JP2005265626A - Led lighting unit for spectrum analysis - Google Patents

Led lighting unit for spectrum analysis Download PDF

Info

Publication number
JP2005265626A
JP2005265626A JP2004079031A JP2004079031A JP2005265626A JP 2005265626 A JP2005265626 A JP 2005265626A JP 2004079031 A JP2004079031 A JP 2004079031A JP 2004079031 A JP2004079031 A JP 2004079031A JP 2005265626 A JP2005265626 A JP 2005265626A
Authority
JP
Japan
Prior art keywords
light
led
light source
optical means
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004079031A
Other languages
Japanese (ja)
Inventor
Etsuo Nemoto
越男 根本
Kohei Maruyama
浩平 丸山
Haruko Takeyama
春子 竹山
Tadashi Matsunaga
是 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2004079031A priority Critical patent/JP2005265626A/en
Publication of JP2005265626A publication Critical patent/JP2005265626A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting unit capable of efficiently collecting LED light and not large, in the case that LEDs are used as light sources in a spectrum analysis equipment. <P>SOLUTION: In the LED lighting unit for spectrum analysis equipped with the plurality of light sources provided in a peripheral shape and an optical means for polarizing/collecting light flux emitted from the LED light source, the optical means for receiving vertical light flux emitted from the light source by its upper face and reflecting the light by two reflection faces and collecting the light at a vertically lower position is provided below the LED light source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、分光分析用のLED照明装置及びこれを用いた被検物質の蛍光測定方法に関する。   The present invention relates to an LED illumination device for spectroscopic analysis and a method for measuring fluorescence of a test substance using the same.

従来の分光分析装置の基本構成概要は、吸光光度分析通則(JIS K 0115)、発光分光分析通則(JIS K 0116)及び、蛍光光度分析通則(JIS K 0120)等に記載されている。従来の分光分析装置の例を図1、図2に示す。図1において、aは点灯回路、bは光源、cは試料、dは受光素子、eはA/D変換及び信号処理である。aによりbが点灯し、bから発せられた光が、cを透過してdで受光する。dで受光した光の信号をeで処理する。図2において、aは点灯回路、bは光源、cは試料、dは受光素子、eはA/D変換及び信号処理である。aによりbが点灯し、bから発せられた光がcに照射されて反射した光をdで受光する。d受光した光の信号をeで処理する。   An outline of the basic configuration of a conventional spectroscopic analyzer is described in the spectrophotometric analysis general rules (JIS K 0115), the emission spectroscopic general rules (JIS K 0116), the fluorometric analysis general rules (JIS K 0120), and the like. An example of a conventional spectroscopic analyzer is shown in FIGS. In FIG. 1, a is a lighting circuit, b is a light source, c is a sample, d is a light receiving element, and e is A / D conversion and signal processing. b is turned on by a, and light emitted from b passes through c and is received by d. The light signal received at d is processed at e. In FIG. 2, a is a lighting circuit, b is a light source, c is a sample, d is a light receiving element, and e is A / D conversion and signal processing. b is turned on by a, and the light emitted from b is applied to c and the reflected light is received by d. d The received light signal is processed by e.

