JPH07130827A - Electrostatic wafer chuck - Google Patents

Electrostatic wafer chuck

Info

Publication number
JPH07130827A
JPH07130827A JP27516293A JP27516293A JPH07130827A JP H07130827 A JPH07130827 A JP H07130827A JP 27516293 A JP27516293 A JP 27516293A JP 27516293 A JP27516293 A JP 27516293A JP H07130827 A JPH07130827 A JP H07130827A
Authority
JP
Japan
Prior art keywords
voltage
wafer
electrode plate
electrostatic
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27516293A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasada
勝弘 笹田
Shinobu Otsuka
忍 大塚
Osamu Yamada
理 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27516293A priority Critical patent/JPH07130827A/en
Publication of JPH07130827A publication Critical patent/JPH07130827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To find whether a wafer is chucked or not positively and readily by providing a power supply part, and providing a detecting part, which detects the change in flowing AC current or AC voltage when the AC voltage is applied into an electrostatic chuck from the power supply. CONSTITUTION:A function, which outputs the AC voltage together with the high DC voltage in the overlapped pattern into a power supply part 1, is provided. The power supply part 1 applies the voltage into a means for measuring the capacitance of the gripper of an electrostatic chuck constituted of an electrode plate 2, a dielectric film 4 and a material 5, e.g., into the electrode plate 2. A detector 6, which detects the AC signal, i.e., the AC voltage or the AC current, outputted as a result of the application of the AC voltage into the gripper, is provided. When the frequency of the AC voltage is set at somewhat high frequency, the resistance R among the material 5, the dielectric film 4 and the electrode 2 can be disregarded, and only the capacitance C acts. When the AC current is detected with an ammeter 6 at this time, the capacitance C is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空中でウエーハを保
持,搬送する事を目的とした静電吸着装置に関し、特に
静電吸着装置にウエーハが置かれているか否かを検出す
ることが必要な半導体製造装置、及び半導体評価装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chucking device for holding and carrying a wafer in a vacuum, and more particularly to detecting whether or not a wafer is placed in the electrostatic chucking device. The present invention relates to necessary semiconductor manufacturing equipment and semiconductor evaluation equipment.

【0002】[0002]

【従来の技術】従来より静電吸着装置に関しては、例え
ば、特開昭58−114437号公報,特開昭59−79545号公
報,特願平4−308442号公報がある。
2. Description of the Related Art Conventionally, as electrostatic attraction devices, there are, for example, JP-A-58-114437, JP-A-59-79545, and JP-A-4-308442.

【0003】[0003]

【発明が解決しようとする課題】半導体製造,評価装置
では、静電吸着装置を用いてウエーハを吸着して保持や
搬送をするが、この場合ウエーハが確実に吸着されてい
るか否かを確認することが重要である。ウエーハが正し
く吸着されていなければ、製造装置はウエーハの反りの
矯正ができないために加工寸法不良を生じ、また搬送装
置ではウエーハが脱落して破損を招く。このために、吸
着状態を確認する手段が必要となる。
In a semiconductor manufacturing / evaluating apparatus, an electrostatic adsorption device is used to adsorb and hold or convey a wafer. In this case, it is confirmed whether or not the wafer is adsorbed with certainty. This is very important. If the wafer is not adsorbed correctly, the manufacturing apparatus cannot correct the warp of the wafer, resulting in defective processing dimensions, and the wafer is dropped in the transfer apparatus, resulting in damage. For this reason, a means for confirming the adsorption state is required.

【0004】しかし、特開昭58−114437号公報に挙げら
れる開示例では、吸着装置によりウエーハが確実に吸
着,保持されたか否かを確認する手段については考慮さ
れていなかった。
However, in the disclosed example disclosed in Japanese Patent Application Laid-Open No. 58-114437, there is no consideration of means for confirming whether or not the wafer is surely sucked and held by the suction device.

