JPH1163630A - Controller for air conditioning - Google Patents

Controller for air conditioning

Info

Publication number
JPH1163630A
JPH1163630A JP9229949A JP22994997A JPH1163630A JP H1163630 A JPH1163630 A JP H1163630A JP 9229949 A JP9229949 A JP 9229949A JP 22994997 A JP22994997 A JP 22994997A JP H1163630 A JPH1163630 A JP H1163630A
Authority
JP
Japan
Prior art keywords
valve
valve opening
drive signal
opening
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9229949A
Other languages
Japanese (ja)
Other versions
JP3794118B2 (en
Inventor
Yoshiro Takasuka
芳郎 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP22994997A priority Critical patent/JP3794118B2/en
Publication of JPH1163630A publication Critical patent/JPH1163630A/en
Application granted granted Critical
Publication of JP3794118B2 publication Critical patent/JP3794118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a controller for air conditioning wherein the effect on a temperature regulating operation by an operation of calibration is reduced. SOLUTION: CPU 11 outputs a drive signal for opening or closing a chilled water valve 7 or a hot water valve 8 to a chilled water valve driving part 22a or a hot water valve driving part 22b from a digital output part 10 and makes the chilled water driving part 22a or the hot water driving part 22b open or close the chilled water valve 7 or the hot water valve 8 respectively. Herein the CPU 11 executes an operation of calibration for making the present valve travel (logical value of valve travel) of each valve 7 or 8 obtained by computation be in accord with the actual valve travel thereof only when a target value of the valve travel of each valve 7 or 8 obtained by computation is 0 or 100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷水又は温水と空
気との間で熱交換を行う熱交換手段に冷水又は温水を供
給する冷水弁又は温水弁の弁開度を調節して空気の温度
を制御する空気調和制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature of air by adjusting the opening of a cold water valve or a hot water valve for supplying cold or hot water to a heat exchange means for exchanging heat between cold or hot water and air. The present invention relates to an air-conditioning control device for controlling air conditioning.

【0002】[0002]

【従来の技術】従来より、連続した比例制御信号を受信
して、この比例制御信号を自動的に弁開度に変換し、弁
開度に応じて回転角度を調整しながら弁を駆動するモー
タユニットを用いて、弁の弁開度を制御する空気調和制
御装置があった。また、オン時に弁を開く方向に弁駆動
用モータが回転する弁開接点と、オン時に弁を閉じる方
向に弁駆動用モータが回転する弁閉接点とを設け、開方
向接点又は閉方向接点のいずれかの接点を閉じる信号を
出力するか、又は、どちらにも出力しないという所謂3
位置制御を行う場合、弁駆動用モータに回転角度に比例
して抵抗値が変化する抵抗器を設け、制御装置がこの抵
抗器の抵抗値を読み取って、弁開度に変換し、現状の弁
開度をフィードバックしながら、弁を操作するものもあ
った。
2. Description of the Related Art Conventionally, a motor that receives a continuous proportional control signal, automatically converts the proportional control signal into a valve opening, and drives a valve while adjusting a rotation angle according to the valve opening. There has been an air-conditioning control device that controls the valve opening degree of a valve using a unit. Further, a valve opening contact in which the valve driving motor rotates in a direction to open the valve when on, and a valve closing contact in which the valve driving motor rotates in the direction to close the valve when on, are provided. A so-called 3 that outputs a signal to close any of the contacts or does not output to either of them
When performing position control, the valve drive motor is provided with a resistor whose resistance value changes in proportion to the rotation angle, and the control device reads the resistance value of this resistor, converts it into a valve opening, and converts the current valve In some cases, the valve was operated while feeding back the opening.

【0003】ここで、弁開度の制御にあまり高い精度が
要求されていない場合、弁駆動用モータが弁を全閉状態
から全開状態まで(全開状態から全閉状態まで)駆動す
るのに要する時間(所謂、弁トラベルタイム)を予め設
定しておき、弁開接点及び弁閉接点のオン時間をそれぞ
れ合計して、この合計時間と弁トラベルタイムとから現
在の弁開度(弁開度論理値)を演算で求め、弁開度を制
御する方法もあった。この時、弁開度論理値と実際の弁
開度との誤差が拡大するのを防止するために、弁閉接点
を一定時間閉じて弁を全閉状態にし、弁開度論理値と実
際の弁開度とを共に0%として一致させる全閉キャリブ
レーションを定期的に行うか、又は、弁開接点を一定時
間閉じて弁を全開状態にし、弁開度論値値と実際の弁開
度とを共に100%として一致させる全開キャリブレー
ションを定期的に行い、弁開度論理値を補正していた。
[0003] Here, when a very high precision is not required for the control of the valve opening, it is necessary for the valve driving motor to drive the valve from the fully closed state to the fully open state (from the fully open state to the fully closed state). The time (so-called valve travel time) is set in advance, the on-time of the valve open contact and the valve close contact are summed, and the current valve opening (valve opening logic) is calculated from the total time and the valve travel time. Value) by calculation to control the valve opening. At this time, in order to prevent the error between the logical value of the valve opening and the actual valve opening from expanding, the valve closing contact is closed for a certain time to bring the valve into the fully closed state, and the logical value of the valve opening and the actual valve opening are Periodically perform full-close calibration to make both the valve opening and the valve opening equal to 0%, or close the valve opening contact for a certain period of time to make the valve fully open, and set the theoretical value of the valve opening to the actual valve opening. The full open calibration is performed periodically to make both the values 100% and 100%, thereby correcting the logical value of the valve opening.

【0004】この空気調和制御装置の概略構成図を図1
0に示す。7は冷水と空気との間で熱交換を行う熱交換
手段(図示せず)に冷水を供給する冷水弁、9は温度検
出器6の検出信号を制御対象(空気)の温度に変換する
温度検出手段、11は中央演算処理部たるCPU、12
は制御目標温度や制御演算用パラメータを記憶するデー
タメモリ、21aはオン時に冷水弁7を開く方向に弁駆
動用モータ7aが回転する弁開接点、10aはCPU1
1から入力される信号に応じて弁開接点21aをオンす
る駆動信号を発生する弁開接点出力手段、21bはオン
時に冷水弁7を閉じる方向に弁駆動用モータ7aが回転
する弁閉接点、10bはCPU11から入力される信号
に応じて弁閉接点21bをオンする駆動信号を発生する
弁閉接点出力手段である。尚、図10中の20は弁駆動
用モータ7aの電源であり、弁駆動用モータ7aと、電
源20と、弁開接点21aと、弁閉接点21bとから冷
水弁駆動部22aが構成される。
FIG. 1 is a schematic diagram showing the configuration of this air conditioning control apparatus.
0 is shown. 7 is a chilled water valve for supplying chilled water to a heat exchange means (not shown) for exchanging heat between chilled water and air, and 9 is a temperature for converting a detection signal of the temperature detector 6 into a temperature of a control object (air). Detecting means, 11 is a CPU serving as a central processing unit, 12
Is a data memory for storing a control target temperature and a parameter for control calculation, 21a is a valve opening contact for rotating the valve driving motor 7a in a direction to open the chilled water valve 7 when turned on, and 10a is a CPU 1
A valve-opening contact output means for generating a drive signal for turning on the valve-opening contact 21a in accordance with a signal input from 1; a valve closing contact 21b in which a valve driving motor 7a rotates in a direction to close the chilled water valve 7 when on; Reference numeral 10b denotes valve closing contact output means for generating a drive signal for turning on the valve closing contact 21b in accordance with a signal input from the CPU 11. Note that reference numeral 20 in FIG. 10 denotes a power supply for the valve driving motor 7a, and the chilled water valve driving unit 22a includes the valve driving motor 7a, the power supply 20, the valve opening contact 21a, and the valve closing contact 21b. .

【0005】CPU11は、温度検出手段9から入力さ
れた空気の温度と、データメモリ12に予め格納された
制御目標温度及び制御演算用パラメータとに基づいて、
制御演算(一般的には、デジタルPID演算)を実行
し、冷水弁7の弁開度目標値を決定する。この時、CP
U11は弁開接点21a及び弁閉接点21bのオン時間
を合計し、この合計時間を弁トラベルタイムで除して、
演算により弁開度論理値を求める。そして、CPU11
は、弁開度論理値と弁開度目標値との差から弁開接点2
1a又は弁閉接点21bをオンする駆動時間を求め、こ
の駆動時間の間だけ弁開接点出力手段10a又は弁閉接
点出力手段10bから駆動信号を発生させ、弁開接点2
1a又は弁閉接点21bをオンして、弁駆動用モータ7
aを駆動し冷水弁7の弁開度を調節する。
[0005] The CPU 11 determines the temperature of the air input from the temperature detecting means 9 and the control target temperature and control calculation parameters stored in the data memory 12 in advance.
A control operation (generally, a digital PID operation) is executed to determine a valve opening target value of the chilled water valve 7. At this time, CP
U11 sums the on-time of the valve opening contact 21a and the valve closing contact 21b, divides this total time by the valve travel time,
The logical value of the valve opening is obtained by calculation. And the CPU 11
Is obtained from the difference between the valve opening logical value and the valve opening target value.
1a or a drive time for turning on the valve closing contact 21b is obtained, and a drive signal is generated from the valve opening contact output means 10a or the valve closing contact output means 10b during this driving time, and the valve opening contact 2
1a or the valve closing contact 21b is turned on, and the valve driving motor 7 is turned on.
is driven to adjust the valve opening of the chilled water valve 7.

【0006】この空気調和制御装置は冷水弁7の弁開度
を検出する手段を備えていないので、温度調整動作開始
時は冷水弁7の弁開度が不明である。そこで、温度調整
動作開始時に弁トラベルタイムよりも長い時間、CPU
11は例えば弁閉接点出力手段10bから駆動信号を出
力させて、弁閉接点21bをオンする。この時、弁駆動
用モータ7aは弁トラベルタイムよりも長い時間冷水弁
7を閉じる方向に駆動されるので、温度調整動作開始時
に冷水弁7の弁開度がどのような状態であっても、冷水
弁7の弁開度を0%にセットすることができる。而し
て、CPU11は弁開度論理値と実際の弁開度を共に0
%に一致させた状態から、温度調整動作を開始すること
ができる。
[0006] Since this air conditioner control device does not include means for detecting the valve opening of the chilled water valve 7, the valve opening of the chilled water valve 7 is unknown at the start of the temperature adjustment operation. Therefore, at the start of the temperature adjustment operation, the CPU takes longer than the valve travel time.
Reference numeral 11 outputs a drive signal from, for example, the valve closing contact output means 10b to turn on the valve closing contact 21b. At this time, since the valve drive motor 7a is driven in the direction to close the chilled water valve 7 for a longer time than the valve travel time, no matter what the valve opening degree of the chilled water valve 7 is at the start of the temperature adjustment operation, The valve opening of the chilled water valve 7 can be set to 0%. Thus, the CPU 11 sets both the logical value of the valve opening and the actual valve opening to 0.
%, The temperature adjustment operation can be started.

【0007】ところで、CPU11は、演算で得られた
弁開度目標値を0〜100%の範囲内に制限するリミッ
ト処理を行った後、この弁開度目標値と弁開度論理値に
応じて、弁駆動用モータ7を駆動するための駆動信号を
弁開接点出力手段10a又は弁閉接点出力手段10bか
ら出力させる。ここで、弁トラベルタイムを例えば60
秒とし、弁開度目標値を50%、弁開度論理値を0%と
すると、CPU11は、冷水弁7を50%開くのに要す
る時間(30秒)だけ弁開接点駆動手段10aから駆動
信号を出力すればよい。
By the way, the CPU 11 performs a limit process for restricting the target valve opening value obtained by the calculation within a range of 0 to 100%, and then, according to the target valve opening value and the logical value of the valve opening. Then, a drive signal for driving the valve driving motor 7 is output from the valve open contact output means 10a or the valve close contact output means 10b. Here, the valve travel time is, for example, 60
Assuming that the time is seconds, the valve opening target value is 50%, and the logical value of the valve opening is 0%, the CPU 11 drives the chilled water valve 7 from the valve opening contact driving means 10a for a time (30 seconds) required to open the chilled water valve 7 by 50%. What is necessary is just to output a signal.

【0008】ところで、CPU11の演算サイクルは、
通常、弁トラベルタイムに比べて短いため、弁開接点2
1aのオン時間を演算サイクル毎に積算し、その結果を
弁トラベルタイムで除算することによって、弁開度目標
値の変化として認識し、逐次演算によって得られる弁開
度目標値と常時比較することによって、弁開接点21a
又は弁閉接点21bの駆動時間を更新する。また、演算
で得られた弁開度目標値が弁開度論理値を下回っている
場合、CPU11は、弁閉接点出力手段10bから弁閉
接点21bに駆動信号を出力させて弁閉接点21bをオ
ンし、冷水弁7を閉じる方向に弁駆動用モータ7aを回
転させて、冷水弁7の弁開度を小さくするが、弁閉接点
21bのオン時間は、弁開接点21aのオン時間とは逆
の値、すなわち負の値として積算し、弁開度論理値を演
算する。
The operation cycle of the CPU 11 is as follows.
Normally, the valve open contact 2
The on-time of 1a is integrated for each operation cycle, and the result is divided by the valve travel time to recognize as a change in the valve opening target value and to constantly compare it with the valve opening target value obtained by sequential calculation. As a result, the valve opening contact 21a
Alternatively, the driving time of the valve closing contact 21b is updated. When the valve opening target value obtained by the calculation is lower than the valve opening logical value, the CPU 11 causes the valve closing contact output means 10b to output a drive signal to the valve closing contact 21b to cause the valve closing contact 21b to output a drive signal. It turns on and turns the valve drive motor 7a in the direction to close the chilled water valve 7 to reduce the valve opening of the chilled water valve 7. However, the ON time of the valve closing contact 21b is different from the ON time of the valve opening contact 21a. The value is integrated as the opposite value, that is, a negative value, and the logical value of the valve opening is calculated.

【0009】ここで、弁トラベルタイムをTv(秒)、
CPU11の演算サイクルをTc(秒)、弁開接点出力
手段10aが弁開接点21aをオンする駆動信号を出力
した回数をNo(回)、弁閉接点出力手段10bが弁閉
接点21bをオンする駆動信号を出力した回数をNc
(回)とすると、弁開度論理値Vo(%)は式(1)に
よって求められる。但し、0≦Vo≦100とする。
Here, the valve travel time is represented by Tv (second),
The operation cycle of the CPU 11 is Tc (seconds), the number of times the valve open contact output means 10a outputs a drive signal for turning on the valve open contact 21a is No (times), and the valve close contact output means 10b turns on the valve close contact 21b. Nc is the number of times the drive signal has been output
(Times), the valve opening logical value Vo (%) is obtained by equation (1). However, it is assumed that 0 ≦ Vo ≦ 100.