吸光度分析においては、光源の光を干渉フィルターや分光器等を介して単波長の光にして試料に照射し、受光して透過率、及び吸光度を算出する測定方式を前分光方式と呼ぶ。また、白色光を試料に照射し、干渉フィルターや分光器等を介して受光し、透過率、及び吸光度を算出する測定方式を後分光方式と呼ぶ。図1、図2に示すように透過して受光する方式や反射して受光する方式等がある。また、蛍光分析においては、光源の光を干渉フィルターや分光器等を介して単波長の光にして照射し、試料から発せられた蛍光を干渉フィルターや分光器等を介して受光し、蛍光度として算出する。図1、図2に示すように透過して受光する方式や反射して受光する方式、照射する光と直角方向に受光する方式等がある。また、発光分析においては、化学反応により試料から発せられた光を干渉フィルターや分光器等を介して受光し、発光度として算出し、図3に示すように受光する。また、複数試料を同時に測定するマイクロプレートリーダーと呼ばれる装置もある。   In absorbance analysis, a measurement method in which light from a light source is made to have a single wavelength through an interference filter, a spectroscope, or the like, irradiated on a sample, and received to calculate transmittance and absorbance is called a pre-spectral method. In addition, a measurement method that irradiates a sample with white light, receives the light through an interference filter, a spectroscope, or the like, and calculates transmittance and absorbance is called a post-spectral method. As shown in FIGS. 1 and 2, there are a method of transmitting and receiving light and a method of reflecting and receiving light. In fluorescence analysis, light from a light source is irradiated as a single wavelength light through an interference filter, a spectroscope, etc., and the fluorescence emitted from the sample is received through the interference filter, spectroscope, etc. Calculate as As shown in FIGS. 1 and 2, there are a method of transmitting and receiving light, a method of reflecting and receiving light, and a method of receiving light in a direction perpendicular to the irradiating light. In the emission analysis, light emitted from a sample by a chemical reaction is received through an interference filter, a spectroscope, etc., calculated as a luminous intensity, and received as shown in FIG. There is also a device called a microplate reader that measures a plurality of samples simultaneously.

上記のように、分光分析装置において、受光側あるいは投光側において、干渉フィルターを使用することにより、ある特定の波長範囲の光のみを透過している。図4に干渉フィルターを使用した従来の照明装置を示す。fはハロゲンランプ、gはチョッパーホイール、hはコンデンサーレンズ、iは熱吸収フィルター、jはフィルタホイール、kは干渉フィルターである。この構成により、分光分析に使用する単波長の光を取り出すことができ、ファイバー等を使用して試料に照射する。
斯かる照明装置では、光源としてはハロゲンランプなどの白熱光源が使用されているが、これらの光源を使用するには十分な光量を発光するために、それをドライブするための大きな電力が必要である。更に効率が悪いため発熱し、連続使用するには放熱などを考慮する必要がある。
As described above, in the spectroscopic analyzer, only light in a specific wavelength range is transmitted by using an interference filter on the light receiving side or the light projecting side. FIG. 4 shows a conventional illumination device using an interference filter. f is a halogen lamp, g is a chopper wheel, h is a condenser lens, i is a heat absorption filter, j is a filter wheel, and k is an interference filter. With this configuration, single-wavelength light used for spectroscopic analysis can be extracted, and the sample is irradiated using a fiber or the like.
In such an illuminating device, an incandescent light source such as a halogen lamp is used as a light source, but in order to emit a sufficient amount of light to use these light sources, a large amount of electric power is required to drive it. is there. Furthermore, since it is inefficient, it generates heat and it is necessary to consider heat dissipation for continuous use.

一方、これら白熱光源とは別の光源としてLEDが考えられる。LEDは、非常に広い帯域幅にわたって放射する白熱光源に対して、比較的大きい光子束を比較的狭い帯域幅にわたって発生する。すなわち、LED放射スペクトルは比較的狭い帯域幅であるために干渉フィルターを含む必要がないことが多く、それによって光学系の費用が廉価になり、電力要求が減少するなど、メリットが多い。   On the other hand, an LED can be considered as a light source different from these incandescent light sources. LEDs generate a relatively large photon flux over a relatively narrow bandwidth relative to an incandescent light source that emits over a very wide bandwidth. That is, since the LED emission spectrum has a relatively narrow bandwidth, it is often unnecessary to include an interference filter, thereby reducing the cost of the optical system and reducing power requirements.

しかしながら、LEDは紫外域など波長によっては輝度の小さいものも多く、複数個使用しなければ十分な光量を確保できない場合がある。平面状に複数個のLEDを並べる場合、光の照射面積の増大を招く。また、複数個のLEDの光を集光する手法においても、ドーム型やリング型など、直にLEDを集光部に向ける方法では光線の角度が特有の性質を持ってしまう欠点がある。   However, many LEDs have a low luminance depending on the wavelength such as the ultraviolet region, and a sufficient amount of light may not be secured unless a plurality of LEDs are used. When a plurality of LEDs are arranged in a plane, the light irradiation area is increased. Further, even in the method of condensing the light of a plurality of LEDs, there is a drawback that the angle of the light beam has a characteristic property in the method of directing the LED to the condensing part such as a dome type or a ring type.