【0005】また特開昭59−79545 号公報に示される開
示例では、吸着の確認手段として静電吸着装置を構成す
る電源回路に流れる電流値によって確認を行っている
が、ウエーハは製造プロセスを経るにしたっがて、吸着
面であるウエーハの裏面に酸化膜等の絶縁膜が形成さ
れ、この絶縁膜のために電流値が極度に低下してモニタ
ーが不可能になる問題があった。具体的に、この方法に
よる発明者の実験の一例では、新品のベアウエーハで電
流値が2μA程度であったものが、裏面に酸化膜のある
ウエーハでは0.2μA 程度になり、この値はウエーハ
を載せない場合の電流値にほぼ等しく、モニターは不可
能である。
Further, in the disclosed example disclosed in Japanese Patent Laid-Open No. 59-79545, the confirmation is made by the current value flowing in the power supply circuit constituting the electrostatic attraction device as the attraction confirmation means. Over time, an insulating film such as an oxide film is formed on the back surface of the wafer, which is the adsorption surface, and this insulating film causes a problem that the current value is extremely reduced and monitoring becomes impossible. Specifically, in an example of the inventor's experiment by this method, the current value was about 2 μA for a new bare wafer, but it was about 0.2 μA for a wafer having an oxide film on the back surface, and this value was It is almost equal to the current value when it is not mounted and cannot be monitored.

【0006】また特願平4−308442 号公報に示される開
示例では、静電吸着装置内部に複数個の距離センサーを
埋め込み、各センサーの出力値から吸着状態を判断する
ものであるが、構造が複雑で、コスト的に高くなる欠点
があった。
Further, in the disclosed example disclosed in Japanese Patent Application No. 4-308442, a plurality of distance sensors are embedded in the electrostatic adsorption device and the adsorption state is judged from the output value of each sensor. However, it has the drawback of being complicated and costly.

【0007】本発明の目的は、ウエーハを吸着したか否
かを確実に、かつ容易に知ることのできる静電吸着装置
を提供することにある。
An object of the present invention is to provide an electrostatic chucking device which can surely and easily know whether or not a wafer has been sucked.

【0008】[0008]

【課題を解決するための手段】上記目的は、電極板,誘
電体,被吸着物で構成される静電吸着装置の吸着部の静
電容量を測定する手段、例えば、電極板に電圧を印加す
る電源部に高圧の直流電圧とともに交流電圧を重畳して
出力する機能を設け、この交流電圧が吸着部に印加され
た結果出力される交流信号(交流電圧または交流電流)
を検知する検出装置を設けることにより達成される。
Means for Solving the Problems The above-mentioned object is to measure the electrostatic capacity of an adsorption portion of an electrostatic adsorption device composed of an electrode plate, a dielectric and an object to be adsorbed, for example, applying a voltage to the electrode plate. The power supply unit is equipped with a function to superimpose and output the AC voltage together with the high-voltage DC voltage, and the AC signal (AC voltage or AC current) output as a result of this AC voltage being applied to the adsorption unit.
This is achieved by providing a detection device that detects

【0009】[0009]

【作用】図1(a)に、本発明の原理図を示す。この図
は、単極型の静電吸着装置について本発明の原理を説明
したものである。
The principle of the present invention is shown in FIG. This figure illustrates the principle of the present invention for a monopolar electrostatic adsorption device.

【0010】静電吸着装置は、被吸着物体と電極板の間
に絶縁性の誘電体膜を介して高電圧を印加し、このとき
被吸着物と電極板との間に生じる静電気的な吸引力を利
用して被吸着物を電極板上に吸着保持する装置である。
The electrostatic attraction device applies a high voltage between the object to be attracted and the electrode plate through an insulating dielectric film, and at this time, the electrostatic attraction force generated between the object to be attracted and the electrode plate is applied. This is a device that utilizes the adsorption target to adsorb and hold the adsorption target on the electrode plate.

【0011】電源1より電極板2に直流高電圧が印加さ
れると、誘電体膜4の内部に誘電分極を生じ、誘電体膜
4の電極板側に印加した電圧の極性と反対の極性を持つ
電荷分布σを生じる。これに伴って誘電体膜4の反対の
面には同じ容量で逆極性を持つ電荷分布−σを生じ、被
吸着物5の表面には電荷分布σを生じる。このとき誘電
体膜4と被吸着物5に生じた電荷分布により静電気的な
吸引力(Johssen− Rahbeck効果)が発生し、被吸着物
5は誘電体膜4に吸着される。ここで発生する単位面積
あたりの吸着力fは、真空の誘電率をε0,誘電体の誘
電率をε1,被吸着物と電極間の電位差をV,誘電体の
厚さをdとすれば、
When a direct current high voltage is applied to the electrode plate 2 from the power source 1, a dielectric polarization is generated inside the dielectric film 4, and a polarity opposite to that of the voltage applied to the electrode plate side of the dielectric film 4 is generated. A charge distribution σ that has is generated. Along with this, a charge distribution −σ having the same capacity and opposite polarity is generated on the opposite surface of the dielectric film 4, and a charge distribution σ is generated on the surface of the adsorption target 5. At this time, an electrostatic attraction force (Johssen-Rahbeck effect) is generated due to the charge distribution generated in the dielectric film 4 and the attracted substance 5, and the attracted substance 5 is attracted to the dielectric film 4. The adsorption force f generated here per unit area can be calculated by dividing the dielectric constant of a vacuum by ε 0 , the dielectric constant of a dielectric by ε 1 , the potential difference between an object to be attracted and an electrode by V, and the thickness of the dielectric by d. If