【0010】 Vo=100×Tc×(No−Nc〕/Tv ……(1) このように、CPU11は、弁開接点21a又は弁閉接
点21bをそれぞれオンした時間の合計時間と弁トラベ
ルタイムTvとから、冷水弁7の弁開度論理値Voを求
めているが、弁トラベルタイムTv自体があまり正確な
値ではないので、弁駆動用モータ7aが回転、停止を繰
り返して、冷水弁7の開閉動作を行う間に、実際の弁開
度と、弁開度論理値との間に誤差が発生していた。
Vo = 100 × Tc × (No−Nc) / Tv (1) As described above, the CPU 11 sets the total time and the valve travel time Tv when the valve open contact 21a or the valve close contact 21b is turned on, respectively. From this, the valve opening logical value Vo of the chilled water valve 7 is obtained. However, since the valve travel time Tv itself is not a very accurate value, the valve driving motor 7a repeatedly rotates and stops, and the chilled water valve 7 During the opening / closing operation, an error has occurred between the actual valve opening and the logical value of the valve opening.

【0011】しかし、この空気調和制御装置では、CP
U11が制御目標温度と温度検出手段9の検出した現状
温度との差に基づいて弁開度目標値を演算しているの
で、弁開度論理値と実際の弁開度との間に誤差が発生し
たとしても、この誤差による影響が現状温度に現れ、そ
の結果、誤差による影響が弁開度目標値に反映されるの
で、弁開度論理値の誤差は実質的にはキャンセルされ
る。
However, in this air conditioning control apparatus, the CP
Since U11 calculates the valve opening target value based on the difference between the control target temperature and the current temperature detected by the temperature detecting means 9, an error occurs between the logical value of the valve opening and the actual valve opening. Even if it occurs, the influence of this error appears on the current temperature, and as a result, the influence of the error is reflected on the target valve opening degree, so that the error of the valve opening logical value is substantially canceled.

【0012】ところで、CPU11の演算で得られた弁
開度目標値の範囲は0〜100%であり、弁開度論理値
の範囲も0〜100%である。図11(a)に示すよう
に、弁開度論理値VOが実際の弁開度VBよりも大きい
側にずれた場合、弁開度目標値が例えば100%になる
と、CPU11は弁開接点出力手段10aから弁開接点
21aに駆動信号を出力させて弁開接点21aをオン
し、冷水弁7を開く方向に弁駆動用モータ7aを回転さ
せる。弁駆動用モータ7aの回転に応じて冷水弁7が開
くにつれて弁開度論理値VOが除々に増加し、弁開度論
理値VOが100%となった時点で、弁開接点駆動手段
10aが駆動信号の出力を停止し、弁開接点21aがオ
フして、弁駆動用モータ7aが停止する。ここで、弁開
度論理値VOは実際の弁開度VBよりも大きい側にずれ
ているので、実際の弁開度VBが100%より小さいに
もかかわらず、CPU11は駆動信号の出力を停止し、
冷水弁7を100%開くことができなかった。この時、
温度検出手段9の検出した現状温度が制御目標温度から
ずれて、冷水弁7の弁開度をさらに大きくする必要があ
ったとしても、弁開度論理値が100%になっているた
めに、実際の弁開度が100%より小さいにもかかわら
ず、CPU11は冷水弁7をそれ以上開くことができ
ず、現状温度を制御目標温度に追従させることができな
いという問題があった。
Incidentally, the range of the target valve opening obtained by the calculation of the CPU 11 is 0 to 100%, and the range of the logical value of the valve opening is also 0 to 100%. As shown in FIG. 11A, when the valve opening logical value VO is shifted to a side larger than the actual valve opening VB, when the valve opening target value becomes, for example, 100%, the CPU 11 outputs the valve opening contact output. A drive signal is output from the means 10a to the valve opening contact 21a to turn on the valve opening contact 21a, and the valve driving motor 7a is rotated in a direction to open the chilled water valve 7. As the chilled water valve 7 opens in response to the rotation of the valve drive motor 7a, the valve opening logical value VO gradually increases, and when the valve opening logical value VO becomes 100%, the valve opening contact driving means 10a is activated. The output of the drive signal is stopped, the valve opening contact 21a is turned off, and the valve driving motor 7a stops. Here, since the valve opening logical value VO is shifted to a side larger than the actual valve opening VB, the CPU 11 stops outputting the drive signal even though the actual valve opening VB is smaller than 100%. And
The chilled water valve 7 could not be opened 100%. At this time,
Even if the current temperature detected by the temperature detecting means 9 deviates from the control target temperature and the valve opening of the chilled water valve 7 needs to be further increased, since the logical value of the valve opening is 100%, Even though the actual valve opening is smaller than 100%, the CPU 11 cannot open the chilled water valve 7 any more, and there is a problem that the current temperature cannot follow the control target temperature.

【0013】これとは逆に、図11(b)に示すよう
に、弁開度論理値VOが実際の弁開度VBより小さい側
にずれた場合にも同様の不具合が発生する。すなわち、
弁開度目標値が例えば0%になると、CPU11は弁閉
接点出力手段10bから弁閉接点21bに駆動信号を出
力させて弁閉接点21bをオンし、冷水弁7を閉じる方
向に弁駆動用モータ7aを回転させる。ここで、弁駆動
用モータ7aの回転に応じて冷水弁7が閉じるにつれ
て、弁開度論理値VOが除々に低下し、弁開度論理値V
Oが0%となった時点で、弁閉接点駆動手段10bは駆
動信号の出力を停止し、弁閉接点21bがオフして、弁
駆動用モータ7aが停止する。ここで、弁開度論理値V
Oは実際の弁開度VBよりも小さい側にずれているため
に、実際の弁開度VBが0%より大きいにもかかわら
ず、CPU11は冷水弁7をそれ以上閉じることができ
ず、上述と同様に、現状温度を制御目標温度に追従させ
ることができないという問題があった。
Conversely, as shown in FIG. 11B, the same problem occurs when the valve opening logical value VO is shifted to a side smaller than the actual valve opening VB. That is,
When the valve opening target value becomes, for example, 0%, the CPU 11 causes the valve closing contact output means 10b to output a drive signal to the valve closing contact 21b to turn on the valve closing contact 21b, and to drive the valve in the direction to close the chilled water valve 7. The motor 7a is rotated. Here, as the chilled water valve 7 closes in response to the rotation of the valve driving motor 7a, the valve opening logical value VO gradually decreases, and the valve opening logical value V
When O becomes 0%, the valve closing contact driving means 10b stops outputting the drive signal, the valve closing contact 21b turns off, and the valve driving motor 7a stops. Here, the valve opening logical value V
Since O is shifted to a side smaller than the actual valve opening VB, the CPU 11 cannot close the chilled water valve 7 any more even though the actual valve opening VB is larger than 0%. Similarly to the above, there is a problem that the current temperature cannot be made to follow the control target temperature.

【0014】このような不具合を防止するために、CP
U11は、弁開度目標値と無関係に、冷水弁7を閉じる
ための駆動信号を、弁閉接点駆動手段10bから弁閉接
点21bへ定期的に出力させ、弁開度論理値VOが0%
になっても、さらに一定時間駆動信号を出力しつづける
ことによって、冷水弁7を全閉状態として、実際の弁開
度VBと弁開度論理値VOとを共に0%とする補正(所
謂、弁全閉キャリブレーション)を行い、その後、CP
U11は通常の温度調整動作に復帰し、弁開度目標値に
応じて冷水弁7の弁開度を調整していた。同様にCPU
11は、弁開度目標値と無関係に、冷水弁7を開くため
の駆動信号を、弁開接点駆動手段10aから弁開接点2
1aへ定期的に出力させ、弁開度論理値VOが100%
になっても、さらに一定時間駆動信号を出力しつづける
ことによって、冷水弁7を全開状態として、実際の弁開
度VBと弁開度論理値VOとを共に100%とする補正
(所謂、弁全開キャリブレーション)を行うことによっ
ても、実際の弁開度と弁開度論理値とを一致させること
ができた。
In order to prevent such a problem, the CP
U11 periodically outputs a drive signal for closing the chilled water valve 7 from the valve closing contact driving means 10b to the valve closing contact 21b irrespective of the valve opening target value, and the logical value VO of the valve opening is 0%.
, The chilled water valve 7 is fully closed by continuously outputting the drive signal for a certain period of time, so that the actual valve opening VB and the valve opening logical value VO are both 0% (so-called correction). Calibration), and then the CP
U11 returns to the normal temperature adjustment operation, and adjusts the valve opening of the chilled water valve 7 according to the valve opening target value. Similarly CPU
Reference numeral 11 denotes a drive signal for opening the chilled water valve 7 irrespective of the valve opening target value, which is transmitted from the valve opening contact driving means 10 a to the valve opening contact 2.
1a is periodically output, and the valve opening logical value VO is 100%
In this case, the chilled water valve 7 is fully opened by continuously outputting the drive signal for a certain period of time, so that the actual valve opening VB and the valve opening logical value VO are both set to 100% (so-called valve closing). The actual valve opening and the logical value of the valve opening could also be matched by performing full-open calibration.

【0015】[0015]

【発明が解決しようとする課題】上述した前者の空気調
和制御装置では、自ら回転角度を調整しながら弁を駆動
するモータユニットを用いたり、モータの回転角度に比
例して抵抗値が変化する抵抗器を弁駆動用モータに設け
ているので、装置のコストが高くなるという問題があっ
た。
In the former air conditioning control apparatus, a motor unit that drives a valve while adjusting the rotation angle by itself is used, or a resistance value whose resistance value changes in proportion to the rotation angle of the motor is used. Since the vessel is provided in the valve driving motor, there is a problem that the cost of the apparatus is increased.

【0016】また、後者の空気調和制御装置では、CP
U11の制御状態と無関係に、定期的に弁全閉キャリブ
レーション又は弁全開キャリブレーションを行っている
ので、キャリブレーションを行う間、弁6が全閉状態又
は全開状態となり、温度調節のための能力が全く不足し
たり、逆に過大になったりするため、制御対象の温度が
制御目標温度から大きくずれてしまうという問題があっ
た。
Further, in the latter air conditioning control device, the CP
Regardless of the control state of U11, since the valve full-close calibration or the valve full-open calibration is periodically performed, the valve 6 is in the full-closed state or the fully-opened state during the calibration, and the ability for temperature control is performed. However, there is a problem that the temperature of the control target greatly deviates from the control target temperature because the temperature of the control target is completely insufficient or conversely becomes excessive.

【0017】本発明は、上記問題点に鑑みて為されたも
のであり、その目的とするところは、コストアップとな
ることなく、弁開度論理値と実際の弁開度との誤差を小
さくし、且つ、温度調整動作に与える影響を小さくした
空気調和制御装置を提供することにある。
The present invention has been made in view of the above problems, and has as its object to reduce the error between the logical value of the valve opening and the actual valve opening without increasing the cost. It is another object of the present invention to provide an air conditioner that has a reduced influence on the temperature adjustment operation.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明では、冷水又は温水と空気との間で
熱交換を行う熱交換手段に、冷水又は温水を供給する弁
の弁開度を調節して、空気の温度を制御する空気調和制
御装置であって、弁を開閉する弁駆動用モータを駆動す
るための駆動信号を発生する駆動信号発生手段と、空気
の温度を検出する温度検出手段と、弁駆動用モータが弁
を全開状態から全閉状態まで駆動するのに要する弁トラ
ベルタイムや制御目標温度や制御演算に必要なパラメー
タを記憶するデータメモリと、駆動信号発生手段が駆動
信号を発生した時間の合計と弁トラベルタイムとから現
在の弁開度を演算し、温度検出手段の検出した温度及び
制御目標温度から弁の弁開度目標値を演算するととも
に、演算で求めた現在の弁開度と弁開度目標値との差及
び弁トラベルタイムから駆動信号を発生する駆動時間を
演算し、前記駆動時間だけ駆動信号発生手段から駆動信
号を発生させる中央演算処理部とを備え、弁開度目標値
が略0%又は略100%になった場合、中央演算処理部
は、前記駆動時間に予め設定された一定時間を加算した
時間だけ駆動信号発生手段から駆動信号を発生させて、
実際の弁開度を略0%又は略100%とするとともに、
演算で求めた現在の弁開度を略0%又は略100%に設
定して、実際の弁開度と演算で求めた弁開度とを一致さ
せるキャリブレーション動作を行うことを特徴とする。
したがって、弁開度目標値VCが0%又は100%にな
った時だけ、キャリブレーション動作が行われるので、
キャリブレーション動作による温度調整動作への影響を
小さくすることができる。
To achieve the above object, according to the first aspect of the present invention, a valve for supplying cold water or hot water to heat exchange means for exchanging heat between cold water or hot water and air is provided. An air-conditioning control device that controls a valve opening degree to control the temperature of air, a driving signal generating unit that generates a driving signal for driving a valve driving motor that opens and closes a valve, and the air temperature control unit. Temperature detection means for detecting, a data memory for storing a valve travel time required for the valve drive motor to drive the valve from the fully open state to the fully closed state, a control target temperature, and parameters necessary for control calculation, and a drive signal generation The present valve opening is calculated from the sum of the time during which the drive signal is generated and the valve travel time, and the valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature. The current found in A central processing unit that calculates a drive time for generating a drive signal from a difference between the valve opening degree and the target valve opening degree and a valve travel time, and generates a drive signal from drive signal generation means only for the drive time. When the valve opening target value becomes approximately 0% or approximately 100%, the central processing unit generates a driving signal from the driving signal generating means for a time obtained by adding a predetermined time to the driving time. hand,
With the actual valve opening being approximately 0% or approximately 100%,
The present invention is characterized in that the current valve opening obtained by calculation is set to approximately 0% or approximately 100%, and a calibration operation for matching the actual valve opening with the valve opening obtained by calculation is performed.
Therefore, only when the valve opening target value VC becomes 0% or 100%, the calibration operation is performed.
The influence of the calibration operation on the temperature adjustment operation can be reduced.

