JPH1167885A - Substrate holding device - Google Patents

Substrate holding device

Info

Publication number
JPH1167885A
JPH1167885A JP24458997A JP24458997A JPH1167885A JP H1167885 A JPH1167885 A JP H1167885A JP 24458997 A JP24458997 A JP 24458997A JP 24458997 A JP24458997 A JP 24458997A JP H1167885 A JPH1167885 A JP H1167885A
Authority
JP
Japan
Prior art keywords
substrate
electrostatic chuck
power supply
bridge circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24458997A
Other languages
Japanese (ja)
Inventor
Masayasu Tanjiyou
正安 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP24458997A priority Critical patent/JPH1167885A/en
Publication of JPH1167885A publication Critical patent/JPH1167885A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate holding device, in which a circuit is simple, whose reliability and accuracy are high and which can detect the attraction state or the like of a substrate on an electrostatic chuck. SOLUTION: A device comprises a bridge circuit 20, which is provided with capacitors 21 to 26 which are electrically connected to be a rhomb, with a high-frequency power supply 30, which supplies a high frequency across two opposite corner parts (a), (b) in the rhomb and with a measuring instrument which measures a current or a voltage across two remaining opposite corner parts (c), (d) in the rhomb. Then, when an electrostatic chuck 6 is brought close to a substrate 4, a capacitance which is formed by electrode 10, 11 of the electrostatic chuck 6 and the substrate 4 is connected in parallel with the capacitor 24 on one side of the bridge circuit 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばイオン注
入装置、イオンビームエッチング装置、プラズマCVD
装置、薄膜形成装置等に用いられるものであって、被処
理物である基板を静電気によって吸着保持する静電チャ
ックを備える基板保持装置に関し、より具体的には、静
電チャック上の基板の吸着状態等を簡単な回路によって
信頼性良く検知する手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation apparatus, an ion beam etching apparatus, and a plasma CVD.
The present invention relates to a substrate holding apparatus that is used in an apparatus, a thin film forming apparatus, and the like, and includes an electrostatic chuck that attracts and holds a substrate to be processed by static electricity. The present invention relates to means for reliably detecting a state or the like with a simple circuit.

【0002】[0002]

【従来の技術】図6は、従来の基板保持装置の一例を示
す図である。この基板保持装置は、基板(例えば半導体
ウェーハ)4を静電気によって吸着し保持する静電チャ
ック6と、この静電チャック6に(より具体的にはその
電極10、11に)電圧を印加して基板4を吸着保持さ
せる吸着用電源14とを備えている。
2. Description of the Related Art FIG. 6 shows an example of a conventional substrate holding device. The substrate holding device includes an electrostatic chuck 6 for attracting and holding a substrate (for example, a semiconductor wafer) 4 by static electricity, and applying a voltage to the electrostatic chuck 6 (more specifically, to its electrodes 10 and 11). A suction power supply 14 for holding the substrate 4 by suction;

【0003】この例の静電チャック6は、双極型と呼ば
れるものであり、二つの電極10および11を絶縁体8
内の表面近くに埋め込んで成る。電極10および11
は、例えば、共に半円形をしていて両者が相対向して円
形を成すように絶縁体8内に埋め込まれている。
The electrostatic chuck 6 of this example is of a so-called bipolar type, in which two electrodes 10 and 11 are connected to an insulator 8.
Embedded near the inner surface. Electrodes 10 and 11
Are embedded in the insulator 8 such that both have a semicircular shape, and both face each other to form a circular shape.

【0004】吸着用電源14は、この例では二つの直流
電源14aおよび14bから成る双極出力形のものであ
り、同値で逆極性の直流電圧+Vおよび−Vを出力し
て、それらを静電チャック6の各電極10、11にそれ
ぞれ印加することができる。
In this example, the power supply 14 for suction is of a bipolar output type composed of two DC power supplies 14a and 14b, outputs DC voltages + V and -V of the same value and opposite polarities, and applies them to the electrostatic chuck. 6 can be applied to each of the electrodes 10 and 11.

【0005】静電チャック6上に基板4を供給しかつ吸
着用電源14から当該静電チャック6に上記電圧を印加
すると、基板4と電極10、11間に正負の電荷が溜ま
り、その間に働く静電力(またはジョンソンラーベック
力)によって、基板4が静電チャック6に吸着保持され
る。その状態で、基板4にイオンビーム2を照射する等
して基板4にイオン注入等の処理を施すことができる。
When the substrate 4 is supplied onto the electrostatic chuck 6 and the above-mentioned voltage is applied to the electrostatic chuck 6 from the power supply 14 for suction, positive and negative charges are accumulated between the substrate 4 and the electrodes 10 and 11 and work during that time. The substrate 4 is attracted and held on the electrostatic chuck 6 by electrostatic force (or Johnson-Rahbek force). In this state, the substrate 4 can be subjected to a process such as ion implantation by irradiating the substrate 4 with the ion beam 2 or the like.

【0006】このような基板保持装置において、静電チ
ャック6上での基板4の吸着状態等を、より具体的に
は、基板4の有無、基板4の吸着状態(静電チャック6
に電圧を印加したときに基板4がどの程度強く吸着され
ているかということ)、基板4の離脱状態(静電チャッ
ク6への電圧を切った後に残留電荷で基板4がどの程度
吸着されているかということ)を検知することは、基板
4の搬送、処理時の基板4の過熱防止等の観点から重要
である。
In such a substrate holding apparatus, the suction state of the substrate 4 on the electrostatic chuck 6 and the like, more specifically, the presence or absence of the substrate 4 and the suction state of the substrate 4 (the electrostatic chuck 6
How strongly the substrate 4 is attracted when a voltage is applied to the substrate 4), the detached state of the substrate 4 (how much the substrate 4 is attracted by residual charges after the voltage to the electrostatic chuck 6 is cut off) Is important from the viewpoints of transport of the substrate 4, prevention of overheating of the substrate 4 during processing, and the like.