【0012】[0012]

【数1】 [Equation 1]

【0013】である。[0013]

【0014】図1(b)に静電吸着装置の等価回路を示
す。Vは電極板と被吸着物との間に印加された電圧、C
a,Raは被吸着物と誘電体間の容量値,抵抗値であり、
b,Rb は誘電体と電極板間の容量値,抵抗値であ
る。従来方式では、ウエーハを吸着したか否かの確認に
静電吸着装置を流れる電流値をモニターした。被吸着物
がベアのウエーハの場合、ウエーハの抵抗率がたかだか
10ΩcmでありRa は無視できることからCa ,Cb
b に依存するが、定常状態では誘電体の抵抗値である
b のみに依存して流れる。吸着状態が不十分であった
り、ウエーハが傾いているとウエーハと誘電体間の抵抗
値Ra が無視できなくなり、電流が流れなくなる。とこ
ろがIC製造行程においてゲート酸化膜の製作で用いら
れるような熱拡散酸化膜生成処理を経たウエーハでは、
ウエーハの裏面にも絶縁膜の酸化膜が生成されるが、こ
のウエーハではウエーハと誘電体間の抵抗値Ra が非常
に大きくなって電流が流れず、電流値によるモニターが
不可能になる。
FIG. 1B shows an equivalent circuit of the electrostatic attraction device. V is the voltage applied between the electrode plate and the object to be adsorbed, C
a and Ra are the capacitance value and resistance value between the adsorbent and the dielectric,
C b and R b are the capacitance value and resistance value between the dielectric and the electrode plate. In the conventional method, the current value flowing through the electrostatic adsorption device was monitored to confirm whether or not the wafer was adsorbed. If adsorbate is bare wafer, C a since the resistivity of the wafer is negligible is R a at most 10Ωcm, C b,
Although it depends on R b , in the steady state, the flow depends only on R b which is the resistance value of the dielectric. If the adsorption state is insufficient or the wafer is tilted, the resistance value R a between the wafer and the dielectric cannot be ignored and the current will not flow. However, in a wafer that has undergone a thermal diffusion oxide film generation process used in the fabrication of gate oxide films in the IC manufacturing process,
While on the back surface of the wafer oxide film of the insulating film is produced, the resistance value R a between this wafer wafer and dielectric current does not flow very large, it becomes impossible to monitor by the current value.

【0015】印加電圧Vが印加された瞬間に流れる過渡
電流値をモニターする方法もあるが、この方法でも電流
値が小さい上に、酸化膜付きのウエーハでは電流値が低
下し、しかも過渡電流であるために検出が困難であるこ
とから、吸着状態の判定がしづらい。一例では、ベアの
ウエーハで過渡電流のピーク値が10μA程度,酸化膜
付きのウエーハで5μA程度である。
There is also a method of monitoring the transient current value flowing at the moment when the applied voltage V is applied. However, this method also has a small current value, and the wafer with an oxide film has a lower current value, and the transient current Since it is difficult to detect because of the existence, it is difficult to determine the adsorption state. In one example, the peak value of the transient current is about 10 μA for a bare wafer and about 5 μA for a wafer with an oxide film.