【0019】請求項2の発明では、請求項1の発明にお
いて、弁開度目標値が略0%となって中央演算処理部が
キャリブレーション動作を行う間に、弁開度目標値が略
0%から変化した場合、中央演算処理部は演算で求めた
弁開度を略0%に設定して、通常の温度調整動作に復帰
するとともに、弁開度目標値が略100%となって中央
演算処理部がキャリブレーション動作を行う間に、弁開
度目標値が略100%から変化した場合、中央演算処理
部は演算で求めた弁開度を略100%に設定して、通常
の温度調整動作に復帰しているので、キャリブレーショ
ン動作中に、弁開度の変化によって制御対象の温度に影
響が及び、弁開度目標値が変化すると、即座にキャリブ
レーション動作を終了しているので、キャリブレーショ
ン動作による温度調整動作への影響をさらに小さくする
ことができる。
According to a second aspect of the present invention, in the first aspect, the valve opening target value is substantially 0% while the valve opening target value is substantially 0% and the central processing unit performs the calibration operation. %, The central processing unit sets the valve opening obtained by the calculation to approximately 0%, returns to the normal temperature adjustment operation, and sets the valve opening target value to approximately 100%, and sets the valve opening target to approximately 100%. If the valve opening target value changes from approximately 100% while the arithmetic processing unit performs the calibration operation, the central processing unit sets the valve opening calculated by the arithmetic operation to approximately 100%, and sets the normal temperature. Since the adjustment operation has been returned, during the calibration operation, the change in the valve opening affects the temperature of the control target, and when the valve opening target value changes, the calibration operation is immediately terminated. , Temperature by calibration operation It is possible to further reduce the influence of the integer operation.

【0020】請求項3の発明では、冷水又は温水と空気
との間で熱交換を行う熱交換手段に、冷水又は温水を供
給する弁の弁開度を調節して、空気の温度を制御する空
気調和制御装置であって、弁を開閉する弁駆動用モータ
を駆動するための駆動信号を発生する駆動信号発生手段
と、空気の温度を検出する温度検出手段と、弁駆動用モ
ータが弁を全開状態から全閉状態まで駆動するのに要す
る弁トラベルタイムや制御目標温度や制御演算に必要な
パラメータを記憶するデータメモリと、駆動信号発生手
段が駆動信号を発生した時間の合計と弁トラベルタイム
とから現在の弁開度を演算し、温度検出手段の検出した
温度及び制御目標温度から弁の弁開度目標値を演算する
とともに、演算で求めた現在の弁開度と弁開度目標値と
の差及び弁トラベルタイムから駆動信号を発生する駆動
時間を演算し、前記駆動時間だけ駆動信号発生手段から
駆動信号を発生させる中央演算処理部とを備え、中央演
算処理部が弁開度目標値の下限値を0%よりも小さい値
に設定するとともに、弁開度目標値の上限値を100%
よりも大きい値に設定し、弁開度目標値が下限値に等し
くなった場合、中央演算処理部は弁を閉じる方向の駆動
信号を駆動信号発生手段から発生させ、弁開度目標値が
上限値に等しくなった場合、中央演算処理部は弁を開く
方向の駆動信号を駆動信号発生手段から発生させて、実
際の弁開度と演算で求めた弁開度とを一致させるキャリ
ブレーション動作を行うことを特徴とする。したがっ
て、弁開度目標値の範囲を下限値又は上限値に拡張する
ことにより、弁開度論理値と実際の弁開度との誤差が拡
張された範囲内に収まっている間は、弁のキャリブレー
ション動作は行われないので、キャリブレーション動作
による温度調整動作への影響を小さくすることができ
る。また、弁開度論理値と実際の弁開度との誤差が拡張
された範囲以上に拡大した場合は、弁のキャリブレーシ
ョン動作が行われるので、誤差を補正して制御精度を向
上させることができる。
According to the third aspect of the present invention, the temperature of the air is controlled by adjusting the valve opening of a valve for supplying cold or hot water to the heat exchange means for exchanging heat between the cold or hot water and the air. An air-conditioning control device, wherein a drive signal generating means for generating a drive signal for driving a valve drive motor for opening and closing the valve, a temperature detection means for detecting the temperature of the air, and the valve drive motor controls the valve. A data memory that stores the valve travel time required to drive from the fully open state to the fully closed state, the control target temperature, and the parameters required for control calculation, and the sum of the time during which the drive signal generation means generated the drive signal and the valve travel time And the current valve opening degree is calculated from the temperature and the control target temperature detected by the temperature detecting means, and the current valve opening degree and the valve opening degree target value obtained by the calculation are calculated. And valve travel A central processing unit for calculating a driving time for generating a driving signal from the time, and generating a driving signal from the driving signal generating unit for the driving time, wherein the central processing unit sets the lower limit value of the valve opening target value to 0. % And set the upper limit of the target valve opening to 100%.
When the valve opening target value is equal to the lower limit value, the central processing unit generates a driving signal in the direction of closing the valve from the driving signal generation means, and the valve opening target value is set to the upper limit. If the value becomes equal to the value, the central processing unit generates a drive signal in the direction of opening the valve from the drive signal generation means, and performs a calibration operation for matching the actual valve opening with the valve opening obtained by the calculation. It is characterized by performing. Therefore, by expanding the range of the valve opening target value to the lower limit or the upper limit, while the error between the logical value of the valve opening and the actual valve opening is within the expanded range, the valve position of the valve is not changed. Since the calibration operation is not performed, the influence of the calibration operation on the temperature adjustment operation can be reduced. Further, when the error between the logical value of the valve opening and the actual valve opening is expanded beyond the expanded range, the valve is calibrated, so that the error can be corrected to improve the control accuracy. it can.

【0021】請求項4の発明では、請求項3の発明にお
いて、弁開度目標値が略100%を越える場合、中央演
算処理部は弁を開く方向の駆動信号のみを駆動信号発生
手段から発生させ、弁開度目標値が略0%を下回ってい
る場合、中央演算処理部は弁を閉じる方向の駆動信号の
みを駆動信号発生手段から発生させているので、弁開度
論理値と実際の弁開度との誤差が拡張された範囲内に収
まっていても、弁開度目標値が一旦拡張された範囲内に
入り、その後0〜100%の範囲内に戻れば、その過程
で弁開度論理値の誤差を補正することができる。
According to a fourth aspect of the present invention, in the third aspect of the invention, when the target valve opening exceeds approximately 100%, the central processing unit generates only a drive signal for opening the valve from the drive signal generating means. When the target value of the valve opening is less than approximately 0%, the central processing unit generates only the driving signal in the direction of closing the valve from the driving signal generating means. Even if the error with the valve opening falls within the extended range, if the valve opening target value once enters the extended range and then returns to the range of 0 to 100%, the valve is opened in the process. The error of the logical value can be corrected.

【0022】請求項5の発明では、請求項1乃至4の発
明において、温度調整動作開始時に、中央演算処理部は
弁を全閉又は全開させる駆動信号を駆動信号発生手段か
ら発生させ、演算で求めた弁開度を略0%又は略100
%に設定するキャリブレーション動作を行っているの
で、弁開度論理値と実際の弁開度とを一致させた状態で
温度調整動作を開始することができる。
According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, at the start of the temperature adjustment operation, the central processing unit generates a drive signal for fully closing or fully opening the valve from the drive signal generating means, and performs the calculation. Approximately 0% or approximately 100
Since the calibration operation for setting the% is performed, the temperature adjustment operation can be started in a state where the logical value of the valve opening and the actual valve opening are matched.

【0023】請求項6の発明では、請求項1乃至5の発
明において、温度調整動作終了時に、中央演算処理部は
弁を全閉又は全開させる駆動信号を駆動信号発生手段か
ら発生させ、演算で求めた弁開度を略0%又は略100
%に設定するキャリブレーション動作を行っているの
で、次回温度調整動作開始時にキャリブレーション動作
を行う必要がなく、即座に温度調整動作を開始できる。
According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, at the end of the temperature adjustment operation, the central processing unit generates a drive signal for fully closing or fully opening the valve from the drive signal generating means, and performs the calculation. Approximately 0% or approximately 100
Since the calibration operation for setting the% is performed, it is not necessary to perform the calibration operation at the next temperature adjustment operation start, and the temperature adjustment operation can be started immediately.

【0024】[0024]

【発明の実施の形態】本願発明の実施の形態を図面を参
照して説明する。 (実施形態1)本実施形態の空気調和制御装置を用いる
システムの概略構成図を図1に示す。1は、外気を取り
入れる外気取り入れ口であり、外部(OA)から空気取
り入れ口1を介して取り込まれた外気は、外気ダンパー
14を介して空調機Bに取り込まれる。
Embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows a schematic configuration diagram of a system using the air-conditioning control device of the present embodiment. Reference numeral 1 denotes an outside air intake for taking in outside air, and the outside air taken in from the outside (OA) via the air intake 1 is taken into the air conditioner B via the outside air damper 14.

【0025】空調機Bは、外気ダンパー14を介して取
り込まれた外気と冷水又は温水との間で夫々熱交換を行
い外気を冷却又は加熱する熱交換手段たる冷水コイル
2、温水コイル3と、冷水コイル2又は温水コイル3に
より冷却又は加熱された外気を加圧して吹き出し口5か
ら室内(SA)に供給する送風機4から構成される。1
3は、送風機4を駆動するための送風機動力盤であり、
送風機動力盤13には、送風機4を起動又は停止させる
制御信号が後述する空気調和制御装置DDCから入力さ
れる入力接点13aと、送風機4の運転状態を示す信号
を空気調和制御装置DDCに出力するための出力接点1
3bとが設けられている。ここに、送風機4が停止して
いる場合、外気ダンパー14は、空気調和制御装置DD
Cから入力された制御信号に応じて、空気取り入れ口1
から空調機Bへの通風経路15を遮断し、室内に不要な
外気が侵入するのを防止している。また、6は、送風機
4の送風口と吹き出し口5との間の送風路に設けられた
温度検出器であり、送風機4の出口温度を検出し、検出
信号を空気調和制御装置DDCに出力している。尚、本
実施形態では温度検出器6が送風機4の出口温度を検出
しているが、室内の温度を検出するようにしても良い。
The air conditioner B exchanges heat between the outside air taken in through the outside air damper 14 and the cold water or the hot water to cool or heat the outside air. It comprises a blower 4 which pressurizes the outside air cooled or heated by the cold water coil 2 or the hot water coil 3 and supplies it to the room (SA) from the outlet 5. 1
3 is a blower power board for driving the blower 4,
The blower power panel 13 outputs to the air conditioning control device DDC an input contact 13a in which a control signal for starting or stopping the blower 4 is input from an air conditioning control device DDC described later, and a signal indicating an operation state of the blower 4. Output contact 1 for
3b. Here, when the blower 4 is stopped, the outside air damper 14 is connected to the air conditioning controller DD.
C in response to the control signal input from C
The air passage 15 from the air conditioner to the air conditioner B is shut off to prevent unnecessary outside air from entering the room. Reference numeral 6 denotes a temperature detector provided in an air passage between the air outlet of the blower 4 and the outlet 5 for detecting the outlet temperature of the air blower 4 and outputting a detection signal to the air conditioning controller DDC. ing. In the present embodiment, the temperature detector 6 detects the outlet temperature of the blower 4, but may detect the indoor temperature.

【0026】16は、冷水コイル2に冷水を循環させる
冷水配管であり、冷水配管16には冷水コイル2に供給
する冷水の量を調節するための冷水弁7が設けられてい
る。また、17は、温水コイル3に温水を循環させる温
水配管であり、温水配管17には温水コイル3に供給す
る温水の量を調節するための温水弁8が設けられてい
る。冷水弁7及び温水弁8には、それぞれ、各弁を開閉
するための冷水弁駆動部22a、温水弁駆動部22bが
設けられている。各弁駆動部22a,22bは、従来例
で説明した図10に示す冷水弁駆動部22と同様の構成
を有しているので、その説明は省略する。
A chilled water pipe 16 circulates chilled water through the chilled water coil 2. The chilled water pipe 16 is provided with a chilled water valve 7 for adjusting the amount of chilled water supplied to the chilled water coil 2. Reference numeral 17 denotes a hot water pipe for circulating hot water through the hot water coil 3. The hot water pipe 17 is provided with a hot water valve 8 for adjusting the amount of hot water supplied to the hot water coil 3. The cold water valve 7 and the hot water valve 8 are provided with a cold water valve driving unit 22a and a hot water valve driving unit 22b for opening and closing the respective valves. Each of the valve drive units 22a and 22b has the same configuration as that of the chilled water valve drive unit 22 shown in FIG. 10 described in the conventional example, and a description thereof will be omitted.

【0027】空気調和制御装置DDCは、制御目標温度
や制御演算用のパラメータが格納されたデータメモリ1
2と、温度検出器6から入力された検出信号を空調機B
の出口温度に変換する温度検出手段たるA/D入力部
(AI)9と、データメモリ12に格納された制御目標
温度及び制御演算用のパラメータや、A/D入力部9か
ら入力される空調機Bの出口温度に基づいて弁開度目標
値を演算する中央演算処理部たるCPU11と、送風機
動力盤13や外気ダンパー14に制御信号を出力すると
ともに、CPU11の演算で得られた各弁7,8の現在
の弁開度(以下、弁開度論理値という)と弁開度目標値
との差に応じて、各弁駆動用モータ7a,8aを駆動す
る駆動信号を各弁駆動部22a,22bに出力する駆動
信号発生手段たるデジタル出力部(DO)10と、送風
機制御盤13から送風機4の運転状態を示す信号が入力
されるデジタル入力部(DI)19とを備えている。
The air-conditioning controller DDC has a data memory 1 in which a control target temperature and parameters for control calculation are stored.
2 and the detection signal input from the temperature detector 6 to the air conditioner B
A / D input unit (AI) 9 serving as a temperature detecting means for converting the temperature into an outlet temperature, a control target temperature and control calculation parameters stored in data memory 12, and air conditioning input from A / D input unit 9. CPU 11 which is a central processing unit for calculating a valve opening target value based on the outlet temperature of the air conditioner B, and outputs control signals to the blower power panel 13 and the outside air damper 14, and each valve 7 obtained by the calculation of the CPU 11 , 8 in accordance with the difference between the current valve opening (hereinafter referred to as the valve opening logical value) and the target valve opening, a drive signal for driving each of the valve driving motors 7a, 8a is transmitted to each of the valve driving units 22a. , 22b, and a digital input section (DI) 19 to which a signal indicating the operating state of the blower 4 is input from the blower control panel 13.

【0028】この空気調和制御装置DDCの動作を、冷
水弁7を例とし、図2に示すフローチャートを参照して
説明する。尚、温水弁8についての動作は、冷水弁7に
ついての動作と同様であるので、その説明を省略する。
温度調整動作開始時、空気調和制御装置DDCはデータ
メモリ12から弁トラベルタイムや制御演算に必要なパ
ラメータを読み込む(ステップS1 )。
The operation of the air conditioning controller DDC will be described with reference to a flowchart shown in FIG. The operation of the hot water valve 8 is the same as the operation of the cold water valve 7, and a description thereof will be omitted.
At the start of the temperature adjustment operation, the air-conditioning control device DDC reads the valve travel time and parameters necessary for control calculation from the data memory 12 (step S 1 ).

