計測装置100に限らず、本実施形態においても、励起光源をLEDで構成するが、LEDは半導体で形成されているので、LEDの発光強度は、周囲の温度変化により変化する。また、LEDの駆動中にはLED自身が自己発熱するため、LEDの使用時間が長くなると、LED(光源)の温度も高くなり、これにより、LEDの発光強度が変化する。例えば、LEDの種類により異なるが、LEDの温度が10℃上昇すると、発光強度は例えば10%程度低下する。   Moreover, although not only the degreasing state measuring apparatus 100 of a comparative example but also in this embodiment, although an excitation light source is comprised with LED, since LED is formed with the semiconductor, the emitted light intensity of LED depends on the surrounding temperature change. Change. Further, since the LED itself generates heat while the LED is being driven, the temperature of the LED (light source) increases as the usage time of the LED increases, thereby changing the emission intensity of the LED. For example, although it differs depending on the type of LED, when the temperature of the LED increases by 10 ° C., the emission intensity decreases by about 10%, for example.

また、LEDの温度は単純に上下しないので、その発光強度も不安定になる。なお、例えば、照射する励起光量をUVとし、油脂で発生する蛍光量をVLとすると、両者の間にはVL=η×UVという関係が成立するので、LEDの発光強度が不安定になると、油脂で発生する蛍光量も不安定になる。それゆえ、LEDを長時間使用する場合には、周囲温度及び自己発熱の影響により、LEDの発光強度が不安定になり、微量の油脂を安定して検出することが難しくなる。なお、LEDに対して放熱対策を施しても、LEDの温度を一定に保つことは通常困難である。   In addition, since the temperature of the LED does not simply rise and fall, its emission intensity also becomes unstable. For example, if the excitation light quantity to be irradiated is UV and the fluorescence amount generated by fats and oils is VL, a relationship of VL = η × UV is established between the two, so that the emission intensity of the LED becomes unstable, The amount of fluorescence generated by fats and oils also becomes unstable. Therefore, when the LED is used for a long time, the light emission intensity of the LED becomes unstable due to the influence of the ambient temperature and self-heating, and it becomes difficult to detect a small amount of oil and fat stably. Note that it is usually difficult to keep the temperature of the LED constant even if measures against heat radiation are applied to the LED.

それに対して、本実施形態の脱脂状態計測装置10では、分光素子12により、励起光源11から射出される光の一部(反射励起光)を取り出し、その取り出した光に基づいて、励起光Sの強度(励起光源11の発光強度)が最適な強度となるように、励起光源11の駆動電流をフィードバック制御する。それゆえ、本実施形態の脱脂状態計測装置10では、励起光源11の周囲温度及び自己発熱の影響を抑制することができ、常に、最適な強度を有する励起光Sを検査対象物(金属板)に照射することができる。すなわち、本実施形態では、最適な強度を有する励起光Sを安定して検査対象物(金属板)に照射することができる。   On the other hand, in the degreasing state measuring apparatus 10 of this embodiment, the spectroscopic element 12 extracts part of the light (reflected excitation light) emitted from the excitation light source 11, and the excitation light S is based on the extracted light. The drive current of the excitation light source 11 is feedback-controlled so that the intensity (the emission intensity of the excitation light source 11) becomes the optimum intensity. Therefore, in the degreasing state measuring apparatus 10 of the present embodiment, the influence of the ambient temperature of the excitation light source 11 and self-heating can be suppressed, and the excitation light S having the optimum intensity is always detected as the inspection object (metal plate). Can be irradiated. That is, in the present embodiment, the inspection object (metal plate) can be stably irradiated with the excitation light S having the optimum intensity.

[各種変形例]
次に、上述した実施形態の脱脂状態計測装置10の各種変形例について説明する。
[Variations]
Next, various modifications of the degreasing state measuring device 10 of the above-described embodiment will be described.