【0007】このような基板4の吸着状態等を検知する
手段の一つに、静電チャック6の電極10、11と基板
4との間に生じる静電容量を測定する技術がある。しか
し、基板4の吸着状態等の変化による上記静電容量の変
化は非常に小さい(例えば数pF〜数十pF程度)の
で、これを感度良く測定するためには工夫が必要であ
り、それに関する提案が既に幾つかなされている。
As one of means for detecting such a suction state of the substrate 4, there is a technique for measuring a capacitance generated between the electrodes 10 and 11 of the electrostatic chuck 6 and the substrate 4. However, since the change in the capacitance due to the change in the suction state of the substrate 4 is very small (for example, about several pF to several tens of pF), it is necessary to devise to measure this with high sensitivity. Some proposals have already been made.

【0008】例えば、第1の技術として、特公平6−9
1024号公報には、静電チャックの電極と高周波電源
との間に直列にインダクタンスおよびコンデンサを挿入
して、高周波電源の周波数を直列共振周波数近くに設定
し、それによって高周波電源からの出力電流の変化を大
きくして測定感度を向上させる技術が提案されている。
For example, as a first technology, Japanese Patent Publication No. 6-9
In Japanese Patent No. 1024, an inductance and a capacitor are inserted in series between the electrode of the electrostatic chuck and the high-frequency power supply to set the frequency of the high-frequency power supply close to the series resonance frequency, thereby reducing the output current from the high-frequency power supply. Techniques for increasing the change to improve the measurement sensitivity have been proposed.

【0009】また、第2の技術として、特開昭63−1
69244号公報には、上記静電容量を共振回路に用い
たリアクタンス発振回路を設け、この発振回路の発振周
波数を測定することによって測定感度を向上させる技術
が提案されている。
A second technique is disclosed in Japanese Patent Application Laid-Open No. 63-1 / 1988.
Japanese Patent Application Laid-Open No. 69244 proposes a technique for improving the measurement sensitivity by providing a reactance oscillation circuit using the above-mentioned capacitance as a resonance circuit and measuring the oscillation frequency of the oscillation circuit.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記第1お
よび第2の従来技術とも、インダクタンス(L)と静電
容量(C)との共振を用いているために、測定系の温度
変化の影響を受けやすく、即ち測定系の温度が変化する
とこれらのインダクタンス値および静電容量値が変化し
てそれがそのまま共振周波数の変化となって表れるため
に、基板の吸着状態等の検知の信頼性が低いという課題
がある。
However, in both the first and second prior arts, the resonance of the inductance (L) and the capacitance (C) is used, so that the influence of the temperature change of the measurement system is obtained. In other words, when the temperature of the measurement system changes, the inductance value and the capacitance value change and appear as a change in the resonance frequency. There is a problem of low.

【0011】また、上記第1の従来技術では、静電チャ
ックの電極と基板間の静電容量が非常に小さく(例えば
数十pF〜数百pF程度)、これに直列接続するインダ
クタンスの値を大きくするにも自ずと限界があるため、
発振周波数の高い(例えば100kHz以上の)高周波
電源を必要とする上に、この高周波電源の発振周波数が
変化して直列共振周波数からずれるとそれがそのまま測
定誤差となるため、周波数安定度の非常に高い高周波電
源を必要とする。このような、発振周波数が高く、しか
も周波数安定度の非常に高い高周波電源は、回路が複雑
になると共に高価になる。
In the first prior art, the capacitance between the electrode of the electrostatic chuck and the substrate is very small (for example, about several tens pF to several hundred pF), and the value of the inductance connected in series to this is reduced. Because there is naturally a limit to increasing it,
In addition to requiring a high-frequency power supply having a high oscillation frequency (for example, 100 kHz or more), if the oscillation frequency of this high-frequency power supply changes and deviates from the series resonance frequency, it becomes a measurement error as it is. Requires a high frequency power supply. Such a high-frequency power supply having a high oscillation frequency and a very high frequency stability has a complicated circuit and is expensive.

【0012】また、上記第2の従来技術では、発振回路
が必要になるだけでなく、その発振周波数を正確に測定
する周波数測定回路が必要になるので、やはり回路が複
雑になると共に高価になる。
In the second prior art, not only an oscillation circuit is required, but also a frequency measurement circuit for accurately measuring the oscillation frequency is required, so that the circuit becomes complicated and expensive. .

【0013】そこでこの発明は、簡単な回路でしかも高
い信頼性および精度で、静電チャック上の基板の吸着状
態等を検知することができる基板保持装置を提供するこ
とを主たる目的とする。
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a substrate holding apparatus capable of detecting the state of suction of a substrate on an electrostatic chuck with a simple circuit and with high reliability and accuracy.

【0014】[0014]

【課題を解決するための手段】この発明の基板保持装置
は、電気的に菱形に接続された複数のコンデンサと、こ
の菱形の二つの対角部間に高周波を供給する高周波電源
と、この菱形の残り二つの対角部間の電流または電圧を
計測する計測器とを有するブリッジ回路を備えており、
かつ前記静電チャックに基板を近接させたときに当該静
電チャックの電極と基板との間に形成される静電容量が
前記ブリッジ回路の一辺のコンデンサに並列に接続され
るように構成していることを特徴としている。
According to the present invention, there is provided a substrate holding apparatus comprising: a plurality of capacitors electrically connected in a diamond shape; a high frequency power supply for supplying a high frequency between two diagonal portions of the diamond; A measuring circuit for measuring the current or voltage between the remaining two diagonals of the bridge circuit,
And when a substrate is brought close to the electrostatic chuck, a capacitance formed between an electrode of the electrostatic chuck and the substrate is connected in parallel to a capacitor on one side of the bridge circuit. It is characterized by having.