【0029】ところで、この空気調和制御装置DDCは
冷水弁7の現在の弁開度を検出する手段を備えていない
ので、温度調整動作開始時に冷水弁7の実際の弁開度と
弁開度論理値とを一致させる必要がある。そこで、ステ
ップS2 において、CPU11は、冷水弁駆動部22a
が冷水弁7を全開から全閉まで駆動するのに要する時間
(弁トラベルタイム)だけ、冷水弁7を閉じる方向に冷
水弁駆動部22aを動作させるための駆動信号をデジタ
ル出力部10から冷水弁駆動部22aに出力させる。そ
して、温度調整動作開始時から弁トラベルタイムが経過
し、冷水弁7が全閉状態となった時点で、CPU11は
冷水弁7の弁開度論理値を0%に設定し、弁開度論理値
と実際の弁開度とを共に0%に一致させる(以下、この
動作を弁全閉キャリブレーションという)。弁全閉キャ
リブレーションが終了すると、CPU11は、ステップ
3 で温度調整動作を開始し、ステップS4 で温度調整
動作開始時からの経過時間を計時する経過タイマーを起
動させ、ステップS5 で温度調整動作を継続する場合は
ステップS6 に移行する。
Since the air conditioning controller DDC is not provided with a means for detecting the present valve opening of the chilled water valve 7, the actual valve opening of the chilled water valve 7 and the logic of the valve opening at the start of the temperature adjustment operation. Must match the value. Therefore, in step S 2, CPU 11 is a cold water valve drive unit 22a
A drive signal for operating the chilled water valve drive unit 22a in the direction to close the chilled water valve 7 in a direction required to drive the chilled water valve 7 from fully open to fully closed (valve travel time) is transmitted from the digital output unit 10 to the chilled water valve. The output is made to the drive unit 22a. Then, when the valve travel time elapses from the start of the temperature adjustment operation and the chilled water valve 7 is fully closed, the CPU 11 sets the valve opening logic value of the chilled water valve 7 to 0%, and sets the valve opening logic. The value and the actual valve opening are both made to coincide with 0% (hereinafter, this operation is referred to as valve full-close calibration). When the valve fully closed calibration is completed, CPU 11 starts the temperature control operation in step S 3, activates the elapsed timer for measuring the elapsed time from the time of the temperature adjustment operation is started at Step S 4, the temperature in Step S 5 to continue adjusting operation proceeds to step S 6.

【0030】次に、CPU11は、ステップS6 でA/
D入力部9から現在の送風機4の出口温度を読み込み、
ステップS7 でデジタルPID演算により弁開度目標値
VCを演算し、ステップS8 で弁開度論理値VOを演算
する。この時、CPU11では、弁開度目標値VCの上
限値を100%、下限値を0%に制限するリミット処理
を行っている。また、CPU11は、冷水弁7を開く方
向に駆動した時間の合計値から、冷水弁7を閉じる方向
に駆動した時間の合計値を差し引きし、弁トラベルタイ
ムに対する割合(%)を求めて、冷水弁7の弁開度論理
値VOを求めている。
[0030] Next, CPU11, in step S 6 A /
The current outlet temperature of the blower 4 is read from the D input unit 9,
Calculates the valve opening target value VC by a digital PID calculation in step S 7, calculates a valve opening logic value VO at step S 8. At this time, the CPU 11 performs a limit process for limiting the upper limit value of the valve opening target value VC to 100% and the lower limit value to 0%. Further, the CPU 11 subtracts the total value of the driving time of the chilled water valve 7 in the closing direction from the total value of the driving time of the chilled water valve 7 in the opening direction to obtain a ratio (%) to the valve travel time. The valve opening logical value VO of the valve 7 is obtained.

【0031】そして、弁開度目標値VCが0<VC<1
00(%)の範囲内であれば(ステップS9 )、CPU
11はステップS10で弁開度目標値VCと弁開度論理値
VOとを比較し、両者が一致していれば、ステップS16
でデジタル出力部10から冷水弁駆動部22aへの駆動
信号の出力を停止し、ステップS17へ移行する。一方、
ステップS10で両者が異なっていれば、ステップS11
弁開度目標値VCと弁開度論理値VOとの差から冷水弁
駆動部22aに駆動信号を出力する駆動時間を演算す
る。ここで、弁トラベルタイムを100で除した値が、
冷水弁7の弁開度を1%だけ開閉するために、デジタル
出力部10から冷水弁駆動部22aに駆動信号を出力す
る単位駆動時間となるので、CPU11は、弁開度目標
値VCと弁開度論理値VOとの差に単位駆動時間をかけ
て冷水弁駆動部22aの駆動時間を演算する。
Then, if the valve opening target value VC is 0 <VC <1
If it is within the range of 00 (%) (step S 9 ), the CPU
11 compares the valve opening target value VC and the valve opening logic value VO at step S 10, if the numbers match, step S 16
In stops outputting the drive signal to the cold water valve driving section 22a from the digital output section 10, the process proceeds to step S 17. on the other hand,
If the two are different in step S 10, calculates a driving time of outputting the drive signal to the cold water valve drive unit 22a from the difference between the valve opening target value VC and the valve opening logic value VO at step S 11. Here, the value obtained by dividing the valve travel time by 100 is
In order to open and close the valve opening of the chilled water valve 7 by 1%, a unit driving time for outputting a drive signal from the digital output unit 10 to the chilled water valve driving unit 22a is set. The drive time of the chilled water valve drive unit 22a is calculated by multiplying the difference from the opening degree logical value VO by the unit drive time.

【0032】次に、CPU11は、ステップS12で弁開
度目標値VCと弁開度論理値VOとの大小を比較し、弁
開度目標値VCが弁開度論理値VOよりも大きければ、
ステップS13で冷水弁7を開く方向の駆動信号をデジタ
ル出力部10から冷水弁駆動部22aに駆動時間だけ出
力させ、弁開度目標値VCが弁開度論理値VOよりも小
さければ、ステップS14で冷水弁7を閉じる方向の駆動
信号をデジタル出力部10から冷水弁駆動部22aに駆
動時間だけ出力させる。そして、ステップS15で経過タ
イマーの経過時間をチェックしてステップS5 に戻り、
上述の動作を繰り返し実行する。
[0032] Then, CPU 11 compares the magnitude of the valve opening target value VC and the valve opening logic value VO at step S 12, if the valve opening target value VC is greater than the valve opening logic value VO ,
The direction of the drive signal for opening the cold water valve 7 in step S 13 is outputted from the digital output unit 10 only driving time in cold water valve drive unit 22a, when the valve opening target value VC is less than the valve opening logic value VO, steps a drive signal in a direction of closing the cold water valve 7 is output from the digital output unit 10 only driving time in cold water valve drive unit 22a at S 14. Then, the process returns to step S 5 to check the elapsed time of the elapsed timer at the step S 15,
The above operation is repeatedly executed.

【0033】一方、ステップS9 で弁開度目標値VCが
100%になった場合、ステップS 18で、CPU11
は、現在の弁開度論理値VOと弁開度目標値VC(即
ち、100%)との差から求められる冷水弁駆動部22
aの駆動時間に、予め設定された一定時間(弁トラベル
タイムの約30%)を加算した時間だけ、冷水弁7を開
く方向の駆動信号をデジタル出力部10から冷水弁駆動
部22aへ出力させて冷水弁7を全開にし、実際の弁開
度VBを確実に100%とする。そして、CPU11は
弁開度論理値VOを100%とし、弁開度論理値VOと
実際の論理値VBとを共に100%に一致させる(弁全
開キャリブレーション)。その後、ステップS17でCP
U11は経過タイマーをクリアして、ステップS5 に戻
り、上述の処理を繰り返す。
On the other hand, step S9And the valve opening target value VC becomes
If it reaches 100%, step S 18And CPU 11
Are the current valve opening logical value VO and the valve opening target value VC (immediately
Chilled water valve drive unit 22 determined from the difference from
a for a predetermined time (valve travel)
Open the chilled water valve 7 only for the time obtained by adding about 30% of the time).
The chilled water valve drive from the digital output unit 10
Output to the section 22a to fully open the chilled water valve 7, and open the actual valve
The degree VB is definitely set to 100%. And the CPU 11
The valve opening logical value VO is set to 100%, and the valve opening logical value VO is
Match the actual logical value VB to 100% (valve complete
Open calibration). Then, step S17In CP
U11 clears the elapsed timer and proceeds to step SFiveBack to
Then, the above processing is repeated.

【0034】また、ステップS9 で弁開度目標値VCが
0%になった場合、ステップS19で、CPU11は、現
在の弁開度論理値VOと弁開度目標値VC(即ち、0
%)との差から求められる冷水弁駆動部22aの駆動時
間に、予め設定された一定時間(弁トラベルタイムの約
30%)を加算した時間だけ、冷水弁7を閉じる方向の
駆動信号をデジタル出力部10から冷水弁駆動部22a
に出力させて冷水弁7を全閉にし、実際の弁開度VBを
確実に0%とする。そして、CPU11は弁開度論理値
VOを0%とし、弁開度論理値VOと実際の論理値VB
とを共に0%に一致させる(弁全閉キャリブレーショ
ン)。その後、ステップS20でCPU11は経過タイマ
ーをクリアして、ステップS5 に戻り、上述の処理を繰
り返す。
Further, if the valve opening target value VC becomes 0% at step S 9, in step S 19, CPU 11, the current valve opening logic value VO and valve opening degree target value VC (i.e., 0
%), A drive signal in the direction to close the chilled water valve 7 is digitalized for a time obtained by adding a predetermined time (approximately 30% of the valve travel time) to the drive time of the chilled water valve drive unit 22a obtained from the difference from the drive signal. From the output unit 10 to the chilled water valve drive unit 22a
And the chilled water valve 7 is fully closed, and the actual valve opening VB is reliably set to 0%. Then, the CPU 11 sets the valve opening degree logical value VO to 0%, and sets the valve opening degree logical value VO to the actual logical value VB.
Are both equal to 0% (valve fully closed calibration). Thereafter, in CPU11 step S 20 clears the elapsed timer, the process returns to step S 5, and the above processing is repeated.

【0035】ところで、CPU11の演算で得られた弁
開度目標値VCが、0<VC<100(%)の範囲内に
ある場合、CPU11はキャリブレーション動作を行わ
ないので、冷水弁7の実際の弁開度VBと弁開度論理値
VOとの間に誤差が発生する。しかしながら、この誤差
の影響は制御対象の温度と制御目標温度との間の偏差と
なって表れるため、CPU11の演算によって、偏差を
少なくする方向に弁開度目標値VCが修正されるため、
制御精度に関して若干問題はあるものの、温度調整動作
自体が不良となることはない。
If the valve opening target value VC obtained by the calculation of the CPU 11 is within the range of 0 <VC <100 (%), the CPU 11 does not perform the calibration operation. An error occurs between the valve opening degree VB and the valve opening degree logical value VO. However, since the influence of this error appears as a deviation between the temperature of the control target and the control target temperature, the valve opening target value VC is corrected by the calculation of the CPU 11 in a direction to reduce the deviation.
Although there is a problem with the control accuracy, the temperature adjustment operation itself does not become defective.

【0036】ここで、図3(a)に示すように、弁開度
論理値VOが実際の弁開度VBに比べて大きい側にずれ
ている場合、弁開度目標値VCが100%になると、C
PU11は上述のように弁全開キャリブレーションを行
うが、CPU11は、弁開度論理値VOを現在値から1
00%にするまでの時間〔図3(a)中の区間T1 〕に
予め設定された一定時間〔図3(a)中の区間T2 〕を
加算した時間だけ、冷水弁7を開く方向の駆動信号をデ
ジタル出力部10から冷水弁駆動部22aに出力させ、
冷水弁駆動部22aを用いて冷水弁7を開く方向に駆動
しているので、冷水弁7の実際の弁開度VBを確実に1
00%とすることができ、弁開度論理値VOと実際の弁
開度VBとを共に100%に一致させることができる。
Here, as shown in FIG. 3 (a), when the valve opening logical value VO is shifted to a side larger than the actual valve opening VB, the valve opening target value VC becomes 100%. Then, C
The PU 11 performs the valve full-open calibration as described above, but the CPU 11 sets the valve opening degree logical value VO by 1 from the current value.
The direction in which the chilled water valve 7 is opened for a time obtained by adding a predetermined time [section T 2 in FIG. 3 (a)] to a time (section T 1 in FIG. 3 (a)) until the time reaches 00%. Is output from the digital output unit 10 to the chilled water valve drive unit 22a,
Since the chilled water valve 7 is driven in the opening direction by using the chilled water valve drive unit 22a, the actual valve opening VB of the chilled water valve 7 is reliably set to 1
00%, and both the valve opening logical value VO and the actual valve opening VB can be made to coincide with 100%.

【0037】同様にして、図3(b)に示すように、弁
開度論理値VOが実際の弁開度VBに比べて小さい側に
ずれている場合に、弁開度目標値VCが0%になると、
CPU11は上述のように弁全閉キャリブレーションを
行うが、CPU11は、弁開度論理値VOを現在値から
0%にするまでの時間〔図3(b)中の区間T3 〕に予
め設定された時間〔図3(b)中の区間T4 〕を加算し
た時間だけ、デジタル出力部10から冷水弁駆動部22
aに冷水弁7を閉じる方向の駆動信号を出力させ、冷水
弁駆動部22aを用いて冷水弁7を閉じる方向に駆動し
ているので、冷水弁7の実際の弁開度VBを確実に0%
とすることができ、弁開度論理値VOと実際の弁開度V
Bとを共に0%に一致させることができる。
Similarly, as shown in FIG. 3 (b), when the valve opening logical value VO is shifted to a side smaller than the actual valve opening VB, the valve opening target value VC becomes 0. %To become and,
The CPU 11 performs the valve full-close calibration as described above. However, the CPU 11 presets a time (a section T 3 in FIG. 3B) until the valve opening logical value VO becomes 0% from the current value. From the digital output unit 10 to the chilled water valve driving unit 22 for the time obtained by adding the calculated time [section T 4 in FIG.
a, a drive signal in the direction to close the chilled water valve 7 is output, and the chilled water valve 7 is driven in the direction to close the chilled water valve 7 using the chilled water valve drive unit 22a. %
The logical value VO of the valve opening and the actual valve opening V
B and B can both be equal to 0%.