本発明は、分光分析装置においてLEDを光源とした場合に、効率よくLEDの光を集光でき、且つ装置全体がコンパクトな照明装置を提供することを目的とする。   An object of the present invention is to provide an illuminating device that can efficiently condense the light of an LED when the LED is used as a light source in the spectroscopic analyzer, and the entire device is compact.

本発明者らは、斯かる事情に鑑み、検討したところ、LED光源の下部に光束を偏光・集光させる光学的手段を備えることによって、上記の課題が達成でき、限られたスペースで蛍光分析等を効率よく行えることを見出した。   In view of such circumstances, the present inventors have studied, and by providing an optical means for polarizing and condensing a light beam below the LED light source, the above-described problems can be achieved, and fluorescence analysis is performed in a limited space. And so on.

すなわち、本発明は、周状に配置された複数のLED光源と、該LED光源から発せられた光束を偏光・集光させる光学的手段を備えた分光分析用のLED照明装置であって、LED光源の下部に配置され、該光源から発光された垂直方向の光束をその上面にて受光し、2つの反射面によって反射して垂直下方に集光する光学的手段を備えたことを特徴とするLED照明装置を提供するものである。   That is, the present invention is an LED illumination device for spectroscopic analysis comprising a plurality of LED light sources arranged circumferentially and an optical means for polarizing and condensing a light beam emitted from the LED light source. An optical means is provided below the light source, and includes an optical means for receiving a vertical light beam emitted from the light source on its upper surface, reflecting the light beam by two reflecting surfaces, and condensing it vertically downward. An LED lighting device is provided.

また本発明は、周状に配置された複数のLED光源と、該LED光源から発せられた光束を偏光・集光させる光学的手段を備えたLED照明装置を用いて被検物質の蛍光強度を測定する方法であって、LED光源の下部に配置され、該光源から発光された垂直方向の光束をその上面にて受光し、2つの反射面によって反射して垂直下方に集光でき、中心部に設けられた貫通穴に、励起光により発光した蛍光を導入するための光ファイバーを設置してなる光学的手段を用いることを特徴とする蛍光測定方法を提供するものである。   The present invention also provides a fluorescent intensity of a test substance using an LED illumination device including a plurality of circumferentially arranged LED light sources and optical means for polarizing and condensing a light beam emitted from the LED light sources. A measuring method, which is arranged at the bottom of an LED light source, receives a vertical light beam emitted from the light source at its upper surface, and can be reflected by two reflecting surfaces and condensed vertically downward. The present invention provides a fluorescence measuring method characterized by using an optical means in which an optical fiber for introducing fluorescence emitted by excitation light is installed in a through-hole provided in the.

本発明の照明装置によれば、LED光源による光を効率よく集光した平行光を特定のエリアに照射することができる。また、偏光・集光の光学的手段が、LED光源に対して、その下部に配置され、垂直方向に光が集光されることから、装置が平面方向へ拡大することを防ぐことができる。また、干渉フィルターを使用する場合、光学的手段の上面にフィルター処理できることから、施行が容易である。また、蛍光検出を行う場合においても、光学的手段の中に、光ファイバーや、検知センサ等を装着することにより、限られたスペース内に励起光源と検知センサを収めることができる。   According to the illumination device of the present invention, it is possible to irradiate a specific area with parallel light obtained by efficiently condensing light from an LED light source. In addition, since the polarization / condensing optical means is disposed below the LED light source and the light is condensed in the vertical direction, the device can be prevented from expanding in the plane direction. In addition, when an interference filter is used, it can be easily implemented because the upper surface of the optical means can be filtered. In addition, when performing fluorescence detection, an excitation light source and a detection sensor can be accommodated in a limited space by mounting an optical fiber, a detection sensor, or the like in the optical means.