(1)変形例1
上記実施形態では、開放型の脱脂状態計測装置10について説明したが、本発明はこれに限定されず、上記実施形態の励起光出力部3、蛍光検出部4及び処理回路部5の構成を、密閉型の脱脂状態計測装置に適用してもよい。
(1) Modification 1
In the said embodiment, although the open-type degreasing state measuring apparatus 10 was demonstrated, this invention is not limited to this, The structure of the excitation light output part 3, the fluorescence detection part 4, and the processing circuit part 5 of the said embodiment is as follows. You may apply to a sealed-type degreasing state measuring apparatus.

図9に、その一構成例(変形例1)を示す。なお、図9は、変形例1の脱脂状態計測装置の概略構成図である。また、図9に示す変形例1の脱脂状態計測装置50において、図1(a)に示す上記実施形態の脱脂状態計測装置10の構成と同じ構成には、同じ符号を付して示す。   FIG. 9 shows an example of the configuration (Modification 1). FIG. 9 is a schematic configuration diagram of the degreasing state measuring apparatus according to the first modification. Moreover, in the degreasing state measuring apparatus 50 of the modification 1 shown in FIG. 9, the same code | symbol is attached | subjected and shown to the structure same as the structure of the degreasing state measuring apparatus 10 of the said embodiment shown to Fig.1 (a).

脱脂状態計測装置50は、筐体51と、筐体51に内蔵された、2つの励起光出力部3、蛍光検出部4及び処理回路部5とを備える。図9と図1(a)との比較から明らかなように、変形例1では、上記実施形態の筐体1の支持脚2を省略し、その代わりに、筐体51で脱脂状態計測装置50を支持する構成にする。変形例1のそれ以外の構成は、上記実施形態の対応する構成と同じであるので、ここでは、筐体51についてのみ説明する。   The degreasing state measuring device 50 includes a housing 51 and two excitation light output units 3, a fluorescence detection unit 4, and a processing circuit unit 5 that are built in the housing 51. As is clear from a comparison between FIG. 9 and FIG. 1A, in the first modification, the support leg 2 of the housing 1 of the above embodiment is omitted, and instead the degreasing state measuring device 50 is performed by the housing 51. A configuration that supports Since the other configuration of the modification 1 is the same as the corresponding configuration of the above embodiment, only the casing 51 will be described here.

筐体51は、略直方体状の箱部材で構成される。そして、この例では、筐体51の側板部の延在長さを上記実施形態の筐体1のそれより長くし、さらに、筐体51の励起光Sの射出側の底部全体を開口部にする。そして、この例において、金属板200の脱脂状態を計測する際には、図9に示すように、筐体51の開口部側の底部を直接、金属板200に接触させて、脱脂状態計測装置50を金属板200上に載置する。これにより、金属板200の油脂検出領域Dは、筐体51の内部に密閉された状態となる。   The housing | casing 51 is comprised by the substantially rectangular parallelepiped box member. In this example, the extension length of the side plate portion of the casing 51 is made longer than that of the casing 1 of the above embodiment, and the entire bottom portion on the emission side of the excitation light S of the casing 51 is an opening. To do. And in this example, when measuring the degreasing state of the metal plate 200, as shown in FIG. 9, the bottom part by the side of the opening part of the housing | casing 51 is made to contact the metal plate 200 directly, and a degreasing state measuring device is used. 50 is placed on the metal plate 200. As a result, the oil / fat detection region D of the metal plate 200 is sealed inside the housing 51.

この例では、脱脂状態計測装置50は、上記実施形態と同様の構成の励起光出力部3、蛍光検出部4及び処理回路部5を備えるので、上記実施形態と同様の効果が得られる。また、この例では、油脂検出領域Dを密閉した状態で脱脂状態を計測することができるので、外部から油脂検出領域Dに入り込む光の影響を低減することができる。   In this example, since the degreasing state measuring device 50 includes the excitation light output unit 3, the fluorescence detection unit 4, and the processing circuit unit 5 having the same configuration as that of the above embodiment, the same effects as those of the above embodiment can be obtained. Moreover, in this example, since the degreasing state can be measured with the oil and fat detection region D sealed, the influence of light entering the oil and fat detection region D from the outside can be reduced.