【0038】また、CPU11はステップS5 で温度調
整動作を終了すると、ステップS2で弁全閉キャリブレ
ーション動作を行う。この時、CPU11は弁開度論理
値VOを0%にするまでの時間に一定時間(弁トラベル
タイムの約30%)を加算した時間だけ、デジタル出力
部10から冷水弁駆動部22aに冷水弁7を閉じる方向
の駆動信号を出力させ、冷水弁駆動部22aを用いて冷
水弁7を閉じる方向に駆動しているので、冷水弁7の実
際の弁開度VBを確実に0%とすることができ、弁開度
論理値VOと実際の弁開度VBとを共に0%に一致させ
ることができる。したがって、次回、CPU11が温度
調整動作を行う際は、弁開度論理値VOと実際の弁開度
VBとが共に0%になっているので、キャリブレーショ
ン動作を行うことなく、即座に温度調整動作を行うこと
ができる。
Further, CPU 11, upon completion of the temperature adjustment operation in step S 5, performs the valve fully closed calibration operation in step S 2. At this time, the CPU 11 sends the chilled water valve from the digital output unit 10 to the chilled water valve driving unit 22a for a time obtained by adding a fixed time (about 30% of the valve travel time) to the time required for setting the logical value VO of the valve opening to 0%. Since the drive signal for closing the chilled water 7 is output and the chilled water valve 7 is driven in the closing direction using the chilled water valve drive unit 22a, the actual valve opening VB of the chilled water valve 7 is reliably set to 0%. Thus, both the valve opening logical value VO and the actual valve opening VB can be made equal to 0%. Therefore, the next time the CPU 11 performs the temperature adjustment operation, since the valve opening logical value VO and the actual valve opening VB are both 0%, the temperature adjustment is immediately performed without performing the calibration operation. Actions can be taken.

【0039】このように、本実施形態では、弁開度目標
値VCが0%又は100%になった場合のみ、CPU1
1がキャリブレーション動作を行っているので、制御状
態とは無関係に一定期間毎にキャリブレーション動作を
行う場合に比べて、大きな温度変化が発生することがな
い。また、冷水弁駆動部22aや温水弁駆動部22b
に、自ら回転角度を調整しながら弁を駆動するモータユ
ニットを用いたり、モータの回転角度に比例して抵抗値
が変化する抵抗器を弁駆動用モータに設けたりしていな
いので、装置全体のコストアップとなることがない。
As described above, in this embodiment, only when the valve opening target value VC becomes 0% or 100%, the CPU 1
1 performs the calibration operation, so that a large temperature change does not occur as compared with the case where the calibration operation is performed at regular intervals regardless of the control state. Further, the cold water valve driving unit 22a and the hot water valve driving unit 22b
In addition, since there is no motor unit that drives the valve while adjusting the rotation angle by itself, or a resistor that changes the resistance value in proportion to the rotation angle of the motor is not provided in the valve driving motor, There is no increase in cost.

【0040】(実施形態2)実施形態1では、弁開度目
標値VCが0%又は100%になった場合のみ、CPU
11がキャリブレーション動作を行っているので、制御
状態とは無関係に一定期間毎にキャリブレーション動作
を行う場合に比べて、キャリブレーション動作時による
温度調整動作への影響を小さくすることができる。
(Embodiment 2) In Embodiment 1, only when the valve opening target value VC becomes 0% or 100%, the CPU
11 performs the calibration operation, so that the influence of the calibration operation on the temperature adjustment operation can be reduced as compared with the case where the calibration operation is performed at regular intervals irrespective of the control state.

【0041】しかしながら、弁開度目標値VCが0<V
C<100(%)の範囲でCPU11が長時間にわたっ
て温度調整動作を行うと、弁開度論理値VOと実際の弁
開度VBとの誤差が大きくなる。したがって、弁開度目
標値VCが0%或いは100%となった時の弁開度論理
値VOと実際の弁開度VBとの誤差が大きくなり、キャ
リブレーション動作によって弁開度が大きく変化するた
め、制御対象の温度が大きく変化する虞がある。
However, when the valve opening target value VC is 0 <V
When the CPU 11 performs the temperature adjustment operation for a long time in the range of C <100 (%), an error between the valve opening logical value VO and the actual valve opening VB increases. Therefore, the error between the valve opening logical value VO when the valve opening target value VC becomes 0% or 100% and the actual valve opening VB increases, and the valve opening greatly changes by the calibration operation. Therefore, there is a possibility that the temperature of the control target may change significantly.

【0042】例えば、冷水弁7の実際の弁開度VBが7
0%、弁開度論理値VOが98%の時に、弁開度目標値
VCが100%になったとすると、温度調整動作上は弁
開度を98%から100%まで(実際の弁開度VBを7
0%から72%まで)2%だけ大きくすれば、冷水弁7
の弁開度を所望の値に調整して、制御対象の温度を一定
に制御することができるはずであるが、弁開度目標値V
Cが100%になった場合、CPU11が弁全開キャリ
ブレーションを行い、冷水弁駆動部22aをさらに一定
時間駆動させて、冷水弁7を全開状態とするので、実際
の弁開度VBが70%から100%まで変化する。
For example, when the actual valve opening VB of the chilled water valve 7 is 7
If the valve opening target value VC becomes 100% when the valve opening logical value VO is 98% and the valve opening logical value VO is 98%, the valve opening is increased from 98% to 100% (actual valve opening degree) in the temperature adjustment operation. VB to 7
From 0% to 72%) If it is increased by 2%, the cold water valve 7
Should be adjusted to a desired value to control the temperature of the controlled object constant, but the target valve opening value V
When C becomes 100%, the CPU 11 performs the valve full-open calibration and drives the chilled water valve drive unit 22a for a further fixed time to bring the chilled water valve 7 to the fully opened state, so that the actual valve opening VB is 70%. To 100%.

【0043】したがって、この時点における所望の弁開
度72%に対して冷水弁7の弁開度が28%も大きくな
るため、制御対象の温度が大きく変化する。そのため、
キャリブレーション動作終了後、CPU11が通常の温
度調整動作に復帰すると、CPU11は冷水弁駆動部2
2aを用いて温度の偏差を無くす方向に冷水弁7を駆動
して、温度の偏差を修正する。このように、キャリブレ
ーション動作を実行したために、通常の温度調整動作時
に比べて、温度の制御精度が悪化するため、特に空調器
Bの出口温度を制御するというように、応答時間の短い
制御系では偏差が容認できない範囲まで拡大することが
予想される。
Therefore, since the valve opening of the chilled water valve 7 is 28% larger than the desired valve opening of 72% at this time, the temperature of the controlled object greatly changes. for that reason,
After the calibration operation is completed, when the CPU 11 returns to the normal temperature adjustment operation, the CPU 11
The temperature deviation is corrected by driving the chilled water valve 7 in a direction to eliminate the temperature deviation using 2a. As described above, since the calibration operation is performed, the temperature control accuracy is deteriorated as compared with the normal temperature adjustment operation. Therefore, the control system having a short response time such as controlling the outlet temperature of the air conditioner B is particularly preferable. It is expected that the deviation will increase to an unacceptable range.

【0044】そこで、本実施形態では、CPU11がキ
ャリブレーション動作を行っている間でも、逐次演算に
よって得られる弁開度目標値VCが0%又は100%で
なくなった場合に、CPU11が即座に弁開度論理値V
Oを0%又は100%に設定し、キャリブレーション動
作を終了して通常の温度調整動作に復帰する。したがっ
て、上述の例では実際の弁開度VBが大きくなり所望の
弁開度72%を上回ると、制御対象の現状温度が制御目
標温度をゆきすぎてしまい、弁開度理論値VCが100
%よりも小さくなるため、その時点でCPU11は即座
に弁開度論理値VOを100%とし、キャリブレーショ
ン動作を終了して、通常の温度制御動作に復帰するた
め、キャリブレーション動作の温度変化に与える影響を
小さくすることができる。
Therefore, in the present embodiment, even when the CPU 11 is performing the calibration operation, if the valve opening target value VC obtained by the sequential calculation is not 0% or 100%, the CPU 11 immediately starts the valve operation. Opening logical value V
O is set to 0% or 100%, the calibration operation ends, and the operation returns to the normal temperature adjustment operation. Therefore, in the above-described example, if the actual valve opening VB increases and exceeds the desired valve opening 72%, the current temperature of the control target exceeds the control target temperature too much, and the valve opening theoretical value VC becomes 100%.
%, The CPU 11 immediately sets the valve opening logical value VO to 100% at that point, terminates the calibration operation, and returns to the normal temperature control operation. The effect can be reduced.

【0045】この空気調和制御装置DDCの動作を、冷
水弁7を例とし、図4のフローチャートを参照して説明
する。尚、空気調和制御装置DDCの構成は、実施形態
1と同様であるので、その説明は省略する。また、ステ
ップS1 〜S9 、ステップS 10〜S17までの動作は実施
形態1と同様であるので、その説明は省略する。ステッ
プS9 で弁開度目標値VCが100%になると、CPU
11は、ステップS22でキュリブレーションフラグがオ
ンか否かを判断する。ステップS22でキャリブレーショ
ンフラグがオンであれば、CPU11はステップS5
戻って上述の処理を繰り返し、弁開度目標値VCを演算
して、弁開度目標値VCが0<VC<100%の範囲内
か否かを判断する。ステップS22でキャリブレーション
フラグがオフであれば、CPU11は、ステップS23
キャリブレーションタイマーをチェックし、ステップS
24でデジタル出力部10から冷水弁駆動部22aに冷水
弁7を開く方向の駆動信号を出力させ、冷水弁駆動部2
2aを用いて冷水弁7を開く方向に駆動し、ステップS
25でキャリブレーションタイマーの設定時間が経過した
か否かを判断する。ステップS25でキャリブレーション
タイマーの設定時間が経過していなければ、CPU11
は、ステップS5 に戻って上述の処理を繰り返し、弁開
度目標値VCを演算して、弁開度目標値VCが0<VC
<100%の範囲内か否かを判断する。ステップS25
キャリブレーションタイマーの設定時間が経過していれ
ば、CPU11は、ステップS26でキャリブレーション
フラグをオンにし、ステップS27でデジタル出力部10
から冷水弁駆動部22aへの駆動信号の出力を停止し、
ステップS28でキャリブレーションタイマーをクリアー
し、ステップS5 に戻る。
The operation of this air conditioning control device DDC is
Description will be given with reference to the flowchart of FIG.
I do. The configuration of the air conditioning controller DDC is the same as that of the embodiment.
1 and the description thereof is omitted. Also,
Top S1~ S9, Step S Ten~ S17Operation up to
Since it is the same as the first embodiment, the description is omitted. Step
S9When the valve opening target value VC reaches 100% at
11 is Step Stwenty twoAnd the calibration flag is off.
Judge whether or not it is. Step Stwenty twoCalibration
If the on flag is on, the CPU 11 proceeds to step SFiveTo
Return and repeat the above process to calculate the valve opening target value VC
And the valve opening target value VC is in the range of 0 <VC <100%
It is determined whether or not. Step Stwenty twoCalibration with
If the flag is off, the CPU 11 proceeds to step Stwenty threeso
Check the calibration timer and go to step S
twenty fourChilled water from the digital output unit 10 to the chilled water valve drive unit 22a
A drive signal for opening the valve 7 is output, and the chilled water valve drive unit 2 is output.
2a, the chilled water valve 7 is driven in the opening direction, and step S
twenty fiveThe setting time of the calibration timer has elapsed
It is determined whether or not. Step Stwenty fiveCalibration with
If the set time of the timer has not elapsed, the CPU 11
Is the step SFiveAnd repeat the above process to open the valve.
Is calculated so that the valve opening target value VC is 0 <VC
It is determined whether it is within the range of <100%. Step Stwenty fiveso
If the set time of the calibration timer has elapsed
In this case, the CPU 1126Calibration with
Turn on the flag and step S27Digital output unit 10
From the output of the drive signal to the chilled water valve drive unit 22a,
Step S28Clear calibration timer with
And step SFiveReturn to

【0046】したがって、弁全開キャリブレーション動
作中に、弁開度目標値VCが100%のままであれば、
CPU11は、キャリブレーションタイマーの経過時間
だけ、デジタル出力部10から冷水弁駆動部22aに冷
水弁7を開く方向の駆動信号を出力させ、冷水弁7を開
く方向に駆動する。一方、弁全開キャリブレーション動
作中に、逐次演算によって得られる弁開度目標値VCが
0<VC<100%の範囲内に入ると(ステップ
9 )、CPU11は、ステップS21でキャリブレーシ
ョンフラグをオフし、弁開度論理値VOを100%に設
定して、ステップS10に移行し、通常の温度制御動作に
復帰する。
Therefore, if the valve opening target value VC remains at 100% during the valve full-open calibration operation,
The CPU 11 causes the digital output unit 10 to output a drive signal for opening the chilled water valve 7 from the digital output unit 10 to the chilled water valve driving unit 22a for the elapsed time of the calibration timer, and drives the chilled water valve 7 in the opening direction. On the other hand, if the valve opening target value VC obtained by the sequential calculation falls within the range of 0 <VC <100% during the valve full-opening calibration operation (step S 9 ), the CPU 11 sets the calibration flag in step S 21 . turned off, by setting the valve opening logic value VO to 100%, the process proceeds to step S 10, returns to the normal temperature control operation.

【0047】一方、ステップS9 で弁開度目標値VCが
0%になると、CPU11は、ステップS29でキュリブ
レーションフラグがオンか否かを判断する。ステップS
29でキャリブレーションフラグがオンであれば、CPU
11はステップS5 に戻って上述の処理を繰り返し、弁
開度目標値VCを演算して、弁開度目標値VCが0<V
C<100%の範囲内か否かを判断する。ステップS29
でキャリブレーションフラグがオフであれば、CPU1
1は、ステップS30でキャリブレーションタイマーをチ
ェックし、ステップS31でデジタル出力部10から冷水
弁駆動部22aに冷水弁7を閉じる方向の駆動信号を出
力し、冷水弁駆動部22aを用いて冷水弁7を閉じる方
向に駆動し、ステップS32でキャリブレーションタイマ
ーの設定時間が経過したか否かを判断する。ステップS
32でキャリブレーションタイマーの設定時間が経過して
いなければ、CPU11はステップS5 に戻って上述の
処理を繰り返し、弁開度目標値VCを演算して、弁開度
目標値VCが0<VC<100%の範囲内か否かを判断
する。ステップS32でキャリブレーションタイマーの設
定時間が経過していれば、CPU11は、ステップS33
でキャリブレーションフラグをオンにし、ステップS34
でデジタル出力部10から冷水弁駆動部22aへの駆動
信号の出力を停止し、ステップS35でキャリブレーショ
ンタイマーをクリアーし、ステップS5 に戻る。
Meanwhile, when the valve opening target value VC becomes 0% at step S 9, CPU 11 is particulate calibration flag is turned on or not is determined in step S 29. Step S
If the calibration flag is on at 29 , the CPU
11 repeats the above process returns to step S 5, and calculates the valve opening target value VC, the valve opening target value VC is 0 <V
It is determined whether or not C is within the range of 100%. Step S 29
If the calibration flag is off at
1 checks the calibration timer in step S 30, the cold water valve 7 is closed to output the drive signal in a direction to the cold water valve drive unit 22a from the digital output unit 10 in step S 31, using a cold water valve driving portion 22a drives the cold water valve 7 closing direction, the set time of the calibration timer to determine whether the elapsed in step S 32. Step S
32 when not reached the set time of the calibration timer, CPU 11 repeats the processing described above returns to the step S 5, and calculates the valve opening target value VC, the valve opening target value VC is 0 <VC It is determined whether it is within the range of <100%. If the set time has elapsed calibration timer in step S 32, CPU 11, the step S 33
To turn on the calibration flag, and step S34
In stops outputting the drive signal to the cold water valve driving section 22a from the digital output section 10, to clear the calibration timer in step S 35, the flow returns to step S 5.