【0015】上記構成によれば、静電チャック上の基板
の有無やその吸着状態等によって、静電チャックの電極
と基板間の静電容量が変化し、この変化がブリッジ回路
の平衡状態を変化させ、その変化が計測器の計測値に表
れる。従って、この計測器の計測値によって、静電チャ
ック上の基板の有無やその吸着状態等を検知することが
できる。
According to the above configuration, the capacitance between the electrode of the electrostatic chuck and the substrate changes depending on the presence or absence of the substrate on the electrostatic chuck and the state of suction, and this change changes the equilibrium state of the bridge circuit. And the change appears in the measured value of the measuring instrument. Therefore, the presence or absence of the substrate on the electrostatic chuck and the state of suction of the substrate can be detected based on the measurement value of the measuring device.

【0016】しかも、測定系にブリッジ回路を用いてお
り、ブリッジ回路はその全体が温度変化しても原理的に
はその平衡状態に殆ど変化は生じないので、温度変化の
影響を受けにくく、従って検知の信頼性および精度が高
い。
Furthermore, since a bridge circuit is used in the measurement system, the bridge circuit is hardly affected by the temperature change because the equilibrium state of the bridge circuit hardly changes even if the temperature of the entire bridge changes. High reliability and accuracy of detection.

【0017】また、ブリッジ回路は一般的に回路が簡単
であり、しかもその高周波電源には従来技術のような高
い周波数および高い周波数安定度を必要としないので、
回路構成が簡単になると共にコスト的にも安くなる。
In addition, the bridge circuit is generally simple in circuit, and its high-frequency power source does not require high frequency and high frequency stability as in the prior art.
The circuit configuration is simplified and the cost is reduced.

【0018】[0018]

【発明の実施の形態】図1は、この発明に係る基板保持
装置の一例を示す図である。図6の従来例と同一または
相当する部分には同一符号を付し、以下においては当該
従来例との相違点を主に説明する。
FIG. 1 is a diagram showing an example of a substrate holding device according to the present invention. Parts that are the same as or correspond to those in the conventional example of FIG. 6 are denoted by the same reference numerals, and differences from the conventional example will be mainly described below.

【0019】この基板保持装置は、前述したような静電
チャック6の他に、複数のコンデンサで、菱形の四辺を
構成し、電源に高周波電源を用いた、いわゆる容量型ま
たは高周波型と呼ばれるブリッジ回路20を備えてい
る。
This substrate holding apparatus is a so-called capacitive or high-frequency bridge which uses a high-frequency power supply as a power source and forms a diamond-shaped four side with a plurality of capacitors in addition to the electrostatic chuck 6 as described above. The circuit 20 is provided.

【0020】このブリッジ回路20は、その等価回路を
図2に示すように、4群のコンデンサ、即ちコンデン
サ21、コンデンサ22、互いに直列接続されたコ
ンデンサ23と24、および互いに直列接続されたコ
ンデンサ25と26を、電気的に菱形に接続し、この菱
形の二つの対角部a、b間に高周波電源30を接続し、
残り二つの対角部c、d間に電流または電圧を計測する
計測器32を接続した構成をしている。
As shown in FIG. 2, the bridge circuit 20 has four groups of capacitors: a capacitor 21, a capacitor 22, capacitors 23 and 24 connected in series with each other, and a capacitor 25 connected in series with each other. And 26 are electrically connected in a diamond shape, and a high-frequency power supply 30 is connected between two diagonal portions a and b of the diamond shape,
A measuring instrument 32 for measuring current or voltage is connected between the remaining two diagonal portions c and d.

【0021】高周波電源30は、高周波を出力してそれ
を上記対角部a、b間に供給する。このブリッジ回路2
0は、従来技術のようにLCの共振を利用するものでは
なく、高周波電源30は単にコンデンサ21〜26に適
当なインピーダンス(この例では容量性リアクタンス)
を生ぜしめれば良いから、この高周波電源30から出力
する高周波の周波数は、従来技術ほど高いものは必要で
ない。例えば、この高周波電源30から出力する高周波
の周波数は、数kHz〜数十kHz程度、より具体的に
は10kHz程度で良い。図1中のb点とアース(即ち
アースを経由した高周波電源30)との間に接続してい
るコンデンサ27は、この高周波電源30から出力され
る高周波を通すけれども、吸着用電源14から出力され
る直流を阻止するものであり、ブリッジ回路20の本質
に影響するものではない。それゆえ、図2の等価回路で
はそれを省略している。
The high frequency power supply 30 outputs a high frequency power and supplies it between the diagonal portions a and b. This bridge circuit 2
0 does not utilize the resonance of the LC as in the prior art, and the high frequency power supply 30 simply provides an appropriate impedance (capacitive reactance in this example) to the capacitors 21 to 26.
Therefore, the frequency of the high frequency output from the high frequency power supply 30 does not need to be as high as that of the prior art. For example, the frequency of the high frequency output from the high-frequency power supply 30 may be about several kHz to several tens kHz, more specifically, about 10 kHz. The capacitor 27 connected between the point b in FIG. 1 and the ground (that is, the high-frequency power supply 30 via the ground) passes the high frequency output from the high-frequency power supply 30, but is output from the suction power supply 14. And does not affect the essence of the bridge circuit 20. Therefore, it is omitted in the equivalent circuit of FIG.

【0022】計測器32は、上記対角部c、d間に発生
する電圧を計測する電圧計もしくは電圧計測回路、また
は、同c、d間に流れる電流を計測する電流計もしくは
電流計測回路である。
The measuring device 32 is a voltmeter or a voltage measuring circuit for measuring a voltage generated between the diagonal portions c and d, or an ammeter or a current measuring circuit for measuring a current flowing between the diagonal portions c and d. is there.