【0016】本発明の静電吸着装置では、電極板2に電
圧を印加する電源1において高圧の直流電圧とともに交
流電圧を重畳して出力する機能を設け、交流電圧が吸着
部に印加されることにより出力される交流信号(交流電
圧または交流電流)を検知する電流計(検出装置)6を
設ける。図1(b)の等価回路において、ウエーハの裏
面に酸化膜があっても、膜厚が数10Åから数1000
Åであるために、交流回路上では図1(c)のように見
なせる。交流電圧の周波数をある程度高い周波数にとれ
ば被吸着物5,誘電体膜4,電極板2間の抵抗Rが無視
できることから静電容量Cのみが作用するとみなせ、こ
のとき電流計6によって交流電流iを検出すれば、静電
容量CはC=i/(dV/dt)により求められる。従
って、印加する交流電圧Vを一定にして交流電流iを検
出すれば電流値iの大小で静電容量の大小が求められ、
吸着状態が良好であると静電容量が大きいことから吸着
状態をモニターできる。
In the electrostatic adsorption device of the present invention, the power source 1 for applying a voltage to the electrode plate 2 is provided with a function of superimposing an AC voltage together with a high-voltage DC voltage and outputting the same, and the AC voltage is applied to the adsorption portion. An ammeter (detection device) 6 for detecting an AC signal (AC voltage or AC current) output by is provided. In the equivalent circuit of FIG. 1B, even if there is an oxide film on the back surface of the wafer, the film thickness is from several tens of to several thousand.
Since it is Å, it can be regarded as shown in FIG. If the frequency of the AC voltage is set to a high frequency to some extent, the resistance R between the object to be adsorbed 5, the dielectric film 4, and the electrode plate 2 can be ignored, so it can be considered that only the electrostatic capacitance C acts. When i is detected, the electrostatic capacitance C can be obtained by C = i / (dV / dt). Therefore, if the applied AC voltage V is fixed and the AC current i is detected, the magnitude of the current value i can be used to determine the magnitude of the electrostatic capacity.
If the adsorption state is good, the electrostatic capacity is large, so the adsorption state can be monitored.

【0017】図2に、別の検出方法の例を示す。電源1
の交流電圧Vは静電容量Cの吸着部に印加される。電流
計6で検出される電圧は、電流計6の入力側の負荷イン
ピーダンスをZとすれば、交流電圧Vが伝達関数C・Z
・s/(C・Z・s+1)で変換された電圧である。図2
(b)に示すように、交流電圧Vとして角周波数ω(1
/2πf,f:交流電圧の周波数)の交流を入力した場
合、吸着部の静電容量Cが大きくなれば電流計6で検出
される電圧値は高くなり、ウエーハの有無をモニターす
ることができる。
FIG. 2 shows an example of another detection method. Power supply 1
AC voltage V is applied to the adsorption portion of the electrostatic capacitance C. Assuming that the load impedance on the input side of the ammeter 6 is Z, the voltage detected by the ammeter 6 is the AC voltage V of the transfer function C · Z.
The voltage converted by s / (CZZs + 1). Figure 2
As shown in (b), the angular frequency ω (1
When an alternating current of (/ 2πf, f: frequency of alternating voltage) is input, the voltage value detected by the ammeter 6 increases as the electrostatic capacitance C of the adsorbing portion increases, and the presence or absence of a wafer can be monitored. .

【0018】上記に説明した原理は、双極型でも同様に
適用できる。
The principle described above can be similarly applied to the bipolar type.

【0019】図3(a)に双極型の場合の原理図を、ま
た図3(b)に等価回路図を示す。Ca ,Ra は被吸着
物と誘電体間の容量値,抵抗値であり、Cb ,Rb は誘
電体と電極板間の容量値,抵抗値であり、Rw は被吸着
物の内部抵抗値である。
FIG. 3A shows a principle diagram of the bipolar type, and FIG. 3B shows an equivalent circuit diagram. C a and R a are the capacitance and resistance between the adsorbate and the dielectric, C b and R b are the capacitance and resistance between the dielectric and the electrode plate, and R w is the adsorbate. The internal resistance value.

【0020】電流検出により吸着状態をモニターする方
法について、双極型では誘電体間のRb の抵抗により流
れる定常電流と、被吸着物に誘電分極により生じた電荷
が被吸着物内部を流れることにより電流が生じるが、ウ
エーハの裏面に酸化膜がある場合はRa が大きくなり被
吸着物内部を流れる電流が生じないため、モニターする
ことができない。しかし静電容量を測定する方法では、
裏面に酸化膜がある場合でも酸化膜厚が薄いことから無
視でき、単極型と同様にモニターすることが可能であ
る。
Regarding the method of monitoring the adsorption state by current detection, in the bipolar type, the steady current flowing due to the resistance of Rb between the dielectrics and the charge generated by the dielectric polarization in the adsorption target flow inside the adsorption target. An electric current is generated, but when an oxide film is present on the back surface of the wafer, Ra becomes large and no electric current flows inside the object to be adsorbed, so that it cannot be monitored. However, in the method of measuring capacitance,
Even if there is an oxide film on the back surface, it can be ignored because the oxide film thickness is thin, and it is possible to monitor like the monopolar type.