【0048】したがって、弁全閉キャリブレーション動
作中に、弁開度目標値VCが0%のままであれば、CP
U11は、キャリブレーションタイマーの経過時間だ
け、デジタル出力部10から冷水弁駆動部22aに冷水
弁7を閉じる方向の駆動信号を出力させ、冷水弁7を閉
じる方向に駆動する。一方、弁全閉キャリブレーション
動作中に、逐次演算によって得られる弁開度目標値VC
が0<VC<100%の範囲内に入ると(ステップ
9 )、CPU11は、ステップS21でキャリブレーシ
ョンフラグをオフし、弁開度論理値VOを0%に設定し
て、ステップS10に移行し、通常の温度制御動作に復帰
する。
Accordingly, if the valve opening target value VC remains at 0% during the valve fully closing calibration operation, the CP
U11 causes the digital output unit 10 to output a drive signal for closing the chilled water valve 7 from the digital output unit 10 to the chilled water valve 7 for the elapsed time of the calibration timer, and drives the chilled water valve 7 in the closing direction. On the other hand, during the valve fully-closed calibration operation, the valve opening target value VC obtained by successive calculation
There 0 <VC <Once in 100% of the range (Step S 9), CPU 11 turns off the calibration flag in step S 21, sets the valve opening logic value VO to 0%, the step S 10 And returns to the normal temperature control operation.

【0049】(実施形態3)本実施形態では、実施形態
1の空気調和制御装置において、弁開度目標値VCの下
限値を0%よりも小さい値(−X%)に設定するととも
に、弁開度目標値VCの上限値を100%よりも大きい
値(100+Y)(%)に設定している。例えば、本実
施形態ではX=Y=20%として、弁開度目標値VC及
び弁開度論理値VOの範囲を夫々(−20%)から12
0%にまで拡張し、CPU11がデジタルPID演算を
行っている。
(Embodiment 3) In the present embodiment, the lower limit value of the valve opening target value VC is set to a value smaller than 0% (-X%) in the air conditioning controller of Embodiment 1, The upper limit value of the opening target value VC is set to a value (100 + Y) (%) larger than 100%. For example, in the present embodiment, assuming that X = Y = 20%, the ranges of the valve opening target value VC and the valve opening logical value VO are set to (−20%) to 12 respectively.
It is expanded to 0%, and the CPU 11 performs digital PID calculation.

【0050】この空気調和制御装置の動作を、冷水弁7
を例として、図5のフローチャートを参照して説明す
る。尚、空気調和制御装置の構成は実施形態1と同様で
あるので、その説明を省略する。また、空気調和制御装
置の基本的な動作は、図2のフローチャートに示す動作
と同様であるので、同一の処理には、同一の符号を付し
て、その説明を省略し、異なる部分のみ説明を行う。
The operation of the air conditioner is described by the chilled water valve 7.
Will be described with reference to the flowchart of FIG. Note that the configuration of the air-conditioning control device is the same as that of the first embodiment, and a description thereof will be omitted. The basic operation of the air-conditioning control device is the same as the operation shown in the flowchart of FIG. 2, and therefore, the same processes are denoted by the same reference characters, and description thereof will be omitted. Only different portions will be described. I do.

【0051】CPU11は、ステップS6 〜S8 で弁開
度目標値VCを演算し、ステップS 9'で弁開度目標値V
Cが(−X)<VC<(100+Y)の範囲内にあるか
否かを判断する。図6(a)(b)に示すように、弁開
度目標値VCが(−X)<VC<(100+Y)の範囲
内にある場合は、CPU11は実施形態1で説明したス
テップS11〜S15の演算を行い、ステップS5 に戻って
上述の処理を繰り返す。
The CPU 11 determines in step S6~ S8Open with
Degree target value VC is calculated, and step S 9'To set the valve opening target value V
C is in the range of (-X) <VC <(100 + Y)
Determine whether or not. As shown in FIGS. 6A and 6B, the valve is opened.
Degree target value VC is in the range of (−X) <VC <(100 + Y)
If it is within the range, the CPU 11 executes the processing described in the first embodiment.
Tep S11~ SFifteenIs calculated, and step S is performed.FiveBack to
The above processing is repeated.

【0052】一方、図7(a)に示すように、ステップ
9'で弁開度目標値VCが上限値(100+Y)と等し
くなった場合、CPU11は、ステップS18’で冷水弁
7を開く方向の駆動信号をデジタル出力部10から冷水
弁駆動部22aへ出力し、冷水弁駆動部22aを用いて
冷水弁7を開く方向に駆動させ、キャリブレーション動
作を行う〔図7(a)の区間T5 〕。
On the other hand, as shown in FIG. 7A, when the valve opening target value VC becomes equal to the upper limit (100 + Y) in step S 9 ′, the CPU 11 switches the chilled water valve 7 in step S 18 ′. A driving signal in the opening direction is output from the digital output unit 10 to the chilled water valve driving unit 22a, and the chilled water valve 7 is driven in the opening direction using the chilled water valve driving unit 22a to perform a calibration operation (FIG. 7A). Section T 5 ].

【0053】また、図7(b)に示すように、ステップ
9'で弁開度目標値VCが下限値(−X)と等しくなっ
た場合、CPU11は、ステップS19’で冷水弁7を閉
じる方向の駆動信号をデジタル出力部10から冷水弁駆
動部22aへ出力し、冷水弁駆動部22aを用いて冷水
弁7を開じる方向に駆動させ、キャリブレーション動作
を行う〔図7(b)の区間T6 〕。
[0053] Further, as shown in FIG. 7 (b), 'when the valve opening target value VC is equal to the lower limit value (-X) in, CPU 11, the step S 19' Step S 9 cold water valve 7 Is output from the digital output unit 10 to the chilled water valve driving unit 22a, and the chilled water valve 7 is driven to open using the chilled water valve driving unit 22a to perform a calibration operation [FIG. b) section T 6 of].

【0054】ところで、実際の弁開度VBの範囲は0〜
100%であるので、弁開度目標値VCが100%を越
える範囲では、弁開度論理値VOと実際の弁開度VBと
の間に必然的に誤差が発生する。同様に、弁開度目標値
VCが0%を下回る範囲では、弁開度論理値VOと実際
の弁開度VBとの間に必然的に誤差が発生する。しかし
ながら、弁開度目標値VCを0〜100%の範囲に制限
したとしても、弁開度論理値VOと実際の弁開度VBと
の間にある程度の誤差が発生すると予想されるので、弁
開度目標値VCの範囲を拡張したことによって発生する
誤差は予め容認して、冷水弁7の開閉操作を行う。ま
た、弁開度目標値VCの範囲の拡張分以上の誤差が発生
した場合は、その時点で誤差が弁開度目標値VCの拡張
範囲内に収まるように補正される。
The actual range of the valve opening degree VB is 0 to
Since it is 100%, if the valve opening target value VC exceeds 100%, an error necessarily occurs between the valve opening logical value VO and the actual valve opening VB. Similarly, in a range where the valve opening target value VC is less than 0%, an error necessarily occurs between the valve opening logical value VO and the actual valve opening VB. However, even if the valve opening target value VC is limited to the range of 0 to 100%, it is expected that some error will occur between the valve opening logical value VO and the actual valve opening VB. An error generated by expanding the range of the opening target value VC is previously accepted, and the chilled water valve 7 is opened and closed. Further, when an error occurs that is equal to or greater than the extension of the range of the target valve opening VC, the error is corrected so as to fall within the extension range of the target valve opening VC at that time.

【0055】このように、予想される弁開度論理値VO
と実際の弁開度VBとの誤差の分だけ、弁開度目標値V
Cと弁開度論理値VOの範囲を0〜100%より拡張し
ておけば、弁開度論理値VOと実際の弁開度VBとの誤
差が拡張範囲内に収まっている間は、キャリブレーショ
ン動作が行われないので、キャリブレーション動作のた
めに制御対象の温度が急激に変化するのを防ぐことがで
きる。また、誤差の補正分が小さくなるので、制御対象
の温度に与える影響を抑えることもできる。
As described above, the expected valve opening logical value VO
And the actual valve opening VB, the valve opening target value V
If the range between C and the valve opening logical value VO is extended from 0 to 100%, calibration is performed while the error between the valve opening logical value VO and the actual valve opening VB is within the extended range. Since the calibration operation is not performed, it is possible to prevent the temperature of the control target from suddenly changing due to the calibration operation. In addition, since the amount of error correction becomes smaller, the influence on the temperature of the control target can be suppressed.

【0056】(実施形態4)実施形態3の空気調和制御
装置では、弁開度目標値VCが上限値又は下限値となっ
た場合のみ、CPU11がキャリブレーション動作を行
っているが、CPU11は、弁開度論理値VOと実際の
弁開度VBとの誤差の内、弁開度目標値VCの拡張分
(−X%,Y%)を越える部分のみ補正しているので、
拡張分の誤差が残ってしまう。
(Embodiment 4) In the air-conditioning control apparatus according to Embodiment 3, the CPU 11 performs the calibration operation only when the valve opening target value VC has reached the upper limit value or the lower limit value. Of the error between the valve opening logical value VO and the actual valve opening VB, only the portion exceeding the extension (-X%, Y%) of the valve opening target value VC is corrected.
An error for the extension remains.

【0057】例えば、弁開度目標値VC及び弁開度論理
値VOの範囲が(−20)〜120%に拡張された場合
に、CPU11の演算によって得られた弁開度目標値V
Cが98%となり、弁開度論理値VOが98%となった
とする。この時、実際の弁開度VBが88%であり、弁
開度論理値VOと実際の弁開度VBとの間に10%の誤
差があるとする。ここで、次の演算サイクルで得られた
弁開度目標値VCが20%増加して118%になったと
すると、CPU11は、弁トラベルタイムに基づいて、
弁を20%分開くのに要する時間だけ、弁を開く方向に
駆動する駆動信号をデジタル出力部10から弁駆動部へ
出力するが、弁駆動部がこの駆動信号に応じて弁を駆動
した後、弁開度目標値VCと弁開度論理値VOは共に1
18%、実際の弁開度VBは100%となる。その後、
弁開度目標値VCが100%になると、CPU11は、
弁を18%分閉じるのに要する時間だけ、弁を閉じる方
向の駆動信号をデジタル出力部10から弁駆動部に出力
させるので、実際の弁開度VBが82%となり、弁開度
論理値VOと実際の弁開度VBとの誤差が18%に拡大
してしまう。
For example, when the range of the valve opening target value VC and the valve opening logical value VO is extended to (−20) to 120%, the valve opening target value V obtained by the calculation of the CPU 11 is obtained.
Assume that C becomes 98% and the valve opening logical value VO becomes 98%. At this time, it is assumed that the actual valve opening VB is 88% and there is an error of 10% between the logical value VO of the valve opening and the actual valve opening VB. Here, assuming that the valve opening target value VC obtained in the next operation cycle has increased by 20% to 118%, the CPU 11 calculates the valve travel time based on the valve travel time.
A drive signal for driving the valve in the direction to open the valve is output from the digital output unit 10 to the valve drive unit for the time required to open the valve by 20%. After the valve drive unit drives the valve according to the drive signal, , The valve opening target value VC and the valve opening logical value VO are both 1
18%, and the actual valve opening VB is 100%. afterwards,
When the valve opening target value VC reaches 100%, the CPU 11
A drive signal in the direction to close the valve is output from the digital output unit 10 to the valve drive unit for the time required to close the valve by 18%, so that the actual valve opening VB becomes 82%, and the valve opening logical value VO And the actual valve opening VB is increased to 18%.

【0058】そこで、本実施形態では、実施形態3の空
気調和制御装置において、弁開度目標値VCが0%より
も小さく且つ下限値(−X%)よりも大きい場合は、弁
を閉じる方向の駆動信号のみを出力し、弁開度目標値V
Cが100%よりも大きく且つ上限値(100+Y)%
よりも小さい場合は、弁を開く方向の駆動信号のみを出
力しており、弁開度目標値VCが0〜100%の範囲で
は、通常の温度調整動作を行っている。したがって、図
9(a)に示すように、弁開度目標値VCが118%か
ら100%に変化しても、CPU11は弁を閉じる方向
の駆動信号をデジタル出力部10から弁駆動部に出力さ
せないため、実際の弁開度VBは100%のままとな
り、実際の弁開度VB、弁開度目標値VC、弁開度論理
値VOが共に100%となって、実質的にキャリブレー
ション動作が行われる。同様に、図9(b)に示すよう
に、弁開度目標値VCが0%よりも小さい値から0%に
変化しても、CPU11は弁を開く方向の駆動信号をデ
ジタル出力部10から弁駆動部に出力させないため、実
際の弁開度VBは0%のままとなり、実際の弁開度V
B、弁開度目標値VC、弁開度論理値VOが共に0%と
なって、実質的にキャリブレーション動作が行われる。
Therefore, in the present embodiment, when the valve opening target value VC is smaller than 0% and larger than the lower limit (-X%) in the air conditioning control apparatus of Embodiment 3, the valve is closed. , And only the valve opening target value V
C is larger than 100% and the upper limit (100 + Y)%
If it is smaller than the threshold value, only the drive signal for opening the valve is output, and the normal temperature adjustment operation is performed when the valve opening target value VC is in the range of 0 to 100%. Therefore, as shown in FIG. 9A, even if the valve opening target value VC changes from 118% to 100%, the CPU 11 outputs a drive signal for closing the valve from the digital output unit 10 to the valve drive unit. Therefore, the actual valve opening VB remains at 100%, and the actual valve opening VB, the valve opening target value VC, and the valve opening logical value VO all become 100%. Is performed. Similarly, as shown in FIG. 9B, even if the valve opening target value VC changes from a value smaller than 0% to 0%, the CPU 11 outputs a drive signal for opening the valve from the digital output unit 10. The actual valve opening VB remains at 0% because the output is not output to the valve drive unit, and the actual valve opening V
B, the valve opening target value VC, and the valve opening logical value VO both become 0%, and the calibration operation is substantially performed.