(2)変形例2
上記実施形態では、脱脂状態計測装置10の外部に表示装置8を設ける例について説明したが、本発明はこれに限定されず、脱脂状態計測装置の内部に、表示装置8を設ける構成にしてもよい。
(2) Modification 2
In the above embodiment, the example in which the display device 8 is provided outside the degreasing state measuring device 10 has been described. However, the present invention is not limited to this, and the display device 8 may be provided inside the degreasing state measuring device. Good.

図10に、その一構成例(変形例2)を示す。なお、図10は、変形例2の脱脂状態計測装置の概略構成図である。また、図10に示す変形例2の脱脂状態計測装置60において、図1(a)に示す上記実施形態の脱脂状態計測装置10の構成と同じ構成には、同じ符号を付して示す。   FIG. 10 shows an example of the configuration (Modification 2). FIG. 10 is a schematic configuration diagram of a degreasing state measuring apparatus according to the second modification. Moreover, in the degreasing state measuring apparatus 60 of the modification 2 shown in FIG. 10, the same code | symbol is attached | subjected and shown to the structure same as the structure of the degreasing state measuring apparatus 10 of the said embodiment shown to Fig.1 (a).

脱脂状態計測装置60は、筐体1と、筐体1を支持する4本の支持脚2と、筐体1に内蔵された、2つの励起光出力部3、蛍光検出部4、処理回路部5及び表示装置8とを備える。図10と図1(a)との比較から明らかなように、変形例2では、上記実施形態の脱脂状態計測装置10の筐体1内に、表示装置8を設けた構成である。変形例2のそれ以外の構成は、上記実施形態の対応する構成と同じである。   The degreasing state measuring device 60 includes a housing 1, four support legs 2 that support the housing 1, two excitation light output units 3, a fluorescence detection unit 4, and a processing circuit unit built in the housing 1. 5 and a display device 8. As is clear from a comparison between FIG. 10 and FIG. 1A, the second modification has a configuration in which the display device 8 is provided in the housing 1 of the degreasing state measuring device 10 of the above embodiment. The other configuration of the second modification is the same as the corresponding configuration in the above embodiment.

この例においても、脱脂状態計測装置60は、上記実施形態と同様の構成の励起光出力部3、蛍光検出部4及び処理回路部5を備えるので、上記実施形態と同様の効果が得られる。なお、この例では、上記実施形態の脱脂状態計測装置10の筐体1内に、表示装置8を設けた例を説明したが、本発明はこれに限定されず、上記変形例1で説明した密閉型の脱脂状態計測装置50の筐体51内に、表示装置8を設けてもよい。   Also in this example, since the degreasing state measuring device 60 includes the excitation light output unit 3, the fluorescence detection unit 4, and the processing circuit unit 5 having the same configuration as the above embodiment, the same effect as the above embodiment can be obtained. In addition, in this example, although the example which provided the display apparatus 8 in the housing | casing 1 of the degreasing state measuring apparatus 10 of the said embodiment was demonstrated, this invention is not limited to this and demonstrated in the said modification 1. The display device 8 may be provided in the housing 51 of the sealed degreasing state measuring device 50.

(3)変形例3
上記実施形態では、脱脂状態計測装置10内に処理回路部5を設けて、蛍光Sf(可視光)の検出処理、及び、励起光源11のフィードバック制御処理を脱脂状態計測装置10内部で行う例を説明したが、本発明はこれに限定されない。蛍光Sf(可視光)の検出処理、及び、励起光Sの発光強度のフィードバック制御処理を外部の情報処理装置で行ってもよい。すなわち、処理回路部5の機能を脱脂状態計測装置の外部に設けてもよい。
(3) Modification 3
In the above embodiment, an example in which the processing circuit unit 5 is provided in the degreasing state measuring apparatus 10 and the detection process of the fluorescence Sf (visible light) and the feedback control process of the excitation light source 11 are performed inside the degreasing state measuring apparatus 10. Although described, the present invention is not limited to this. The fluorescence Sf (visible light) detection process and the emission intensity feedback control process of the excitation light S may be performed by an external information processing apparatus. That is, the function of the processing circuit unit 5 may be provided outside the degreasing state measuring device.