【0021】以上説明した静電吸着装置について、誘電
体膜4は従来より材料として絶縁膜であるAl23やS
iO2 が用いられているが、半導体性の誘電体膜、例え
ばSiCを用いれば抵抗率が低く、非誘電率が高い上に
絶縁耐圧が高いために吸着力を高くでき、着脱時間は短
くして、機械的な強度は高くできる利点がある。
In the electrostatic attraction device described above, the dielectric film 4 is conventionally made of an insulating film such as Al 2 O 3 or S.
Although iO 2 is used, if a semiconductor dielectric film such as SiC is used, the resistivity is low, the non-dielectric constant is high, and the dielectric strength is high, so the adsorption force can be increased, and the attachment / detachment time can be shortened. Therefore, there is an advantage that the mechanical strength can be increased.

【0022】[0022]

【実施例】図4は本発明の実施例であり、これは双極型
静電吸着装置を用いたウエーハホールダの例である。
FIG. 4 shows an embodiment of the present invention, which is an example of a wafer holder using a bipolar electrostatic chuck.

【0023】図4において、11は電源、12,13は
双極型の電極板、14は誘電体膜、15は電流計、16
はウエーハ、17は絶縁用スペーサ、18はホールダベ
ースである。
In FIG. 4, 11 is a power source, 12 and 13 are bipolar electrode plates, 14 is a dielectric film, 15 is an ammeter, and 16
Is a wafer, 17 is an insulating spacer, and 18 is a holder base.

【0024】電源11は直流電圧発生部31,交流電圧
発生部32、及び直流/交流電圧重畳部33からなり、
直流/交流電圧重畳部33は直流電圧発生部31で発生
した直流電圧と交流電圧発生部32で発生した交流電圧
を重畳して、電極板12,13に印加する。直流電圧は
吸着力を得るために印加する電圧であり、通常数100
Vから1kV程度の電圧にする。電極板12,13に印
加する電圧は+でも−でも良いが、+と−の同電圧を印
加するとウエーハにかかる電位が0V(GND電位)となり
ウエーハ上の素子に対する静電破壊の面で安全であるこ
とから、通常は両電極に+V,−Vを加える。吸着力は
電極間に印加する電位差に依存し、電位差の大きい方が
吸着力が大きい。誘電体膜に半導体性誘電膜を用いた場
合、±200Vの印加電圧で100g/cm2 程度の吸着
力を発生する。交流電圧は静電容量を測定するための信
号であり、通常数kHz〜数10kHzで数V〜数10
Vの交流電圧とする。電極12,13はホールダベース
18に絶縁用スペーサ17を介して取り付けられ、その
上に誘電体膜14を積層する。誘電体膜には半導体性誘
電体膜、例えば比抵抗率109〜1011 のSiCを用い
る。電流計15はコンデンサ34,整流回路部35,ロ
ーパスフィルター部36からなり、コンデンサ34は吸
着部から出力された電圧の交流成分のみを取り出し、整
流回路35で直流の脈流に整流したのち、ローパスフィ
ルター部36により脈流分を平滑化して直流電圧を得
る。この直流電圧値が吸着部の静電容量に関係する電圧
値であり、この電圧値の大小比較で吸着状態を判断す
る。発明者の実験の一例では、ベアのシリコンウエーハ
で出力値が約30mV,ウエーハを吸着していない状態
で約10mV,裏面に酸化膜のあるシリコンウエーハで
出力値が同じく約30mVであり、シリコンウエーハの
状態に係らずモニターが可能である。
The power supply 11 comprises a DC voltage generator 31, an AC voltage generator 32, and a DC / AC voltage superimposing unit 33,
The DC / AC voltage superimposing unit 33 superimposes the DC voltage generated by the DC voltage generating unit 31 and the AC voltage generated by the AC voltage generating unit 32, and applies the superimposed voltage to the electrode plates 12 and 13. The DC voltage is a voltage applied to obtain the attraction force, and is usually several hundreds.
The voltage is set to about 1 kV from V. The voltage applied to the electrode plates 12 and 13 may be + or −, but if the same voltage of + and − is applied, the potential applied to the wafer becomes 0 V (GND potential) and it is safe in terms of electrostatic breakdown to the elements on the wafer. Therefore, + V and -V are usually applied to both electrodes. The attraction force depends on the potential difference applied between the electrodes, and the greater the potential difference, the greater the attraction force. When a semiconductor dielectric film is used as the dielectric film, an attracting force of about 100 g / cm 2 is generated at an applied voltage of ± 200V. The AC voltage is a signal for measuring the electrostatic capacity, and is usually several kHz to several tens kHz and several V to several tens.
The AC voltage is V. The electrodes 12 and 13 are attached to a holder base 18 via an insulating spacer 17, and a dielectric film 14 is laminated thereon. A semiconductor dielectric film, for example, SiC having a specific resistance of 10 9 to 10 11 is used as the dielectric film. The ammeter 15 is composed of a capacitor 34, a rectifier circuit unit 35, and a low-pass filter unit 36. The capacitor 34 takes out only the AC component of the voltage output from the adsorption unit, rectifies it into a DC pulsating flow by the rectifier circuit 35, and then the low-pass filter. The pulsating flow is smoothed by the filter unit 36 to obtain a DC voltage. This DC voltage value is a voltage value related to the electrostatic capacity of the adsorption unit, and the adsorption state is determined by comparing the voltage values. In an example of an experiment by the inventor, an output value of a bare silicon wafer is about 30 mV, an output value of about 10 mV without adsorbing the wafer, and an output value of about 30 mV on a silicon wafer having an oxide film on the back surface. It is possible to monitor regardless of the state.