図5は、本発明LED照明装置の主要構成断面図である。
1はLED光源であり、複数のLEDが周上、例えば円周上に配置され(図6)、垂直下方向に発光するように向けられている。2はLED光源から発せられた光束を偏光・集光させる光学的手段のプリズムである。プリズムは光源であるLEDの下部になるべく近接するように設置され、光源から発せられた光束を、プリズム上面の受光面で受光するように配置されている。複数のLEDを使用する場合、光源のスペースが大きくなるが、このようにプリズムを配置することにより、被検物質付近の平面方向のスペースに余裕がない場合にも設置が可能となる。
FIG. 5 is a sectional view of the main configuration of the LED lighting device of the present invention.
Reference numeral 1 denotes an LED light source, and a plurality of LEDs are arranged on the circumference, for example, on the circumference (FIG. 6), and are directed so as to emit light vertically downward. Reference numeral 2 denotes a prism as an optical means for polarizing and condensing a light beam emitted from an LED light source. The prism is installed as close as possible to the lower part of the LED that is the light source, and is arranged so that the light beam emitted from the light source is received by the light receiving surface on the upper surface of the prism. When a plurality of LEDs are used, the space of the light source becomes large. However, by arranging the prism in this way, installation is possible even when there is no room in the space in the plane direction near the test substance.

斯かるプリズムは、上面に受光面を有し、反射面を少なくとも2カ所有する必要がある。すなわち、LED光源1から発光した垂直方向の光を、プリズム2の上面の受光面で受光し、当該光を少なくとも第1、第2の反射面3を介して垂直下方向に集光可能なものであることが必要である。プリズムの形状は、円柱状部とその上端部に設けられたより大径の逆円錐台部とを備え、これらを光透過素材(たとえばガラス)により一体的に成形されて構成されている。この円柱状部と逆円錐台部とは同心である。反射面の形状は、例えば、前述した逆円錐台部の中心と同心の円錐の凹形状が挙げられる。この円錐面からなる反射面はその中心線に対する傾斜角度がたとえば45°に設定されている。   Such a prism must have a light receiving surface on the upper surface and possess at least two reflecting surfaces. That is, the light in the vertical direction emitted from the LED light source 1 is received by the light receiving surface on the upper surface of the prism 2, and the light can be condensed vertically downward through at least the first and second reflecting surfaces 3. It is necessary to be. The shape of the prism includes a cylindrical portion and a larger-diameter inverted truncated cone portion provided at the upper end portion thereof, and these are integrally formed of a light transmitting material (for example, glass). The cylindrical portion and the inverted truncated cone portion are concentric. Examples of the shape of the reflecting surface include a conical concave shape concentric with the center of the inverted truncated cone part described above. The angle of inclination with respect to the center line of the reflecting surface made of this conical surface is set to 45 °, for example.

尚、プリズム以外にも、LEDの光束を偏光・集光でき、照射エリアを一定に保ち、且つ光量を増大させることができるものであれば本発明の光学的手段として使用でき、例えば、前述した逆円錐台の円錐面と、円錐の凹形状それぞれの円錐面に沿って形成されたミラー等が使用可能である。   In addition to the prism, any LED means can be used as the optical means of the present invention as long as it can polarize and condense the luminous flux of the LED, keep the irradiation area constant, and increase the amount of light. A mirror or the like formed along the conical surface of each of the conical surfaces of the inverted truncated cone and the concave shape of the conical shape can be used.

図6にLEDの配置図を示す。LEDは、下部に置かれたプリズム2の形状に合わせ、円周上に配置されている。   FIG. 6 shows an LED layout. The LEDs are arranged on the circumference in accordance with the shape of the prism 2 placed at the bottom.