図11に、その一構成例(変形例3)を示す。なお、図11は、変形例3の脱脂状態計測装置を備える脱脂状態計測システムの概略構成図である。また、図11に示す変形例3の脱脂状態計測システム70において、図1(a)に示す上記実施形態の脱脂状態計測装置10の構成と同じ構成には、同じ符号を付して示す。   FIG. 11 shows an example of the configuration (Modification 3). In addition, FIG. 11 is a schematic configuration diagram of a degreasing state measurement system including the degreasing state measurement device of Modification 3. Moreover, in the degreasing state measuring system 70 of the modification 3 shown in FIG. 11, the same code | symbol is attached | subjected and shown to the structure same as the structure of the degreasing state measuring apparatus 10 of the said embodiment shown to Fig.1 (a).

この例の脱脂状態計測システム70は、脱脂状態計測装置71と、情報処理装置72とを備える。   The degreasing state measuring system 70 of this example includes a degreasing state measuring device 71 and an information processing device 72.

脱脂状態計測装置71は、筐体1と、筐体1を支持する4本の支持脚2と、筐体1に内蔵された、2つの励起光出力部3及び蛍光検出部4とを備える。この例の筐体1、支持脚2、各励起光出力部3及び蛍光検出部4の構成は、上記実施形態のそれらと同様である。   The degreasing state measuring device 71 includes a housing 1, four support legs 2 that support the housing 1, and two excitation light output units 3 and a fluorescence detection unit 4 that are built in the housing 1. The configuration of the case 1, the support leg 2, each excitation light output unit 3, and the fluorescence detection unit 4 in this example is the same as those in the above embodiment.

情報処理装置72は、信号処理部6及び光出力制御部7を含む処理回路部5と、表示装置8とを備える。処理回路部5及び表示装置8の構成は、上記実施形態のそれらと同様である。なお、情報処理装置72は、例えばパーソナルコンピュータや、専用の情報処理端末などにより構成することができる。   The information processing device 72 includes a processing circuit unit 5 including a signal processing unit 6 and a light output control unit 7, and a display device 8. The configurations of the processing circuit unit 5 and the display device 8 are the same as those in the above embodiment. The information processing device 72 can be configured by, for example, a personal computer or a dedicated information processing terminal.

この例の脱脂状態計測システム70では、脱脂状態計測装置71の蛍光検出部4内の可視光検出器23、及び、各励起光出力部3内の制御用受光素子15が、それぞれ、情報処理装置72内の信号処理部6、及び、光出力制御部7に電気的に接続される。また、図11には示さないが、脱脂状態計測装置71の各励起光出力部3内の励起光源11は、情報処理装置72内の光出力制御部7に電気的に接続される。   In the degreasing state measurement system 70 of this example, the visible light detector 23 in the fluorescence detection unit 4 of the degreasing state measurement device 71 and the control light receiving element 15 in each excitation light output unit 3 are each an information processing device. 72 is electrically connected to the signal processing unit 6 and the light output control unit 7. Although not shown in FIG. 11, the excitation light source 11 in each excitation light output unit 3 of the degreasing state measuring device 71 is electrically connected to the light output control unit 7 in the information processing device 72.