【0025】図5は本発明の第2の実施例であり、単極
型の吸着装置をウエーハ用搬送アームとして実施した例
である。
FIG. 5 shows a second embodiment of the present invention, which is an example in which a monopolar adsorption device is used as a wafer transfer arm.

【0026】図5において、11は電源、12は単極型
の電極板、14は誘電体膜、15は電流計、16はウエ
ーハ、19はウエーハに導通を取るための針状電極、2
0はアーム駆動部、21はCPU、37はアームベース
である。
In FIG. 5, 11 is a power source, 12 is a unipolar electrode plate, 14 is a dielectric film, 15 is an ammeter, 16 is a wafer, 19 is a needle electrode for conducting to the wafer, 2
Reference numeral 0 is an arm drive unit, 21 is a CPU, and 37 is an arm base.

【0027】電源11で発生した電圧は、電極板12に
印加される。通常、単極型静電吸着では電極板12に数
100V〜1kVの電圧が印加され、ウエーハ16は針
状電極19によりGND電位にされる。針状電極19は
板バネ38を介してアームベース37に固定される。
The voltage generated by the power source 11 is applied to the electrode plate 12. Normally, in the unipolar electrostatic adsorption, a voltage of several 100 V to 1 kV is applied to the electrode plate 12, and the wafer 16 is set to the GND potential by the needle electrode 19. The needle electrode 19 is fixed to the arm base 37 via a leaf spring 38.

【0028】CPU21は、搬送アームにウエーハが置
かれると電源11より直流電圧に交流電圧が重畳した電
圧を印加する。電流計15により交流電流を測定し、ウ
エーハが吸着されたか否かを確認する。ウエーハがない
場合や、ウエーハがあっても斜めにおかれた場合には電
流値が低いため、エラーと判断して処理を中止する。ウ
エーハがあると判断した場合には、CPU21よりアー
ム駆動部20を制御してアームを駆動する。駆動後、再
度電流計15の出力を確認してウエーハがアーム上にあ
ることを確認して、電源11の電圧を切り、処理を終了
する。
When the wafer is placed on the transfer arm, the CPU 21 applies a voltage obtained by superimposing an AC voltage on a DC voltage from the power supply 11. The alternating current is measured by the ammeter 15 and it is confirmed whether or not the wafer is adsorbed. If there is no wafer or if there is a wafer and it is placed diagonally, the current value is low, so it is judged as an error and the processing is stopped. When it is determined that there is a wafer, the CPU 21 controls the arm drive unit 20 to drive the arm. After driving, the output of the ammeter 15 is confirmed again to confirm that the wafer is on the arm, the voltage of the power supply 11 is cut off, and the process is ended.

【0029】また搬送アームが停電等により停止した後
の自動復帰処理では、電源11より電圧を印加し、電流
計15により交流電流を測定してウエーハがアーム上に
あるか否かを確認する。ウエーハがアーム上にある場合
には返却処理動作を行い、自動復帰を完了する。
In the automatic recovery process after the transfer arm is stopped due to a power failure or the like, a voltage is applied from the power supply 11 and an alternating current is measured by the ammeter 15 to confirm whether or not the wafer is on the arm. When the wafer is on the arm, the return processing operation is performed and the automatic return is completed.