【0023】静電チャック6は、この例では図6の場合
と同様に二つの電極10および11を有する双極型のも
のであり、この二つの電極10および11は、上記ブリ
ッジ回路20の一辺を構成するコンデンサ24の両端に
並列接続している。この静電チャック6に基板4を供給
して近接(例えば吸着)させると、図2に示すように、
一方の電極10と基板4との間に静電容量C5 が生じ、
他方の電極11と基板4との間に静電容量C6 が生じ
る。従って、静電チャック6を上記のように接続する
と、この互いに直列接続された静電容量C5 およびC6
がコンデンサ24に並列接続されることになる。なお、
両電極10、11は通常は互いに同形状かつ同面積であ
るので、通常はC5 =C6 である。
In this example, the electrostatic chuck 6 is of a bipolar type having two electrodes 10 and 11 as in FIG. 6, and these two electrodes 10 and 11 connect one side of the bridge circuit 20 to one side. The capacitor 24 is connected in parallel to both ends of the capacitor 24. When the substrate 4 is supplied to the electrostatic chuck 6 and brought into proximity (for example, by suction), as shown in FIG.
A capacitance C 5 is generated between one electrode 10 and the substrate 4,
A capacitance C 6 is generated between the other electrode 11 and the substrate 4. Therefore, when the electrostatic chuck 6 is connected as described above, the capacitances C 5 and C 6 connected in series to each other are connected.
Are connected in parallel to the capacitor 24. In addition,
Since both electrodes 10 and 11 usually have the same shape and the same area, C 5 = C 6 .

【0024】上記のように接続された静電チャック6
に、ブリッジ回路20の平衡状態を乱すことなく吸着用
電源14から吸着用の直流電圧+Vおよび−Vを供給す
るために、この例では、吸着用電源14の一方の(この
例では+V側の)出力部を、抵抗器41を介してコンデ
ンサ23、24間の接続部eおよび電極10に接続する
と共に、抵抗器41と同じ値の抵抗器42を介してコン
デンサ25、26間の接続部fにも接続している。吸着
用電源14の他方の(即ちこの例では−V側の)出力部
は、抵抗器43を介して上記接続部bおよび電極11に
接続している。このように構成すると、吸着用電源14
の回路はブリッジ回路20に対して対称に接続されるの
で、吸着用電源14がブリッジ回路20の平衡状態を乱
すことはなく、従って温度変化等に対する回路の安定性
がより向上する。この吸着用電源14の回路は、上記の
ようにブリッジ回路20の平衡状態を左右しないので、
図2の等価回路ではそれを省略している。抵抗器41〜
43は、高周波電源30からの高周波が吸着用電源14
側へ漏れるのを阻止する働きもする。この抵抗器41〜
43(更には後述する抵抗器44および45)の代わり
にインダクタを用いても良い。
The electrostatic chuck 6 connected as described above
In order to supply the DC voltages + V and -V for suction from the power supply 14 for adsorption without disturbing the equilibrium state of the bridge circuit 20, one of the power supplies 14 for adsorption (in this example, ) The output is connected to the connection e between the capacitors 23 and 24 via the resistor 41 and the electrode 10 and the connection f between the capacitors 25 and 26 via the resistor 42 having the same value as the resistor 41. Also connected. The other output section (that is, the −V side in this example) of the suction power supply 14 is connected to the connection section b and the electrode 11 via a resistor 43. With this configuration, the suction power supply 14
Is connected symmetrically with respect to the bridge circuit 20, the power supply 14 for adsorption does not disturb the equilibrium state of the bridge circuit 20, so that the stability of the circuit with respect to a temperature change or the like is further improved. Since the circuit of the power supply 14 for suction does not affect the equilibrium state of the bridge circuit 20 as described above,
It is omitted in the equivalent circuit of FIG. Resistors 41-
43 is a power supply for suction 14
It also works to prevent leakage to the side. These resistors 41-
An inductor may be used instead of 43 (further, resistors 44 and 45 described later).

【0025】上記ブリッジ回路20は、静電チャック6
上に基板4が無いときに平衡状態になり、計測器32の
値が0になるように設定しておくのが好ましい。その理
由は後述する。具体的には、静電チャック6上に基板4
が無いときは、上記静電容量C5 およびC6 の大きさは
0と見なして良いほどに小さいので、図2に示すよう
に、コンデンサ21、コンデンサ22、コンデンサ23
と24とを合成したものおよびコンデンサ25と26と
を合成したものの静電容量の値をそれぞれC1 〜C4
すると、ブリッジ回路の平衡条件として良く知られてい
るように、数1の条件が成立するように設定しておく。
The bridge circuit 20 includes the electrostatic chuck 6
It is preferable that the equilibrium state is set when there is no substrate 4 above, and the value of the measuring instrument 32 is set to 0. The reason will be described later. Specifically, the substrate 4 is placed on the electrostatic chuck 6.
When there is no, since the magnitudes of the capacitances C 5 and C 6 are so small that they can be regarded as 0, as shown in FIG.
Assuming that the values of the capacitances of the combination of the capacitors 25 and 24 and the combination of the capacitors 25 and 26 are C 1 to C 4 , respectively, as is well known as the equilibrium condition of the bridge circuit, Is set so that

【0026】[0026]

【数1】C1 =C2 かつC3 =C4 ## EQU1 ## C 1 = C 2 and C 3 = C 4

【0027】上記静電容量C5 およびC6 の大きさは、
静電チャック6上の基板4の有無、基板4の吸着状態お
よび基板4の離脱状態によって変化する。具体的には、
静電容量C5 およびC6 のそれぞれの大きさを、静電
チャック6上に基板4が無い時のものをC11、静電チ
ャック6上に基板4を載せただけの場合のものをC12
静電チャック6に基板4を吸着した時のものをC13
吸着した後に静電チャック6への電圧を切った後のも
のをC14とすると、通常は、C11<C12<C14<C13
なる。なぜなら、静電チャック6への基板4の吸着が強
くなるほど、基板4と電極10、11間の距離が小さく
なってこれらの間の静電容量が大きくなるからである。
11は、前述したように0と見なせる。C14は、残留電
荷による吸着力が残っている間はC12よりも大きい。
The magnitudes of the capacitances C 5 and C 6 are as follows:
It changes depending on the presence or absence of the substrate 4 on the electrostatic chuck 6, the state of suction of the substrate 4, and the state of detachment of the substrate 4. In particular,
The magnitude of each of the capacitances C 5 and C 6 is C 11 when the substrate 4 is not on the electrostatic chuck 6, and C 11 when the substrate 4 is merely placed on the electrostatic chuck 6. 12 ,
C 13 those when adsorbed substrate 4 to the electrostatic chuck 6,
When those after turning off the voltage to the electrostatic chuck 6 after adsorbed C 14, typically, a C 11 <C 12 <C 14 <C 13. This is because the stronger the suction of the substrate 4 to the electrostatic chuck 6, the smaller the distance between the substrate 4 and the electrodes 10 and 11, and the larger the capacitance between them.
C 11 can be regarded as 0, as described above. C 14 is larger than C 12 while the adsorption force due to the residual charge remains.