【0059】この空気調和制御装置の動作を、冷水弁7
を例として、図8のフローチャートを参照して説明す
る。尚、空気調和制御装置の構成は実施形態1と同様で
あるので、その説明を省略する。また、空気調和制御装
置の基本的な動作は、図5のフローチャートに示す動作
と同様であるので、同一の処理には、同一の符号を付し
て、その説明を省略し、異なる部分のみ説明を行う。
The operation of this air conditioning control device is
Will be described with reference to the flowchart of FIG. Note that the configuration of the air-conditioning control device is the same as that of the first embodiment, and a description thereof will be omitted. The basic operation of the air-conditioning control device is the same as the operation shown in the flowchart of FIG. 5, and therefore, the same processes are denoted by the same reference characters, and description thereof will be omitted. Only different portions will be described. I do.

【0060】CPU11の演算によって得られた弁開度
目標値VCが(下限値)<VC<(上限値)の範囲内に
ある場合、CPU11はステップS10,S11の演算を行
った後、ステップS12で弁開度目標値VCと弁開度論理
値VOとの大小関係を比較する。弁開度目標値VCが弁
開度論理値VOよりも大きい場合、CPU11は、ステ
ップS36で弁開度目標値VCが0%よりも小さいか否か
を判断する。その結果、弁開度目標値VCが0%以上の
場合、CPU11は、ステップS37で冷水弁7を開く方
向の駆動信号をデジタル出力部10から冷水弁駆動部2
2aへ出力し、冷水弁駆動部22aを用いて冷水弁7を
開く方向に駆動し、ステップS15で経過タイマーをチェ
ックして、ステップS5 に戻る。一方、弁開度目標値V
Cが0%よりも小さい場合、CPU11は、ステップS
40でデジタル出力部10から冷水弁駆動部22aへの駆
動信号の出力を停止し、ステップS15で経過タイマーを
チェックして、ステップS5 に戻る。
If the valve opening target value VC obtained by the calculation of the CPU 11 is within the range of (lower limit value) <VC <(upper limit value), the CPU 11 performs the calculations in steps S 10 and S 11 , in step S 12 compares the magnitude relationship between the valve opening target value VC and the valve opening logic value VO. When the valve opening target value VC is larger than the valve opening logical value VO, the CPU 11 determines whether or not the valve opening target value VC is smaller than 0% in step S36 . As a result, when the valve opening target value VC is not less than 0%, CPU 11 is a cold water valve drive unit 2 in the direction of the driving signal from the digital output section 10 to open the cold water valve 7 in step S 37
Output to 2a, and driven in the direction of opening the cold water valve 7 with cold water valve driving portion 22a, to check the elapsed timer at step S 15, the flow returns to step S 5. On the other hand, the valve opening target value V
If C is smaller than 0%, the CPU 11 proceeds to step S
Stops outputting the drive signal to the cold water valve driving section 22a from the digital output section 10 at 40, check the elapsed timer at step S 15, the flow returns to step S 5.

【0061】また、ステップS12で弁開度目標値VCと
弁開度論理値VOとの大小関係を比較した結果、弁開度
目標値VCが弁開度論理値VO以下の場合、CPU11
は、ステッステップS38で弁開度目標値VCが100%
よりも大きいか否かを判断する。その結果、弁開度目標
値VCが100%以下の場合、CPU11は、ステップ
39で冷水弁7を閉じる方向の駆動信号をデジタル出力
部10から冷水弁駆動部22aへ出力し、冷水弁駆動部
22aを用いて冷水弁7を閉じる方向に駆動し、ステッ
プS15で経過タイマーをチェックして、ステップS5
戻る。一方、弁開度目標値VCが100%よりも大きい
場合、CPU11は、ステップS40でデジタル出力部1
0から冷水弁駆動部22aへの駆動信号の出力を停止
し、ステップS15で経過タイマーをチェックして、ステ
ップS5 に戻る。
[0061] As a result of comparing the magnitude relationship between the valve opening target value VC and the valve opening logic value VO at step S 12, if the valve opening target value VC is less than the valve opening logic value VO, CPU 11
The valve opening target value VC at step step S 38 100%
It is determined whether it is greater than. As a result, when the valve opening target value VC is less than 100%, CPU 11 has the direction of the drive signal for closing the cold water valve 7 is output from the digital output unit 10 to the cold water valve drive unit 22a in step S 39, the cold water valve drive and driven in the direction of closing the cold water valve 7 using parts 22a, and checks the elapsed timer at step S 15, the flow returns to step S 5. On the other hand, if the valve opening target value VC is greater than 100%, CPU 11 includes a digital output unit 1 in step S 40
Stops outputting the drive signal to the cold water valve driving section 22a from 0, check the elapsed timer at step S 15, the flow returns to step S 5.

【0062】このように、弁開度目標値VCが100%
を越えている場合、弁開度目標値VCが弁開度論理値V
Oより小さくなっても、CPU11は冷水弁7を閉じる
方向の駆動信号をデジタル出力部10から冷水弁駆動部
22aに出力させない。同様に、弁開度目標値VCが0
%を下回っている場合、弁開度目標値VCが弁開度論理
値より大きくなっていても、CPU11は冷水弁7を開
く方向の駆動信号をデジタル出力部10から冷水弁駆動
部22aに出力させないので、弁開度目標値VCと弁開
度論理値VOとの間に誤差が発生したとしても、弁開度
目標値VCが0≦VC≦100(%)の範囲内に戻る時
点で、両者の誤差を自動的に補正することができる。し
たがって、補正動作時に弁開度が急激に変化することが
なく、制御対象の温度に悪影響を与えることがなく、且
つ、弁開度論理値VOと実際の弁開度VBとの誤差を小
さくすることができる。また、実施形態3と同様、弁開
度目標値VCが下限値(−X)%となった場合は、冷水
弁7を閉じる方向の駆動信号をデジタル出力部10から
冷水弁駆動部22aに出力し、弁開度目標値VCが上限
値(100+Y)%となった場合は、冷水弁7を開く方
向の駆動信号をデジタル出力部10から冷水弁駆動部2
2aに出力することによって、キャリブレーション動作
を行っている。
As described above, the valve opening target value VC is 100%
Exceeds the target valve opening degree VC, the valve opening degree logical value V
Even if it becomes smaller than O, the CPU 11 does not output a drive signal for closing the chilled water valve 7 from the digital output unit 10 to the chilled water valve driving unit 22a. Similarly, if the valve opening target value VC is 0
%, The CPU 11 outputs a drive signal for opening the chilled water valve 7 from the digital output unit 10 to the chilled water valve driving unit 22a even if the valve opening target value VC is larger than the valve opening logical value. Therefore, even if an error occurs between the valve opening target value VC and the valve opening logical value VO, when the valve opening target value VC returns to the range of 0 ≦ VC ≦ 100 (%), The error between the two can be automatically corrected. Accordingly, the valve opening does not suddenly change during the correction operation, does not adversely affect the temperature of the control target, and reduces the error between the valve opening logical value VO and the actual valve opening VB. be able to. Further, similarly to the third embodiment, when the valve opening target value VC becomes the lower limit value (−X)%, a drive signal for closing the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a. When the valve opening target value VC reaches the upper limit value (100 + Y)%, a drive signal for opening the chilled water valve 7 is transmitted from the digital output unit 10 to the chilled water valve driving unit 2.
Calibration operation is performed by outputting to 2a.

【0063】[0063]

【発明の効果】上述のように、請求項1の発明は、冷水
又は温水と空気との間で熱交換を行う熱交換手段に、冷
水又は温水を供給する弁の弁開度を調節して、空気の温
度を制御する空気調和制御装置であって、弁を開閉する
弁駆動用モータを駆動するための駆動信号を発生する駆
動信号発生手段と、空気の温度を検出する温度検出手段
と、弁駆動用モータが弁を全開状態から全閉状態まで駆
動するのに要する弁トラベルタイムや制御目標温度や制
御演算に必要なパラメータを記憶するデータメモリと、
駆動信号発生手段が駆動信号を発生した時間の合計と弁
トラベルタイムとから現在の弁開度を演算し、温度検出
手段の検出した温度及び制御目標温度から弁の弁開度目
標値を演算するとともに、演算で求めた現在の弁開度と
弁開度目標値との差及び弁トラベルタイムから駆動信号
を発生する駆動時間を演算し、前記駆動時間だけ駆動信
号発生手段から駆動信号を発生させる中央演算処理部と
を備え、弁開度目標値が略0%又は略100%になった
場合、中央演算処理部は、前記駆動時間に予め設定され
た一定時間を加算した時間だけ駆動信号発生手段から駆
動信号を発生させて、実際の弁開度を略0%又は略10
0%とするとともに、演算で求めた現在の弁開度を略0
%又は略100%に設定して、実際の弁開度と演算で求
めた弁開度とを一致させるキャリブレーション動作を行
うことを特徴とする。したがって、弁開度目標値VCが
0%又は100%になった時だけ、キャリブレーション
動作が行われるので、弁開度論理値と実際の弁開度との
誤差を小さくするとともに、キャリブレーション動作に
よる温度調整動作への影響を小さくできるという効果が
ある。また、弁駆動用モータに、自ら回転角度を調整し
ながら弁を駆動するモータユニットを用いたり、モータ
の回転角度に比例して抵抗値が変化する抵抗器を弁駆動
用モータに設ける必要がないので、装置全体のコストア
ップを招くことがない。
As described above, according to the first aspect of the present invention, the opening degree of the valve for supplying cold water or hot water to the heat exchange means for exchanging heat between cold water or hot water and air is adjusted. An air conditioning control device that controls the temperature of air, a drive signal generating unit that generates a drive signal for driving a valve drive motor that opens and closes a valve, and a temperature detection unit that detects the temperature of air. A data memory for storing a valve travel time required for the valve drive motor to drive the valve from a fully open state to a fully closed state, a control target temperature, and parameters required for control calculation;
The current valve opening is calculated from the sum of the time during which the drive signal generating means has generated the drive signal and the valve travel time, and the valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature. At the same time, a drive time for generating a drive signal is calculated from the difference between the current valve opening and the valve opening target value obtained by the calculation and the valve travel time, and a drive signal is generated from the drive signal generating means for the drive time. A central processing unit, wherein when the valve opening target value becomes approximately 0% or approximately 100%, the central processing unit generates a driving signal for a time obtained by adding a predetermined time to the driving time. A drive signal is generated from the means to reduce the actual valve opening to approximately 0% or approximately 10%.
0%, and the current valve opening obtained by the calculation is approximately 0%.
% Or substantially 100%, and performs a calibration operation for matching the actual valve opening with the valve opening obtained by calculation. Therefore, the calibration operation is performed only when the valve opening target value VC becomes 0% or 100%, so that the error between the valve opening logical value and the actual valve opening is reduced, and the calibration operation is performed. This has the effect of reducing the effect on the temperature adjustment operation due to. Also, it is not necessary to use a motor unit that drives the valve while adjusting the rotation angle by itself, or to provide a valve drive motor with a resistor whose resistance value changes in proportion to the rotation angle of the motor, for the valve drive motor. Therefore, the cost of the entire apparatus does not increase.

【0064】請求項2の発明は、弁開度目標値が略0%
となって中央演算処理部がキャリブレーション動作を行
う間に、弁開度目標値が略0%から変化した場合、中央
演算処理部は演算で求めた弁開度を略0%に設定して、
通常の温度調整動作に復帰するとともに、弁開度目標値
が略100%となって中央演算処理部がキャリブレーシ
ョン動作を行う間に、弁開度目標値が略100%から変
化した場合、中央演算処理部は演算で求めた弁開度を略
100%に設定して、通常の温度調整動作に復帰してい
るので、キャリブレーション動作中に、弁開度の変化に
よって制御対象の温度に影響が及び、弁開度目標値が変
化すると、即座にキャリブレーション動作を終了してい
るので、キャリブレーション動作による温度調整動作へ
の影響をさらに小さくできるという効果がある。
According to a second aspect of the present invention, the target value of the valve opening is approximately 0%.
When the target value of the valve opening degree changes from approximately 0% while the central processing unit performs the calibration operation, the central processing unit sets the valve opening obtained by the calculation to approximately 0%. ,
When the valve opening target value changes from approximately 100% while the central processing unit performs the calibration operation while returning to the normal temperature adjustment operation and the valve opening target value becomes approximately 100%, the center The arithmetic processing unit sets the valve opening obtained by the calculation to approximately 100% and returns to the normal temperature adjustment operation. Therefore, during the calibration operation, a change in the valve opening affects the temperature of the control target. When the target value of the valve opening changes, the calibration operation is immediately terminated, so that the effect of the calibration operation on the temperature adjustment operation can be further reduced.