【0030】[0030]

【発明の効果】本発明によれば、静電吸着装置上でウエ
ーハが吸着,保持されたか否を、ウエーハの裏面の条件
によらず確実に、かつ簡便に検出することができる。
According to the present invention, whether or not a wafer is adsorbed and held on the electrostatic adsorption device can be detected reliably and simply regardless of the condition of the back surface of the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明の第2の原理図である。FIG. 2 is a second principle diagram of the present invention.

【図3】本発明の第3の原理図である。FIG. 3 is a third principle diagram of the present invention.

【図4】本発明の実施例を示す図である。FIG. 4 is a diagram showing an example of the present invention.

【図5】本発明の第2の実施例を示す図である。FIG. 5 is a diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11…電源、2,3,12,13…電極板、4,1
4…誘電体膜、5…被吸着物、6,15…電流計、14
…誘電体膜、16…ウエーハ、17…絶縁スペーサ、1
8…ホールダベース、19…針状電極、20…アーム駆
動部、21…CPU、31…直流電圧発生部、32…交
流電圧発生部、33…直流/交流電圧重畳部、35…整
流回路、36…ローパスフィルター、38…板バネ。
1, 11 ... Power source, 2, 3, 12, 13 ... Electrode plate, 4, 1
4 ... Dielectric film, 5 ... Object to be adsorbed, 6, 15 ... Ammeter, 14
... Dielectric film, 16 ... Wafer, 17 ... Insulating spacer, 1
8 ... Holder base, 19 ... Needle electrode, 20 ... Arm drive part, 21 ... CPU, 31 ... DC voltage generation part, 32 ... AC voltage generation part, 33 ... DC / AC voltage superposition part, 35 ... Rectifier circuit, 36 ... Low-pass filter, 38 ... Leaf spring.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電極板と、該電極板の表面に積層された誘
電体膜とからなり、該電極板に電圧を印加して非吸着物
を吸着する静電吸着装置において、 直流電圧と交流電圧を重畳して印加できるように直流電
源部と交流電源部からなる電源と、該電源から該静電吸
着装置に交流電圧が印加されたときに流れる交流電流ま
たは交流電圧の変化を検出する検出器を設けたことを特
徴とするウエーハ静電吸着装置。
1. An electrostatic attraction device comprising an electrode plate and a dielectric film laminated on the surface of the electrode plate, wherein a voltage is applied to the electrode plate to adsorb non-adsorbed substances. A power supply including a DC power supply unit and an AC power supply unit so that voltages can be superimposed and applied, and detection for detecting a change in an AC current or an AC voltage flowing when the AC voltage is applied from the power supply to the electrostatic adsorption device. An electrostatic adsorption device for wafers, characterized by being provided with a container.
【請求項2】請求項1において、該電極板を2またはそ
れ以上に分割し、分割した電極板の間に電位差を与える
ことによって該誘電体と被吸着物を吸着することを特徴
としたウエーハ静電吸着装置。
2. A wafer electrostatic device according to claim 1, wherein the electrode plate is divided into two or more parts, and a potential difference is applied between the divided electrode plates to adsorb the dielectric substance and an object to be adsorbed. Adsorption device.
【請求項3】請求項1において、該電極板が一枚の平板
でなり、非吸着物を任意の電位に導通するための針状の
電極を設けることにより、該電極板と被吸着物間に電位
差を生じさせて該誘電体と被吸着物を吸着することを特
徴としたウエーハ静電吸着装置。
3. The electrode plate according to claim 1, wherein the electrode plate is a single flat plate, and a needle-like electrode for conducting a non-adsorbed substance to an arbitrary potential is provided, thereby providing a space between the electrode plate and the attracted substance. An electrostatic chucking device for a wafer, wherein a dielectric potential and an object to be attracted are attracted to each other by causing a potential difference between the electrodes.
【請求項4】請求項1から請求項3のいずれか1項にお
いて、該誘電体膜を半導体性の誘電体材料で形成するこ
とにより、大吸着力の発生と非吸着物の瞬間着脱を可能
にしたことを特徴とするウエーハ静電吸着装置。
4. The method according to any one of claims 1 to 3, wherein the dielectric film is made of a semiconductor dielectric material, and a large attractive force can be generated and a non-adsorbed material can be instantly attached / detached. Wafer electrostatic adsorption device characterized in that
JP27516293A 1993-11-04 1993-11-04 Electrostatic wafer chuck Pending JPH07130827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27516293A JPH07130827A (en) 1993-11-04 1993-11-04 Electrostatic wafer chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27516293A JPH07130827A (en) 1993-11-04 1993-11-04 Electrostatic wafer chuck

Publications (1)

Publication Number Publication Date
JPH07130827A true JPH07130827A (en) 1995-05-19