【0028】従って、上記のように構成しておくと、静
電チャック6上の基板4の有無、基板4の吸着状態およ
び基板4の離脱状態によって静電容量C5 およびC6
大きさが変化し、この変化がブリッジ回路20の一辺の
静電容量を変化させてブリッジ回路20の平衡状態を変
化させ、その変化が計測器32の計測値に大きな変化と
なって表れる。従って、計測器32の計測値によって、
静電チャック6上の基板4の有無、基板4の吸着状態お
よび基板4の離脱状態を検知することができる。基板4
の吸着状態にも、強吸着、中吸着、弱吸着があるが、こ
れらの別によっても上記静電容量C5 およびC6 の大き
さが変化し、それが計測器32の計測値に表れるので、
これらの吸着状態の区別をも行うことができる。
Therefore, when the above configuration is adopted, the magnitudes of the capacitances C 5 and C 6 depend on the presence or absence of the substrate 4 on the electrostatic chuck 6, the state of suction of the substrate 4, and the state of separation of the substrate 4. This change changes the capacitance of one side of the bridge circuit 20 to change the equilibrium state of the bridge circuit 20, and the change appears as a large change in the measurement value of the measuring device 32. Therefore, according to the measurement value of the measuring device 32,
The presence / absence of the substrate 4 on the electrostatic chuck 6, the suction state of the substrate 4, and the detachment state of the substrate 4 can be detected. Substrate 4
In the adsorption state of strongly adsorbed, middle suction, there is a weak suction, the size of the electrostatic capacitance C 5 and C 6 are changed by these different, because it appears in the measured value of the measuring instrument 32 ,
These adsorption states can also be distinguished.

【0029】しかもこの基板保持装置では、測定系にブ
リッジ回路20を用いており、ブリッジ回路20は、そ
の全体が温度変化しても原理的にはその平衡状態に殆ど
変化は生じないので、温度ドリフト等の外乱の影響を受
けにくい。従って、上記基板4の吸着状態等の検知の信
頼性および精度が高い。
Moreover, in this substrate holding apparatus, the bridge circuit 20 is used in the measurement system. Even if the entire bridge circuit 20 changes in temperature, there is almost no change in its equilibrium state. Less susceptible to disturbances such as drift. Therefore, the reliability and accuracy of detecting the suction state of the substrate 4 and the like are high.

【0030】また、ブリッジ回路20は、基本的には四
つまたは4群のコンデンサ、高周波電源30および計測
器32で構成することができるので、従来技術に比べて
回路構成が簡単である。しかも、高周波電源30に従来
技術のような高い周波数を必要とせず、また高周波電源
30の周波数変動は原理的にはブリッジ回路20の平衡
状態に殆ど変化を生じさせないので、高周波電源30に
高い周波数安定度を必要としない。従って、ブリッジ回
路20の回路構成が簡単になると共にコスト的にも安く
なる。
Further, since the bridge circuit 20 can basically be constituted by four or four groups of capacitors, the high-frequency power supply 30 and the measuring instrument 32, the circuit constitution is simpler than that of the prior art. In addition, the high frequency power supply 30 does not require a high frequency as in the prior art, and the fluctuation of the frequency of the high frequency power supply 30 causes almost no change in the equilibrium state of the bridge circuit 20 in principle. Does not require stability. Therefore, the circuit configuration of the bridge circuit 20 is simplified and the cost is reduced.

【0031】なお、前述したようにブリッジ回路20
は、静電チャック6上に基板4が無い場合に平衡状態に
なり計測器32の値が0になるように設定しておくのが
好ましく、そのようにすれば、計測器32の調整等が容
易になる。例えば演算増幅器等の組み合わせによって計
測器32を構成した場合でも、単に基板4が無い場合に
ゼロ出力となるように調整すれば済むので、計測器32
のゼロ点調整が容易になる。
As described above, the bridge circuit 20
Is preferably set so that when the substrate 4 is not present on the electrostatic chuck 6, the equilibrium state is established and the value of the measuring instrument 32 becomes 0. In such a case, adjustment of the measuring instrument 32 and the like are performed. It will be easier. For example, even when the measuring device 32 is configured by a combination of an operational amplifier and the like, it is only necessary to adjust the output to zero when the substrate 4 is not present.
Is easy to adjust the zero point.

【0032】また、計測器32の表示を、静電チャック
6上に基板4が無い時を0に設定し、基板4を最大吸着
した時を最大目盛(フルスケール)に設定し、その間を
例えばリニヤスケールで割り振っておくことによって、
静電チャック6上に基板4が無い場合から最大吸着状態
までの静電チャック6の各種の状態を、この計測器32
の表示によって簡単にかつ正確に知ることができる。
The display of the measuring instrument 32 is set to 0 when the substrate 4 is not on the electrostatic chuck 6 and set to the maximum scale (full scale) when the substrate 4 is attracted to the maximum, and the interval between the two is set to, for example, By allocating on the linear scale,
The various states of the electrostatic chuck 6 from the case where the substrate 4 is not on the electrostatic chuck 6 to the maximum suction state are measured by the measuring device 32.
Can be easily and accurately known.