斯かるLED光源と光学的手段の受光面との間には、干渉フィルターを設置することによって、より帯域の狭い光をプリズムに入光させれば、LEDの特性よりさらに限定された帯域の光を集光できることになり、分光分析上好ましい。干渉フィルターの種類や大きさはその波長をカバーするLEDの特性に応じて決定すればよく、またその設置位置も光源と光学的手段の受光面との間であればよく、光学的手段の受光面に直接フィルター処理を施すことでもよい。例えば、ドーナツ形状の干渉フィルターをLEDとプリズムの間に平行に設置することや、プリズム上面に直接フィルター処理する方法が挙げられる。
図7に受光面に干渉フィルター処理を施したプリズムの立体図、図8に当該干渉フィルター処理を施したプリズムを装着した本発明LED照明装置の断面図を示す。
プリズム6は、上面に干渉フィルターの処理が施されている。干渉フィルターの種類は必要に応じて2つ以上に分割されている(図7)。処理の面積はその波長をカバーするLEDの特性に応じて決定される。これにより光射出口により射出される光は、LEDの特性よりさらに帯域が限定されるので、分光分析により適する。
By installing an interference filter between the LED light source and the light receiving surface of the optical means, if light having a narrower band is incident on the prism, light in a band more limited than the characteristics of the LED can be obtained. Can be condensed, which is preferable in terms of spectroscopic analysis. The type and size of the interference filter may be determined according to the characteristics of the LED covering the wavelength, and the installation position may be between the light source and the light receiving surface of the optical means. The surface may be directly filtered. For example, a donut-shaped interference filter may be installed in parallel between the LED and the prism, or a method of directly filtering the prism upper surface.
FIG. 7 shows a three-dimensional view of a prism having a light receiving surface subjected to interference filter processing, and FIG.
The prism 6 has an interference filter process on its upper surface. The type of interference filter is divided into two or more as required (FIG. 7). The area of the treatment is determined according to the characteristics of the LED covering the wavelength. As a result, the light emitted from the light emission port is more suitable for spectroscopic analysis because the band is further limited by the characteristics of the LED.

図9にプリズム6の中心部に設けた貫通穴に、励起光により発光した蛍光を検知センサに導入するための光ファイバーを設置した本発明LED照明装置の断面図を示す。
LED光源1が点灯すると、プリズム6の第1及び第2の反射面で反射して垂直方向に集光し、被検物質8が入ったプレートの上方より励起光として照射される。この際、蛍光物質が存在し、蛍光物質が励起されて蛍光が発光すると、当該蛍光がプリズム7の中心に設けられた貫通穴9に装着された光ファイバ−10を通じて蛍光検出部へ導かれる。ここでは、蛍光を検知センサに導入するための手段として光ファイバーを示したが、貫通穴の内径に収まるならば、フォトダイオード等の検知センサを装着して直接検出することでもよい。
FIG. 9 shows a cross-sectional view of the LED illumination device of the present invention in which an optical fiber for introducing fluorescence emitted by excitation light into a detection sensor is installed in a through hole provided in the center of the prism 6.
When the LED light source 1 is turned on, the light is reflected by the first and second reflecting surfaces of the prism 6 and condensed in the vertical direction, and irradiated as excitation light from above the plate containing the test substance 8. At this time, when the fluorescent material is present and the fluorescent material is excited and emits fluorescence, the fluorescence is guided to the fluorescence detection unit through the optical fiber 10 mounted in the through hole 9 provided at the center of the prism 7. Here, an optical fiber is shown as a means for introducing fluorescence into the detection sensor. However, if the optical fiber fits in the inner diameter of the through hole, a detection sensor such as a photodiode may be attached and detected directly.

図1は従来の分光分析装置(吸光分析)の概念図である。FIG. 1 is a conceptual diagram of a conventional spectroscopic analyzer (absorption analysis). 図2は従来の分光分析装置(発光分析)の概念図である。FIG. 2 is a conceptual diagram of a conventional spectroscopic analyzer (emission analysis). 図3は従来の分光分析装置(蛍光分析)の概念図である。FIG. 3 is a conceptual diagram of a conventional spectroscopic analyzer (fluorescence analysis). 図4は従来の分光分析用照明装置の概念図である。FIG. 4 is a conceptual diagram of a conventional illumination apparatus for spectral analysis. 図5は本発明LED照明装置の主要構成断面図である。FIG. 5 is a cross-sectional view of the main configuration of the LED lighting device of the present invention. 図6はLEDの配置図である。FIG. 6 is a layout view of LEDs. 図7は受光面に干渉フィルター処理を施したプリズムの立体図である。FIG. 7 is a three-dimensional view of a prism in which the light receiving surface is subjected to interference filter processing. 図8は干渉フィルター処理を施したプリズムを装着した本発明LED照明装置の断面図である。FIG. 8 is a cross-sectional view of the LED lighting device of the present invention equipped with a prism subjected to interference filter processing. プリズムの中心部に光ファイバーを装着したLED照明装置の断面図である。It is sectional drawing of the LED illuminating device which attached the optical fiber to the center part of the prism.