Family

ID=17551543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27516293A Pending JPH07130827A (en) 1993-11-04 1993-11-04 Electrostatic wafer chuck

Country Status (1)

Country Link
JP (1) JPH07130827A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117585A1 (en) * 2008-03-20 2009-09-24 Novellus Systems, Inc. Electrostatic chuck assembly with capacitive sense feature, and related operating method
WO2010041409A1 (en) * 2008-10-07 2010-04-15 株式会社アルバック Substrate managing method
JP2010123810A (en) * 2008-11-20 2010-06-03 Ulvac Japan Ltd Substrate supporting device and substrate temperature control method
JP2011155162A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Power supply circuit for electrostatic chuck, and electrostatic chuck device
WO2011125292A1 (en) * 2010-04-02 2011-10-13 株式会社アルバック Sputtering apparatus and sputtering method
CN111918605A (en) * 2018-03-29 2020-11-10 创意科技股份有限公司 Suction pad

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515856A (en) * 2008-03-20 2011-05-19 ノベラス システムズ インコーポレイテッド Electrostatic chuck assembly having capacitance sensing function and operation method thereof
WO2009117585A1 (en) * 2008-03-20 2009-09-24 Novellus Systems, Inc. Electrostatic chuck assembly with capacitive sense feature, and related operating method
JP5232868B2 (en) * 2008-10-07 2013-07-10 株式会社アルバック Board management method
CN102177578A (en) * 2008-10-07 2011-09-07 株式会社爱发科 Substrate managing method
US8389411B2 (en) 2008-10-07 2013-03-05 Ulvac, Inc. Method of managing substrate
WO2010041409A1 (en) * 2008-10-07 2010-04-15 株式会社アルバック Substrate managing method
JP2010123810A (en) * 2008-11-20 2010-06-03 Ulvac Japan Ltd Substrate supporting device and substrate temperature control method
JP2011155162A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Power supply circuit for electrostatic chuck, and electrostatic chuck device
WO2011125292A1 (en) * 2010-04-02 2011-10-13 株式会社アルバック Sputtering apparatus and sputtering method
CN102822380A (en) * 2010-04-02 2012-12-12 株式会社爱发科 Sputtering apparatus and sputtering method
JP5461690B2 (en) * 2010-04-02 2014-04-02 株式会社アルバック Sputtering apparatus and sputtering method
KR101438129B1 (en) * 2010-04-02 2014-09-05 가부시키가이샤 알박 Sputtering apparatus
US9209001B2 (en) 2010-04-02 2015-12-08 Ulvac, Inc. Sputtering apparatus and sputtering method
CN111918605A (en) * 2018-03-29 2020-11-10 创意科技股份有限公司 Suction pad

Similar Documents

Publication Publication Date Title
JPS5979545A (en) Electrostatic chucking device
JP3341221B2 (en) Method and apparatus for fixing semiconductor wafer
JPS60110133A (en) Fault checking apparatus in electrostatic chuck
US10096507B2 (en) Thin substrate electrostatic chuck system and method
JPH06204325A (en) Electrostatic attraction device and its method
TW200810000A (en) Electrostatic attraction device for glass substrate and attraction secession method therefor
JP4484883B2 (en) Method for treating adsorbed material
JP2695436B2 (en) Deterioration detection circuit for electrostatic chuck
TW201041063A (en) System and method of sensing and removing residual charge from a micro-machined wafer
JPH07130827A (en) Electrostatic wafer chuck
JPH1167885A (en) Substrate holding device
JP2976861B2 (en) Electrostatic chuck and method of manufacturing the same
WO2009110980A2 (en) Method for inspecting electrostatic chucks with kelvin probe analysis
CN106165039B (en) System and method for clamping workpiece
WO1999031304A1 (en) Plating device and method of confirming current feed
JPH07211768A (en) Checking method for holding status of electrostatic chuck
JPH06163674A (en) Monitoring method for sample holding apparatus
JP5401343B2 (en) Power supply circuit for electrostatic chuck and electrostatic chuck device
JP2973758B2 (en) Electrostatic chuck
JP4579206B2 (en) Detachment state determination method and vacuum processing apparatus
GB2293689A (en) Electrostatic chuck
US9082805B2 (en) System and method for testing an electrostatic chuck
JPH1167884A (en) Electrostatic attraction device and electron beam plotting apparatus using it
JPS5967629A (en) Electrostatic attracter
JPH07263529A (en) Electrostatic attraction apparatus