【0033】また、近年では通常は、基板4の表面は厚
さが例えば1000Å〜10000Å程度のSiO2
の酸化膜で覆われており、静電チャック6上に基板4を
最大吸着した時の計測器32の最大出力値は、この酸化
膜の厚さに応じて異なるので、この計測器32の最大出
力値によって、基板4の酸化膜の厚さを処理前に確認す
ることも可能である。
In recent years, the surface of the substrate 4 is usually covered with an oxide film such as SiO 2 having a thickness of, for example, about 1000 to 10000 °. Since the maximum output value of the measuring device 32 differs depending on the thickness of the oxide film, the thickness of the oxide film on the substrate 4 can be confirmed before the processing by the maximum output value of the measuring device 32. .

【0034】更に、図3に示す例のように、静電チャッ
ク6に吸着保持した基板4を、静電チャック6内に埋め
込んだピン50および板ばね52によって接地した状態
で、イオン注入等の処理を施す場合が多い。これは、基
板4の接地は、イオン注入等に伴う基板4の帯電(チャ
ージアップ)を防止する上で効果があるからである。基
板4の表面は上記のように薄い酸化膜(図示省略)で覆
われているけれども、基板4を正常に吸着すれば、通常
はこの薄い酸化膜はピン50の先端部で割られるので、
ピン50の先端部を基板4に接触させて基板4を接地す
ることができる。
Further, as shown in FIG. 3, the substrate 4 adsorbed and held on the electrostatic chuck 6 is grounded by pins 50 and leaf springs 52 embedded in the electrostatic chuck 6 and ion-implanted. Processing is often performed. This is because grounding the substrate 4 is effective in preventing the substrate 4 from being charged (charged up) due to ion implantation or the like. Although the surface of the substrate 4 is covered with a thin oxide film (not shown) as described above, if the substrate 4 is normally adsorbed, the thin oxide film is usually broken at the tip of the pin 50.
The substrate 4 can be grounded by bringing the tip of the pin 50 into contact with the substrate 4.

【0035】上記の場合、ピン50によって基板4が正
常に接地されると、図2中に2点鎖線で示す接地経路5
4が形成され、それによって静電容量C6 が短絡される
ので、コンデンサ24に並列に挿入される静電容量は、
静電容量C5 のみとなり、基板4が接地されていない場
合の約2倍になる。これは、前述したように通常はC5
=C6 であり、コンデンサ24に並列に挿入される静電
容量は、接地経路54が無い場合はC5 6 /(C5
6 )=C5 /2となり、接地経路54がある場合はC
5 となるからである。この静電容量の急変によって、静
電チャック6への基板4の吸着時に、基板4が接地され
ると計測器32の計測値が急増するので、これによって
基板4が正しく接地されたことを検出することも可能で
ある。即ち、ブリッジ回路20を基板4の接地モニタと
して使用することも可能である。
In the above case, when the substrate 4 is properly grounded by the pins 50, the grounding path 5 indicated by a two-dot chain line in FIG.
4 is formed, thereby shorting the capacitance C 6, so that the capacitance inserted in parallel with the capacitor 24 is
Only becomes capacitance C 5, approximately doubles when the substrate 4 is not grounded. This is usually a C 5
= C 6 , and the capacitance inserted in parallel with the capacitor 24 is C 5 C 6 / (C 5 +
C 6) = C 5/2 next, if there is a ground path 54 C
Because it becomes 5 . When the substrate 4 is grounded when the substrate 4 is attracted to the electrostatic chuck 6 due to the sudden change in the capacitance, the measured value of the measuring instrument 32 rapidly increases, thereby detecting that the substrate 4 is correctly grounded. It is also possible. That is, the bridge circuit 20 can be used as a ground monitor for the substrate 4.

【0036】静電チャック6は、上記例のような双極型
に限られるものではなく、電極を1枚有するもの、また
は3枚以上有するものでも良い。例えば、1/3円形状
をした3枚の電極10〜12を有する3極型の静電チャ
ック6を用いる場合の例を図4に示す。この例の場合
も、図1の例の場合と同様、ブリッジ回路20の平衡状
態を乱さないようにするために、吸着用電源14の直流
電源14cから第3の電極12への直流電圧−Vの供給
を、互いに同値の抵抗器44および45を用いて行って
いる。ブリッジ回路20によって基板4の吸着状態等を
検知する作用は図1の例の場合と同様である。静電チャ
ック6が上記のような3極型の場合、吸着用電源14を
対称3相交流電源にしても良い。
The electrostatic chuck 6 is not limited to the bipolar type as in the above example, but may have one electrode or three or more electrodes. For example, FIG. 4 shows an example in which a three-electrode type electrostatic chuck 6 having three electrodes 10 to 12 having a 円 circle shape is used. Also in this example, similarly to the example of FIG. 1, in order not to disturb the equilibrium state of the bridge circuit 20, a DC voltage -V from the DC power supply 14c of the power supply 14 for adsorption to the third electrode 12 is applied. Is supplied using resistors 44 and 45 having the same value. The operation of detecting the suction state or the like of the substrate 4 by the bridge circuit 20 is the same as in the example of FIG. When the electrostatic chuck 6 is of a three-pole type as described above, the suction power supply 14 may be a symmetric three-phase AC power supply.

【0037】また、4枚以上の電極を有する多極型の静
電チャック6の場合は、図1から図4へと回路を増やし
たのと同じ考えでコンデンサ、直流電源、抵抗器等を増
やせば良い。
In the case of a multipolar electrostatic chuck 6 having four or more electrodes, the number of capacitors, DC power supplies, resistors and the like can be increased in the same way as the circuit is increased from FIG. 1 to FIG. Good.