符号の説明Explanation of symbols

1:LED光源
2:プリズム
3:反射面
4:プリント基板
5:光射出口
6:プリズム(フィルター処理)
7:プレート
8:被検物質
9:貫通穴
10:光ファイバー
11:蛍光受光面

1: LED light source 2: Prism 3: Reflecting surface 4: Printed circuit board 5: Light exit 6: Prism (filter processing)
7: Plate 8: Test substance 9: Through hole 10: Optical fiber 11: Fluorescent light receiving surface

Claims (7)

周状に配置された複数のLED光源と、該LED光源から発せられた光束を偏光・集光させる光学的手段を備えた分光分析用のLED照明装置であって、LED光源の下部に配置され、該光源から発光された垂直方向の光束をその上面にて受光し、2つの反射面によって反射して垂直下方に集光する光学的手段を備えたことを特徴とするLED照明装置。   An LED illumination device for spectroscopic analysis, comprising a plurality of LED light sources arranged in a circumferential manner and an optical means for polarizing and condensing a light beam emitted from the LED light source, which is arranged below the LED light source. An LED illuminating device comprising optical means for receiving a vertical light beam emitted from the light source on the upper surface thereof, reflecting the light beam by two reflecting surfaces, and condensing it vertically downward. LED光源と光学的手段の受光面との間に、干渉フィルターを設置してなる請求項1記載のLED照明装置。   The LED lighting device according to claim 1, wherein an interference filter is installed between the LED light source and the light receiving surface of the optical means. 干渉フィルターの設置が、光学的手段の受光面にフィルター処理するものである請求項2記載のLED照明装置。   3. The LED lighting device according to claim 2, wherein the interference filter is installed on the light receiving surface of the optical means. 光学的手段が、円筒形状の受光面を有するプリズムである請求項1〜3のいずれか1項記載のLED照明装置。   The LED illumination device according to claim 1, wherein the optical means is a prism having a cylindrical light receiving surface. 光学的手段の中心部に設けられた貫通穴に、励起光により発光した蛍光を導入するための光ファイバーを設置してなる請求項1〜4のいずれか1項記載のLED照明装置。   The LED lighting device according to any one of claims 1 to 4, wherein an optical fiber for introducing fluorescence emitted by excitation light is installed in a through hole provided in a central portion of the optical means. 貫通穴に、更に光センサを設置するものである請求項5記載のLED照明装置。   The LED illumination device according to claim 5, wherein a light sensor is further installed in the through hole. 周状に配置された複数のLED光源と、該LED光源から発せられた光束を偏光・集光させる光学的手段を備えたLED照明装置を用いて被検物質の蛍光強度を測定する方法であって、LED光源の下部に配置され、該光源から発光された垂直方向の光束をその上面にて受光し、2つの反射面によって反射して垂直下方に集光でき、中心部に設けられた貫通穴に、励起光により発光した蛍光を導入するための光ファイバーを設置してなる光学的手段を用いることを特徴とする蛍光測定方法。

This is a method for measuring the fluorescence intensity of a test substance using an LED illuminating device comprising a plurality of circumferentially arranged LED light sources and an optical means for polarizing and condensing a light beam emitted from the LED light sources. The vertical light beam emitted from the light source is received by the upper surface of the LED light source, reflected by the two reflecting surfaces and condensed vertically downward, and is provided at the center. A fluorescence measuring method characterized by using an optical means in which an optical fiber for introducing fluorescence emitted by excitation light is installed in a hole.