この例の脱脂状態計測システム70においても、上記実施形態の脱脂状態計測装置10と同様にして、油脂状態を検出することができる。それゆえ、この例の脱脂状態計測システム70においても、上記実施形態と同様の効果が得られる。なお、この例では、脱脂状態計測装置71を開放型の装置で構成した例を説明したが、本発明はこれに限定されず、上記変形例1と同様に、脱脂状態計測装置71を密閉型の装置で構成してもよい。   Also in the degreasing state measuring system 70 of this example, the oil and fat state can be detected in the same manner as the degreasing state measuring apparatus 10 of the above embodiment. Therefore, also in the degreasing state measuring system 70 of this example, the same effect as the above embodiment can be obtained. In this example, the example in which the degreasing state measuring device 71 is configured as an open type device has been described. However, the present invention is not limited thereto, and the degreasing state measuring device 71 is hermetically sealed as in the first modification. You may comprise by the apparatus of.

1…筐体、2…支持脚、3…励起光出力部、4…蛍光検出部、5…処理回路部、6…信号処理部、7…光出力制御部、8…表示部、10…脱脂状態計測装置、11…励起光源、12…分光素子、13…集光レンズ、14…長波長カットフィルタ、15…制御用受光素子、21…集光レンズ、22…短波長カットフィルタ、23…可視光検出器、200…金属板   DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Support leg, 3 ... Excitation light output part, 4 ... Fluorescence detection part, 5 ... Processing circuit part, 6 ... Signal processing part, 7 ... Light output control part, 8 ... Display part, 10 ... Degreasing State measuring device, 11 ... excitation light source, 12 ... spectral element, 13 ... condensing lens, 14 ... long wavelength cut filter, 15 ... control light receiving element, 21 ... condensing lens, 22 ... short wavelength cut filter, 23 ... visible Photodetector, 200 ... metal plate

Claims (13)