【0038】また、例えば円形をした1枚の電極10を
有する単極型の静電チャック6を用いる場合の例を図5
に示す。この例の場合も、ブリッジ回路20の平衡状態
を乱さないようにするために、吸着用電源14の直流電
源14aから電極10への直流電圧+Vの供給を、互い
に同値の抵抗器41および42を用いて行っている。静
電チャック6がこのような単極型の場合でも、前述した
ような接地用のピン50や、処理時の基板4の表面近傍
に形成されるプラズマ等によって、静電チャック6上の
基板4に対して図5中に2点鎖線で示すように接地経路
56が形成され、電極10と基板4との間に形成される
静電容量はこの接地経路56を経由して、ブリッジ回路
20のコンデンサ24に並列に接続されることになるの
で、図1の例の場合と同様にして、ブリッジ回路20に
よって基板4の吸着状態等を検知することができる。
FIG. 5 shows an example in which a monopolar electrostatic chuck 6 having one circular electrode 10 is used.
Shown in Also in this example, in order not to disturb the equilibrium state of the bridge circuit 20, the supply of the DC voltage + V from the DC power supply 14a of the suction power supply 14 to the electrode 10 is performed by using resistors 41 and 42 having the same value as each other. I am using it. Even when the electrostatic chuck 6 is of such a monopolar type, the substrate 4 on the electrostatic chuck 6 is formed by the grounding pins 50 as described above, plasma formed near the surface of the substrate 4 during processing, and the like. A ground path 56 is formed as shown by a two-dot chain line in FIG. 5, and a capacitance formed between the electrode 10 and the substrate 4 passes through the ground path 56 and Since it is connected in parallel with the capacitor 24, the state of suction of the substrate 4 can be detected by the bridge circuit 20 in the same manner as in the example of FIG.

【0039】[0039]

【発明の効果】以上のようにこの発明によれば、ブリッ
ジ回路を構成する計測器の計測値によって、静電チャッ
ク上の基板の有無やその吸着状態を検知することができ
る。しかも、ブリッジ回路は温度変化等の外乱の影響を
受けにくいので、検知の信頼性および精度が高い。ま
た、ブリッジ回路は一般的に回路構成が簡単であり、し
かもその高周波電源には従来技術のような高い周波数お
よび高い周波数安定度を必要としないので、回路構成が
簡単になると共にコスト的にも安くなる。
As described above, according to the present invention, the presence / absence of the substrate on the electrostatic chuck and the suction state thereof can be detected based on the measurement value of the measuring device constituting the bridge circuit. In addition, since the bridge circuit is less susceptible to disturbances such as temperature changes, detection reliability and accuracy are high. In addition, the bridge circuit generally has a simple circuit configuration, and its high-frequency power supply does not require a high frequency and a high frequency stability as in the related art, so that the circuit configuration is simplified and the cost is reduced. Become cheap.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る基板保持装置の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of a substrate holding device according to the present invention.

【図2】図1中のブリッジ回路周りの等価回路図であ
る。
FIG. 2 is an equivalent circuit diagram around a bridge circuit in FIG.

【図3】接地用のピンを有する静電チャックの一例を部
分的に示す断面図である。
FIG. 3 is a sectional view partially showing an example of an electrostatic chuck having a grounding pin;

【図4】この発明に係る基板保持装置の他の例を示す図
である。
FIG. 4 is a diagram showing another example of the substrate holding device according to the present invention.

【図5】この発明に係る基板保持装置の更に他の例を示
す図である。
FIG. 5 is a view showing still another example of the substrate holding device according to the present invention.

【図6】従来の基板保持装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of a conventional substrate holding device.

【符号の説明】[Explanation of symbols]

4 基板 6 静電チャック 8 絶縁体 10〜12 電極 14 吸着用電源 20 ブリッジ回路 21〜29 コンデンサ 30 高周波電源 32 計測器 Reference Signs List 4 substrate 6 electrostatic chuck 8 insulator 10 to 12 electrode 14 power supply for adsorption 20 bridge circuit 21 to 29 capacitor 30 high frequency power supply 32 measuring instrument

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01J 37/20 H01J 37/20 A H02N 13/00 H02N 13/00 D ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01J 37/20 H01J 37/20 A H02N 13/00 H02N 13/00 D

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体内に1以上の電極を有していて基
板を静電気によって吸着保持する静電チャックと、この
静電チャックの電極に電圧を印加して基板を吸着保持さ
せる吸着用電源とを備える基板保持装置において、電気
的に菱形に接続された複数のコンデンサと、この菱形の
二つの対角部間に高周波を供給する高周波電源と、この
菱形の残り二つの対角部間の電流または電圧を計測する
計測器とを有するブリッジ回路を備えており、かつ前記
静電チャックに基板を近接させたときに当該静電チャッ
クの電極と基板との間に形成される静電容量が前記ブリ
ッジ回路の一辺のコンデンサに並列に接続されるように
構成していることを特徴とする基板保持装置。
1. An electrostatic chuck having one or more electrodes in an insulator and holding a substrate by electrostatic attraction, a suction power supply for applying a voltage to the electrodes of the electrostatic chuck to suck and hold the substrate, and In the substrate holding device comprising: a plurality of capacitors electrically connected in a diamond shape; a high-frequency power supply for supplying a high frequency between two diagonal portions of the diamond shape; and a current between the remaining two diagonal portions of the diamond shape. Or a bridge circuit having a measuring device for measuring voltage, and when a substrate is brought close to the electrostatic chuck, the capacitance formed between the electrode of the electrostatic chuck and the substrate is the capacitance. A substrate holding device configured to be connected in parallel to a capacitor on one side of a bridge circuit.
JP24458997A 1997-08-25 1997-08-25 Substrate holding device Pending JPH1167885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24458997A JPH1167885A (en) 1997-08-25 1997-08-25 Substrate holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24458997A JPH1167885A (en) 1997-08-25 1997-08-25 Substrate holding device

Publications (1)

Publication Number Publication Date
JPH1167885A true JPH1167885A (en) 1999-03-09

Family

ID=17120979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24458997A Pending JPH1167885A (en) 1997-08-25 1997-08-25 Substrate holding device

Country Status (1)