JP2004079031A 2004-03-18 2004-03-18 Led lighting unit for spectrum analysis Pending JP2005265626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079031A JP2005265626A (en) 2004-03-18 2004-03-18 Led lighting unit for spectrum analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079031A JP2005265626A (en) 2004-03-18 2004-03-18 Led lighting unit for spectrum analysis

Publications (1)

Publication Number Publication Date
JP2005265626A true JP2005265626A (en) 2005-09-29

Family

ID=35090341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079031A Pending JP2005265626A (en) 2004-03-18 2004-03-18 Led lighting unit for spectrum analysis

Country Status (1)

Country Link
JP (1) JP2005265626A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205991A (en) * 2006-02-03 2007-08-16 Klv Kk Light source device and spectrophotometry system
JP2008305712A (en) * 2007-06-08 2008-12-18 Casio Comput Co Ltd Light source device and projector
JP2009063407A (en) * 2007-09-06 2009-03-26 Yokogawa Electric Corp Irradiation condenser
JP2011215285A (en) * 2010-03-31 2011-10-27 Yamatake Corp Light-receiving optical system
KR101237528B1 (en) 2010-12-31 2013-02-26 (주)파서블에너지 Apparatus for Analyzing Optical Characteristic of Panel Display
JP2014181908A (en) * 2013-03-15 2014-09-29 Kyokko Electric Co Ltd Sample analysis apparatus
CN105572058A (en) * 2014-10-09 2016-05-11 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer and absorbance measurement device thereof
JP2019049537A (en) * 2017-08-30 2019-03-28 三星電子株式会社Samsung Electronics Co.,Ltd. Collection optical system for spectrometers and raman spectral system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205991A (en) * 2006-02-03 2007-08-16 Klv Kk Light source device and spectrophotometry system
JP2008305712A (en) * 2007-06-08 2008-12-18 Casio Comput Co Ltd Light source device and projector
JP2009063407A (en) * 2007-09-06 2009-03-26 Yokogawa Electric Corp Irradiation condenser
JP2011215285A (en) * 2010-03-31 2011-10-27 Yamatake Corp Light-receiving optical system
KR101237528B1 (en) 2010-12-31 2013-02-26 (주)파서블에너지 Apparatus for Analyzing Optical Characteristic of Panel Display
JP2014181908A (en) * 2013-03-15 2014-09-29 Kyokko Electric Co Ltd Sample analysis apparatus
CN105572058A (en) * 2014-10-09 2016-05-11 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer and absorbance measurement device thereof
CN105572058B (en) * 2014-10-09 2024-01-02 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer and absorbance measuring device thereof
JP2019049537A (en) * 2017-08-30 2019-03-28 三星電子株式会社Samsung Electronics Co.,Ltd. Collection optical system for spectrometers and raman spectral system
JP7253885B2 (en) 2017-08-30 2023-04-07 三星電子株式会社 Condensing optical system for spectroscope and Raman spectroscopic system including the same

Similar Documents

Publication Publication Date Title
JP4960707B2 (en) Compatible chip-open cell fluorometer
US7507967B2 (en) Infrared gas detector
US8263956B2 (en) Optical flow channel measuring instrument
US8625195B2 (en) Objective-type dark-field illumination device for microfluidic channel
CN109891213B (en) Gas detector system with loop reflector
US20070262294A1 (en) Light source including quantum dot material and apparatus including same
JP4536754B2 (en) Spectrophotometer and liquid chromatography
CN108060068A (en) Multichannel fluorescence detection device
US7209237B2 (en) Optical system for analyzing multi-channel samples and multi-channel sample analyzer employing the same
CN115161187B (en) Multi-channel fluorescence detection device and PCR instrument
JP2005265626A (en) Led lighting unit for spectrum analysis
KR20030037314A (en) Apparatus for analyzing fluorescence image of biochip
JP3166814U (en) Fluorescence detector
JP2005274355A (en) Fluorescence image acquisition device
KR101029084B1 (en) Mercury analyzer coupled CVAAS module with CAAFS module
JP2011247743A (en) Fluorescence measurement apparatus
EP3189325B1 (en) Method and apparatus for optical measurement of a liquid sample
WO2004038350A1 (en) Light source unit, light-receiving unit, and multichannel optical sensing apparatus using those
JP2005055199A (en) Led lighting system
JP3150117U (en) Fluorescence detector
JP3218552U (en) Compact fluorescence detector
JP2009053006A (en) Fluorescence detection device, and fluorescence detection device control system
CN218823928U (en) Nucleic acid detector and fluorescence detection device thereof
JP3155296U (en) Fluorescence detector
KR100429637B1 (en) Light Source Device with a Multi-Path and Operating Method for the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804