検査対象物に励起光を射出する光源と、
前記光源から射出された前記励起光を透過励起光及び反射励起光に分離する分光素子と、
前記反射励起光を検出し、該検出結果を、前記励起光の強度をフィードバック制御する光出力制御回路に出力する受光素子と、
前記透過励起光を集光する励起光用集光レンズと、
前記透過励起光を前記検査対象物に照射した際に発生する可視光を検出し、該検出結果を、前記検査対象物の脱脂状態に対応する情報を生成する信号処理部に出力する可視光検出器と
を備える脱脂状態計測装置。
A light source that emits excitation light to the inspection object;
A spectroscopic element that separates the excitation light emitted from the light source into transmitted excitation light and reflected excitation light;
A light receiving element that detects the reflected excitation light and outputs the detection result to a light output control circuit that feedback-controls the intensity of the excitation light;
A condensing lens for excitation light that condenses the transmitted excitation light;
Visible light detection that detects visible light generated when the inspection object is irradiated with the transmitted excitation light and outputs the detection result to a signal processing unit that generates information corresponding to the degreasing state of the inspection object And a degreasing state measuring device.
さらに、前記受光素子での検出結果に基づいて、前記励起光の強度をフィードバック制御する前記光出力制御回路と、
前記可視光検出器での検出結果に基づいて、前記検査対象物の脱脂状態に対応する情報を生成する前記信号処理部とを備える
請求項1に記載の脱脂状態計測装置。
Further, based on the detection result of the light receiving element, the light output control circuit that feedback controls the intensity of the excitation light,
The degreasing state measuring device according to claim 1, further comprising: the signal processing unit that generates information corresponding to a degreasing state of the inspection object based on a detection result of the visible light detector.
前記光出力制御回路は、PID制御により、前記励起光の強度をフィードバック制御する
請求項2に記載の脱脂状態計測装置。
The degreasing state measuring apparatus according to claim 2, wherein the light output control circuit feedback-controls the intensity of the excitation light by PID control.
さらに、前記検査対象物に前記透過励起光を照射した際に発生する可視光を集光し、該集光した可視光を前記可視光検出器に導く可視光用集光レンズを備える
請求項1に記載の脱脂状態計測装置。
2. A visible light condensing lens that condenses visible light generated when the transmission object is irradiated with the transmitted excitation light and guides the collected visible light to the visible light detector. The degreasing state measuring device according to 1.
さらに、前記光源の光出射口に設けられた、可視光成分の光を除去する長波長カットフィルタと、
前記可視光検出器の光入射口に設けられた、前記励起光の波長成分の光を除去する短波長カットフィルタとを備える
請求項1に記載の脱脂状態計測装置。
Furthermore, a long wavelength cut filter provided at the light exit of the light source for removing light of visible light components,
The degreasing state measuring apparatus according to claim 1, further comprising: a short wavelength cut filter that is provided at a light incident port of the visible light detector and removes light having a wavelength component of the excitation light.
前記励起光が、紫外線である
請求項1に記載の脱脂状態計測装置。
The degreasing state measuring apparatus according to claim 1, wherein the excitation light is ultraviolet light.
前記検査対象物の前記透過励起光の照射領域の径が、5mm〜10mmである
請求項1に記載の脱脂状態計測装置。
The degreasing state measuring apparatus according to claim 1, wherein a diameter of an irradiation region of the transmission excitation light of the inspection object is 5 mm to 10 mm.
前記光源、前記分光素子、前記受光素子、及び、前記励起光用集光レンズを含む励起光出力部を複数備え、
各励起光出力部から前記検査対象物に照射される前記透過励起光の照射位置が、同じ位置である
請求項1に記載の脱脂状態計測装置。
A plurality of excitation light output units including the light source, the spectroscopic element, the light receiving element, and the excitation light condenser lens;
The degreasing state measurement apparatus according to claim 1, wherein an irradiation position of the transmitted excitation light irradiated to the inspection object from each excitation light output unit is the same position.
前記可視光検出器が、前記検査対象物の前記透過励起光の照射位置の直上に配置される
請求項1に記載の脱脂状態計測装置。
The degreasing state measuring apparatus according to claim 1, wherein the visible light detector is disposed immediately above the irradiation position of the transmission excitation light of the inspection object.
前記検査対象物の前記透過励起光の照射位置が、開放状態である
請求項1に記載の脱脂状態計測装置。
The degreasing state measuring apparatus according to claim 1, wherein an irradiation position of the transmission excitation light of the inspection object is in an open state.