Country Link
JP (1) JPH1167885A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610180B2 (en) 2000-08-01 2003-08-26 Anelva Corporation Substrate processing device and method
CN100424832C (en) * 2005-07-20 2008-10-08 台湾积体电路制造股份有限公司 Method and apparatus for plasma etching
JP2010188500A (en) * 2009-02-20 2010-09-02 Ihi Corp Method for confirming workpiece mounted condition
WO2010140649A1 (en) * 2009-06-04 2010-12-09 株式会社 日立ハイテクノロジーズ Charged particle beam device and evaluation method using the charged particle beam device
JP2011155162A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Power supply circuit for electrostatic chuck, and electrostatic chuck device
JP2012511831A (en) * 2008-12-10 2012-05-24 アクセリス テクノロジーズ, インコーポレイテッド Release of wafer from electrostatic chuck
JP2015185528A (en) * 2014-03-26 2015-10-22 株式会社アドバンテスト Stage device and electron beam device
JP2015185529A (en) * 2014-03-26 2015-10-22 株式会社アドバンテスト Stage device and electron beam device
JP2016040805A (en) * 2014-08-13 2016-03-24 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing apparatus
JP2019125603A (en) * 2018-01-11 2019-07-25 株式会社アルバック Sucking method
WO2020003746A1 (en) * 2018-06-28 2020-01-02 アルバックテクノ株式会社 Power supply device for electrostatic chuck, and substrate management method
US11282732B2 (en) 2014-02-07 2022-03-22 Trek, Inc. System and method for clamping a work piece
JP2022519254A (en) * 2019-02-05 2022-03-22 アプライド マテリアルズ インコーポレイテッド Substrate support for mask chucking for deposition process
US11967516B2 (en) 2020-01-17 2024-04-23 Applied Materials, Inc. Substrate support for chucking of mask for deposition processes

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610180B2 (en) 2000-08-01 2003-08-26 Anelva Corporation Substrate processing device and method
CN100424832C (en) * 2005-07-20 2008-10-08 台湾积体电路制造股份有限公司 Method and apparatus for plasma etching
JP2012511831A (en) * 2008-12-10 2012-05-24 アクセリス テクノロジーズ, インコーポレイテッド Release of wafer from electrostatic chuck
JP2010188500A (en) * 2009-02-20 2010-09-02 Ihi Corp Method for confirming workpiece mounted condition
WO2010140649A1 (en) * 2009-06-04 2010-12-09 株式会社 日立ハイテクノロジーズ Charged particle beam device and evaluation method using the charged particle beam device
JP2010282825A (en) * 2009-06-04 2010-12-16 Hitachi High-Technologies Corp Charged particle beam device and evaluation method using the same
US8653455B2 (en) 2009-06-04 2014-02-18 Hitachi High-Technologies Corporation Charged particle beam device and evaluation method using the charged particle beam device
JP2011155162A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Power supply circuit for electrostatic chuck, and electrostatic chuck device
US11282732B2 (en) 2014-02-07 2022-03-22 Trek, Inc. System and method for clamping a work piece
JP2015185528A (en) * 2014-03-26 2015-10-22 株式会社アドバンテスト Stage device and electron beam device
JP2015185529A (en) * 2014-03-26 2015-10-22 株式会社アドバンテスト Stage device and electron beam device
JP2016040805A (en) * 2014-08-13 2016-03-24 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing apparatus
JP2019125603A (en) * 2018-01-11 2019-07-25 株式会社アルバック Sucking method
WO2020003746A1 (en) * 2018-06-28 2020-01-02 アルバックテクノ株式会社 Power supply device for electrostatic chuck, and substrate management method
JPWO2020003746A1 (en) * 2018-06-28 2021-03-11 アルバックテクノ株式会社 Power supply device and board management method for electrostatic chuck
US11257702B2 (en) 2018-06-28 2022-02-22 Ulvac Techno, Ltd. Power supply apparatus for electrostatic chuck and substrate control method
JP2022519254A (en) * 2019-02-05 2022-03-22 アプライド マテリアルズ インコーポレイテッド Substrate support for mask chucking for deposition process
US11967516B2 (en) 2020-01-17 2024-04-23 Applied Materials, Inc. Substrate support for chucking of mask for deposition processes

Similar Documents

Publication Publication Date Title
JPS5979545A (en) Electrostatic chucking device
JPH1167885A (en) Substrate holding device
EP0890189B1 (en) Dynamic feedback electrostatic wafer chuck
KR100543319B1 (en) A method and an apparatus for offsetting plasma bias voltage in bipolar electrostatic chucks
US5325261A (en) Electrostatic chuck with improved release
US5737175A (en) Bias-tracking D.C. power circuit for an electrostatic chuck
KR101612091B1 (en) Method for inspecting electrostatic chuck, and electrostatic chuck apparatus
JP4169792B2 (en) Unbalanced bipolar electrostatic chuck power supply device and method
KR102066546B1 (en) Apparatus and method for plasma processing
US6625003B2 (en) Method and apparatus for balancing an electrostatic force produced by an electrostatic chuck
JP2001148374A (en) Capacitive probe for in situ measuring dc bias voltage of wafer
JPH06204325A (en) Electrostatic attraction device and its method
WO2000035003A1 (en) Apparatus and method for actively controlling surface potential of an electrostatic chuck
KR20220024621A (en) High Side Current Monitor
JP2695436B2 (en) Deterioration detection circuit for electrostatic chuck
US20170162415A1 (en) System And Method For Clamping A Work Piece
JPH1027566A (en) Substrate holding device
JPH08191099A (en) Electrostatic chuck and its manufacture
GB2293689A (en) Electrostatic chuck
JP2010199244A (en) Aligner and method of manufacturing device
US9082805B2 (en) System and method for testing an electrostatic chuck
JPH07130827A (en) Electrostatic wafer chuck
JP4579206B2 (en) Detachment state determination method and vacuum processing apparatus
KR20230008342A (en) Power Supply Circuit for Electrostatic Chuck of Support Apparatus
JP4856120B2 (en) Conductive pattern inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109