さらに、前記光源、前記分光素子、前記受光素子、前記励起光用集光レンズ、及び、前記可視光検出器を内蔵する筐体を備え、
前記筐体により、前記透過励起光の照射位置が密閉される
請求項1に記載の脱脂状態計測装置。
Further, the light source, the spectroscopic element, the light receiving element, the excitation light condensing lens, and a housing containing the visible light detector,
The degreasing state measuring apparatus according to claim 1, wherein an irradiation position of the transmitted excitation light is sealed by the housing.
検査対象物に励起光を射出する光源と、前記光源から射出された前記励起光を透過励起光及び反射励起光に分離する分光素子と、前記反射励起光を検出し、該検出結果を、前記励起光の強度をフィードバック制御する光出力制御回路に出力する受光素子と、前記透過励起光を集光する励起光用集光レンズと、前記透過励起光を前記検査対象物に照射した際に発生する可視光を検出し、該検出結果を、前記検査対象物の脱脂状態に対応する情報を生成する信号処理部に出力する可視光検出器とを有する脱脂状態計測装置と、
前記受光素子での検出結果に基づいて、前記励起光の強度をフィードバック制御する前記光出力制御回路と、前記可視光検出器での検出結果に基づいて、前記検査対象物の脱脂状態に対応する情報を生成する前記信号処理部とを有する情報処理装置と
を備える脱脂状態計測システム。
A light source that emits excitation light to the inspection object, a spectroscopic element that separates the excitation light emitted from the light source into transmitted excitation light and reflected excitation light, and the reflected excitation light, and the detection result is Light-receiving element that outputs to a light output control circuit that feedback-controls the intensity of excitation light, a condensing lens for excitation light that condenses the transmitted excitation light, and generated when the inspection object is irradiated with the transmitted excitation light A degreasing state measuring device having a visible light detector that detects visible light and outputs the detection result to a signal processing unit that generates information corresponding to the degreasing state of the inspection object;
Based on the detection result of the light receiving element, the light output control circuit that feedback-controls the intensity of the excitation light and the detection result of the visible light detector correspond to the degreasing state of the inspection object. A degreasing state measurement system comprising: an information processing device including the signal processing unit that generates information.
検査対象物に励起光を射出する光源と、前記光源から射出された前記励起光を透過励起光及び反射励起光に分離する分光素子と、前記反射励起光を検出する受光素子と、前記透過励起光を集光する励起光用集光レンズと、前記検査対象物で発生する可視光を検出する可視光検出器とを有する脱脂状態計測装置の、前記励起光用集光レンズが、前記透過励起光を集光して前記検査対象物に前記透過励起光を照射することと、
前記受光素子が、前記反射励起光を検出し、該検出結果を、前記励起光の強度をフィードバック制御する光出力制御回路に出力することと、
前記可視光検出器が、前記検査対象物に前記透過励起光を照射した際に発生する可視光を検出し、該検出結果を、前記検査対象物の脱脂状態に対応する情報を生成する信号処理部に出力することと
を含む脱脂状態計測方法。
A light source that emits excitation light to the inspection object, a spectroscopic element that separates the excitation light emitted from the light source into transmitted excitation light and reflected excitation light, a light receiving element that detects the reflected excitation light, and the transmission excitation The condensing lens for excitation light of a degreasing state measuring device having a condensing lens for excitation light for condensing light and a visible light detector for detecting visible light generated in the inspection object is the transmission excitation. Condensing light and irradiating the inspection object with the transmitted excitation light;
The light receiving element detects the reflected excitation light, and outputs the detection result to a light output control circuit that feedback-controls the intensity of the excitation light;
Signal processing in which the visible light detector detects visible light generated when the inspection object is irradiated with the transmission excitation light, and the detection result generates information corresponding to the degreasing state of the inspection object A degreasing state measuring method including:
JP2012074116A 2012-03-28 2012-03-28 Degreasing state measuring device, degreasing state measuring system, and degreasing state measuring method Active JP5809593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074116A JP5809593B2 (en) 2012-03-28 2012-03-28 Degreasing state measuring device, degreasing state measuring system, and degreasing state measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074116A JP5809593B2 (en) 2012-03-28 2012-03-28 Degreasing state measuring device, degreasing state measuring system, and degreasing state measuring method

Publications (2)

Publication Number Publication Date
JP2013205203A true JP2013205203A (en) 2013-10-07
JP5809593B2 JP5809593B2 (en) 2015-11-11

Family

ID=49524429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074116A Active JP5809593B2 (en) 2012-03-28 2012-03-28 Degreasing state measuring device, degreasing state measuring system, and degreasing state measuring method

Country Status (1)

Country Link
JP (1) JP5809593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020217525A1 (en) * 2019-04-26 2020-10-29

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786743A (en) * 1980-11-20 1982-05-29 Mitsubishi Heavy Ind Ltd Grease measuring device
JPH05118989A (en) * 1991-10-25 1993-05-14 Nec Corp Degrease evaluating method and evaluating device
JPH07260687A (en) * 1994-03-18 1995-10-13 Kawasaki Steel Corp Measurement method and device of amount of applied oil and oil application distribution state
JPH08261934A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Fluorescence detector
JPH09113231A (en) * 1995-10-13 1997-05-02 Kobe Steel Ltd Instrument for measuring quantity of oil applied to surface
JPH1172436A (en) * 1997-08-29 1999-03-16 Kawasaki Steel Corp Method and apparatus for measuring oil-application amount on metallic material surface
JP2001165866A (en) * 1999-12-14 2001-06-22 Nkk Corp Surface inspection device
JP2004157018A (en) * 2002-11-06 2004-06-03 Dkk Toa Corp Sensitivity calibration method of fluorescence detection apparatus and fluorescence detection apparatus
JP2005233636A (en) * 2004-02-17 2005-09-02 Shimadzu Corp Fat hybridization inspection method and device of edible meat
JP2012037355A (en) * 2010-08-06 2012-02-23 Nippon Sheet Glass Co Ltd Fluorescence detector, fluorescence measuring method and environment measuring device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786743A (en) * 1980-11-20 1982-05-29 Mitsubishi Heavy Ind Ltd Grease measuring device
JPH05118989A (en) * 1991-10-25 1993-05-14 Nec Corp Degrease evaluating method and evaluating device
JPH07260687A (en) * 1994-03-18 1995-10-13 Kawasaki Steel Corp Measurement method and device of amount of applied oil and oil application distribution state
JPH08261934A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Fluorescence detector
JPH09113231A (en) * 1995-10-13 1997-05-02 Kobe Steel Ltd Instrument for measuring quantity of oil applied to surface
JPH1172436A (en) * 1997-08-29 1999-03-16 Kawasaki Steel Corp Method and apparatus for measuring oil-application amount on metallic material surface
JP2001165866A (en) * 1999-12-14 2001-06-22 Nkk Corp Surface inspection device
JP2004157018A (en) * 2002-11-06 2004-06-03 Dkk Toa Corp Sensitivity calibration method of fluorescence detection apparatus and fluorescence detection apparatus
JP2005233636A (en) * 2004-02-17 2005-09-02 Shimadzu Corp Fat hybridization inspection method and device of edible meat
JP2012037355A (en) * 2010-08-06 2012-02-23 Nippon Sheet Glass Co Ltd Fluorescence detector, fluorescence measuring method and environment measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020217525A1 (en) * 2019-04-26 2020-10-29

Also Published As

Publication number Publication date
JP5809593B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
EP2255919A3 (en) Laser processing device, laser processing temperature measuring device, laser processing method and laser processing temperature measuring method
US8704174B2 (en) Refined oil degradation level measuring instrument and refined oil degradation level measuring method
CN108061722B (en) Detection device and detection method for carbon monoxide concentration
WO2002065108A3 (en) Laser scanning wafer inspection using nonlinear optical phenomena
JP2008544238A5 (en)
TWI546533B (en) Measurement system of real-time spatial-resolved spectrum and time-resolved spectrum and measurement module thereof
JP2013004851A5 (en) Laser equipment
KR20150099767A (en) Spectrum measuring device and spectrum measuring method
TW200506395A (en) Method and apparatus for inspecting semiconductor device
US20160169805A1 (en) Combined raman spectroscopy and laser-induced breakdown spectroscopy
CN203083929U (en) Integrated photoelectric direct reading spectrometer
US7212288B2 (en) Position modulated optical reflectance measurement system for semiconductor metrology
JP5809593B2 (en) Degreasing state measuring device, degreasing state measuring system, and degreasing state measuring method
JP2008020380A (en) Absorbance measuring instrument
JP2014238263A (en) Blood component analyzer
JP6372884B2 (en) Measuring device
JP5002980B2 (en) Rice quality measuring method and rice quality measuring device
JP2014115121A (en) Microparticle analyzer, and microparticle analysis method
JP2008180597A (en) Light detection device and optical measurement unit
JP5467467B2 (en) Degreasing determination device and degreasing determination method
JP2015059858A (en) Semiconductor resistivity inspection apparatus and semiconductor resistivity inspection method
JP2005265626A (en) Led lighting unit for spectrum analysis
Gentilin et al. Development and testing of a hardware platform for measuring instruments based on near-infrared diffuse reflection
JP2014521080A (en) Apparatus and method for use in measuring luminescence properties
JP2014085178A (en) Deposit analysis method and deposit analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150