【0065】請求項3の発明は、冷水又は温水と空気と
の間で熱交換を行う熱交換手段に、冷水又は温水を供給
する弁の弁開度を調節して、空気の温度を制御する空気
調和制御装置であって、弁を開閉する弁駆動用モータを
駆動するための駆動信号を発生する駆動信号発生手段
と、空気の温度を検出する温度検出手段と、弁駆動用モ
ータが弁を全開状態から全閉状態まで駆動するのに要す
る弁トラベルタイムや制御目標温度や制御演算に必要な
パラメータを記憶するデータメモリと、駆動信号発生手
段が駆動信号を発生した時間の合計と弁トラベルタイム
とから現在の弁開度を演算し、温度検出手段の検出した
温度及び制御目標温度から弁の弁開度目標値を演算する
とともに、演算で求めた現在の弁開度と弁開度目標値と
の差及び弁トラベルタイムから駆動信号を発生する駆動
時間を演算し、前記駆動時間だけ駆動信号発生手段から
駆動信号を発生させる中央演算処理部とを備え、中央演
算処理部が弁開度目標値の下限値を0%よりも小さい値
に設定するとともに、弁開度目標値の上限値を100%
よりも大きい値に設定し、弁開度目標値が下限値に等し
くなった場合、中央演算処理部は弁を閉じる方向の駆動
信号を駆動信号発生手段から発生させ、弁開度目標値が
上限値に等しくなった場合、中央演算処理部は弁を開く
方向の駆動信号を駆動信号発生手段から発生させて、実
際の弁開度と演算で求めた弁開度とを一致させるキャリ
ブレーション動作を行うことを特徴とする。したがっ
て、弁開度目標値の範囲を下限値又は上限値に拡張する
ことにより、弁開度論理値と実際の弁開度との誤差が拡
張された範囲内に収まっている間は、弁のキャリブレー
ション動作は行われないので、キャリブレーション動作
による温度調整動作への影響を小さくすることができ
る。また、弁開度論理値と実際の弁開度との誤差が拡張
された範囲以上に拡大した場合は、弁のキャリブレーシ
ョン動作が行われるので、誤差を小さくして制御精度を
向上できるという効果がある。また、弁駆動用モータ
に、自ら回転角度を調整しながら弁を駆動するモータユ
ニットを用いたり、モータの回転角度に比例して抵抗値
が変化する抵抗器を弁駆動用モータに設ける必要がない
ので、装置全体のコストアップを招くことがない。
According to a third aspect of the present invention, the temperature of the air is controlled by adjusting the opening of a valve for supplying cold or hot water to a heat exchange means for exchanging heat between cold or hot water and air. An air-conditioning control device, wherein a drive signal generating means for generating a drive signal for driving a valve drive motor for opening and closing the valve, a temperature detection means for detecting the temperature of the air, and the valve drive motor controls the valve. A data memory that stores the valve travel time required to drive from the fully open state to the fully closed state, the control target temperature, and the parameters required for control calculation, and the sum of the time during which the drive signal generation means generated the drive signal and the valve travel time And the current valve opening degree is calculated from the temperature and the control target temperature detected by the temperature detecting means, and the current valve opening degree and the valve opening degree target value obtained by the calculation are calculated. Difference and valve travel A central processing unit for calculating a driving time for generating a driving signal from the time and generating a driving signal from the driving signal generating means for the driving time, wherein the central processing unit sets the lower limit value of the valve opening target value to 0. % And set the upper limit of the target valve opening to 100%.
When the valve opening target value is equal to the lower limit value, the central processing unit generates a driving signal in the direction of closing the valve from the driving signal generation means, and the valve opening target value is set to the upper limit. If the value becomes equal to the value, the central processing unit generates a drive signal in the direction of opening the valve from the drive signal generation means, and performs a calibration operation for matching the actual valve opening with the valve opening obtained by the calculation. It is characterized by performing. Therefore, by expanding the range of the valve opening target value to the lower limit or the upper limit, while the error between the logical value of the valve opening and the actual valve opening is within the expanded range, the valve position of the valve is not changed. Since the calibration operation is not performed, the influence of the calibration operation on the temperature adjustment operation can be reduced. Further, when the error between the logical value of the valve opening and the actual valve opening is expanded beyond the expanded range, the valve calibration operation is performed, so that the error can be reduced and the control accuracy can be improved. There is. Also, it is not necessary to use a motor unit that drives the valve while adjusting the rotation angle by itself, or to provide a valve drive motor with a resistor whose resistance value changes in proportion to the rotation angle of the motor, for the valve drive motor. Therefore, the cost of the entire apparatus does not increase.

【0066】請求項4の発明は、弁開度目標値が略10
0%を越える場合、中央演算処理部は弁を開く方向の駆
動信号のみを駆動信号発生手段から発生させ、弁開度目
標値が略0%を下回っている場合、中央演算処理部は弁
を閉じる方向の駆動信号のみを駆動信号発生手段から発
生させているので、弁開度論理値と実際の弁開度との誤
差が拡張された範囲内に収まっていても、弁開度目標値
が一旦拡張された範囲内に入り、その後0〜100%の
範囲内に戻れば、その過程で弁開度論理値の誤差を補正
でき、温度調整動作に影響を与えることなく、キャリブ
レーションを行えるという効果がある。
According to a fourth aspect of the present invention, the valve opening target value is approximately 10
When the value exceeds 0%, the central processing unit generates only the drive signal in the direction of opening the valve from the drive signal generating means. When the target valve opening is less than approximately 0%, the central processing unit controls the valve. Since only the drive signal in the closing direction is generated from the drive signal generation means, even if the error between the logical value of the valve opening and the actual valve opening is within the extended range, the target value of the valve opening is not changed. Once in the extended range and then back in the 0-100% range, errors in the valve opening logic can be corrected in the process and calibration can be performed without affecting the temperature adjustment operation. effective.

【0067】請求項5の発明は、温度調整動作開始時
に、中央演算処理部は弁を全閉又は全開させる駆動信号
を駆動信号発生手段から発生させ、演算で求めた弁開度
を略0%又は略100%に設定するキャリブレーション
動作を行っているので、弁開度論理値と実際の弁開度と
を一致させた状態で温度調整動作を開始できるという効
果がある。
According to a fifth aspect of the present invention, at the start of the temperature adjustment operation, the central processing unit generates a drive signal for completely closing or fully opening the valve from the drive signal generating means, and reduces the valve opening degree obtained by the calculation to approximately 0%. Alternatively, since the calibration operation is performed to be set to about 100%, there is an effect that the temperature adjustment operation can be started in a state where the logical value of the valve opening and the actual valve opening are matched.

【0068】請求項6の発明は、温度調整動作終了時
に、中央演算処理部は弁を全閉又は全開させる駆動信号
を駆動信号発生手段から発生させ、演算で求めた弁開度
を略0%又は略100%に設定するキャリブレーション
動作を行っているので、次回温度調整動作開始時にキャ
リブレーション動作を行う必要がなく、即座に温度調整
動作を開始できるという効果がある。
According to a sixth aspect of the present invention, at the end of the temperature adjustment operation, the central processing unit generates a drive signal for fully closing or fully opening the valve from the drive signal generation means, and reduces the valve opening obtained by the calculation to approximately 0%. Alternatively, since the calibration operation is performed to set the temperature to approximately 100%, there is no need to perform the calibration operation at the next start of the temperature adjustment operation, and the temperature adjustment operation can be started immediately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1の空気調和制御装置を用いるシステ
ムの概略構成図である。
FIG. 1 is a schematic configuration diagram of a system using an air-conditioning control device according to a first embodiment.

【図2】同上の動作を説明するフローチャートである。FIG. 2 is a flowchart illustrating the operation of the above.

【図3】(a)(b)は同上のキャリブレーション動作
を説明する図である。
FIGS. 3A and 3B are diagrams illustrating a calibration operation according to the first embodiment;

【図4】実施形態2の空気調和制御装置の動作を説明す
るフローチャートである。
FIG. 4 is a flowchart illustrating an operation of the air-conditioning control device according to Embodiment 2.

【図5】実施形態3の空気調和制御装置の動作を説明す
るフローチャートである。
FIG. 5 is a flowchart illustrating an operation of the air-conditioning control device according to Embodiment 3.

【図6】(a)(b)は同上のキャリブレーション動作
を説明する図である。
FIGS. 6A and 6B are diagrams illustrating a calibration operation according to the first embodiment.

【図7】(a)(b)は同上の別のキャリブレーション
動作を説明する図である。
FIGS. 7A and 7B are diagrams illustrating another calibration operation according to the first embodiment;

【図8】実施形態4の空気調和制御装置の動作を説明す
るフローチャートである。
FIG. 8 is a flowchart illustrating an operation of the air-conditioning control device according to Embodiment 4.

【図9】(a)(b)は同上のキャリブレーション動作
を説明する図である。
FIGS. 9A and 9B are diagrams illustrating a calibration operation according to the first embodiment.

【図10】従来の空気調和制御装置を用いるシステムの
概略構成図である。
FIG. 10 is a schematic configuration diagram of a system using a conventional air-conditioning control device.

【図11】(a)(b)は同上のキャリブレーション動
作を説明する図である。
FIGS. 11A and 11B are diagrams illustrating a calibration operation according to the first embodiment.

【符号の説明】[Explanation of symbols]

7 冷水弁 8 温水弁 10 デジタル出力部 11 CPU 22a 冷水弁駆動部 22a 温水弁駆動部 7 Cold water valve 8 Hot water valve 10 Digital output unit 11 CPU 22a Cold water valve drive unit 22a Hot water valve drive unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】冷水又は温水と空気との間で熱交換を行う
熱交換手段に、冷水又は温水を供給する弁の弁開度を調
節して、空気の温度を制御する空気調和制御装置であっ
て、弁を開閉する弁駆動用モータを駆動するための駆動
信号を発生する駆動信号発生手段と、空気の温度を検出
する温度検出手段と、弁駆動用モータが弁を全開状態か
ら全閉状態まで駆動するのに要する弁トラベルタイムや
制御目標温度や制御演算に必要なパラメータを記憶する
データメモリと、駆動信号発生手段が駆動信号を発生し
た時間の合計と弁トラベルタイムとから現在の弁開度を
演算し、温度検出手段の検出した温度及び制御目標温度
から弁の弁開度目標値を演算するとともに、演算で求め
た現在の弁開度と弁開度目標値との差及び弁トラベルタ
イムから駆動信号を発生する駆動時間を演算し、前記駆
動時間だけ駆動信号発生手段から駆動信号を発生させる
中央演算処理部とを備え、弁開度目標値が略0%又は略
100%になった場合、中央演算処理部は、前記駆動時
間に予め設定された一定時間を加算した時間だけ駆動信
号発生手段から駆動信号を発生させて、実際の弁開度を
略0%又は略100%とするとともに、演算で求めた現
在の弁開度を略0%又は略100%に設定して、実際の
弁開度と演算で求めた弁開度とを一致させるキャリブレ
ーション動作を行うことを特徴とする空気調和制御装
置。
An air conditioning control device for controlling the temperature of air by adjusting a valve opening of a valve for supplying cold or hot water to a heat exchange means for performing heat exchange between cold or hot water and air. A driving signal generating means for generating a driving signal for driving a valve driving motor for opening and closing the valve; a temperature detecting means for detecting the temperature of the air; and the valve driving motor fully closing the valve from a fully open state. A data memory that stores the valve travel time required to drive to the state, the control target temperature, and the parameters required for the control calculation, and the sum of the time during which the drive signal generation means generated the drive signal and the valve travel time are used to determine the current valve. Calculate the opening, calculate the valve opening target value of the valve from the temperature detected by the temperature detecting means and the control target temperature, and calculate the difference between the current valve opening and the valve opening target value obtained by the calculation and the valve opening. Drive signal from travel time A central processing unit for calculating the generated drive time and generating a drive signal from the drive signal generating means for the drive time, wherein the central processing is performed when the valve opening target value becomes approximately 0% or approximately 100%. The processing unit generates a drive signal from the drive signal generation unit for a time obtained by adding a predetermined time set in advance to the drive time, and sets the actual valve opening to approximately 0% or approximately 100%. Air conditioning control wherein the obtained current valve opening is set to approximately 0% or approximately 100%, and a calibration operation is performed to match the actual valve opening with the valve opening obtained by calculation. apparatus.
【請求項2】弁開度目標値が略0%となって中央演算処
理部がキャリブレーション動作を行う間に、弁開度目標
値が略0%から変化した場合、中央演算処理部は演算で
求めた弁開度を略0%に設定して、通常の温度調整動作
に復帰するとともに、弁開度目標値が略100%となっ
て中央演算処理部がキャリブレーション動作を行う間
に、弁開度目標値が略100%から変化した場合、中央
演算処理部は演算で求めた弁開度を略100%に設定し
て、通常の温度調整動作に復帰することを特徴とする請
求項1の空気調和制御装置。
2. If the valve opening target value changes from approximately 0% while the central processing unit performs the calibration operation while the target valve opening value is substantially 0%, the central processing unit performs the calculation. Is set to approximately 0% to return to the normal temperature adjustment operation, and while the valve opening target value is approximately 100% and the central processing unit performs the calibration operation, When the valve opening target value changes from approximately 100%, the central processing unit sets the valve opening calculated by the calculation to approximately 100% and returns to a normal temperature adjustment operation. 1 air conditioning control device.
【請求項3】冷水又は温水と空気との間で熱交換を行う
熱交換手段に、冷水又は温水を供給する弁の弁開度を調
節して、空気の温度を制御する空気調和制御装置であっ
て、弁を開閉する弁駆動用モータを駆動するための駆動
信号を発生する駆動信号発生手段と、空気の温度を検出
する温度検出手段と、弁駆動用モータが弁を全開状態か
ら全閉状態まで駆動するのに要する弁トラベルタイムや
制御目標温度や制御演算に必要なパラメータを記憶する
データメモリと、駆動信号発生手段が駆動信号を発生し
た時間の合計と弁トラベルタイムとから現在の弁開度を
演算し、温度検出手段の検出した温度及び制御目標温度
から弁の弁開度目標値を演算するとともに、演算で求め
た現在の弁開度と弁開度目標値との差及び弁トラベルタ
イムから駆動信号を発生する駆動時間を演算し、前記駆
動時間だけ駆動信号発生手段から駆動信号を発生させる
中央演算処理部とを備え、中央演算処理部が弁開度目標
値の下限値を0%よりも小さい値に設定するとともに、
弁開度目標値の上限値を100%よりも大きい値に設定
し、弁開度目標値が下限値に等しくなった場合、中央演
算処理部は弁を閉じる方向の駆動信号を駆動信号発生手
段から発生させ、弁開度目標値が上限値に等しくなった
場合、中央演算処理部は弁を開く方向の駆動信号を駆動
信号発生手段から発生させて、実際の弁開度と演算で求
めた弁開度とを一致させるキャリブレーション動作を行
うことを特徴とする空気調和制御装置。
3. An air conditioner for controlling the temperature of air by adjusting the opening of a valve for supplying cold or hot water to heat exchange means for exchanging heat between cold or hot water and air. A driving signal generating means for generating a driving signal for driving a valve driving motor for opening and closing the valve; a temperature detecting means for detecting the temperature of the air; and the valve driving motor fully closing the valve from a fully open state. A data memory that stores the valve travel time required to drive to the state, the control target temperature, and the parameters required for the control calculation, and the sum of the time during which the drive signal generation means generated the drive signal and the valve travel time are used to determine the current valve. Calculate the opening, calculate the valve opening target value of the valve from the temperature detected by the temperature detecting means and the control target temperature, and calculate the difference between the current valve opening and the valve opening target value obtained by the calculation and the valve opening. Drive signal from travel time A central processing unit for calculating the generated driving time and generating a driving signal from the driving signal generating means for the driving time, wherein the central processing unit sets the lower limit value of the target valve opening value to a value smaller than 0%. Set to
When the upper limit value of the valve opening target value is set to a value larger than 100% and the valve opening target value becomes equal to the lower limit value, the central processing unit generates a drive signal for closing the valve by a drive signal generating means. When the target value of the valve opening is equal to the upper limit value, the central processing unit generates a drive signal in the direction of opening the valve from the drive signal generating means, and obtains the actual valve opening and calculation. An air conditioning control device, which performs a calibration operation for matching a valve opening.
【請求項4】弁開度目標値が略100%を越える場合、
中央演算処理部は弁を開く方向の駆動信号のみを駆動信
号発生手段から発生させ、弁開度目標値が略0%を下回
っている場合、中央演算処理部は弁を閉じる方向の駆動
信号のみを駆動信号発生手段から発生させることを特徴
とする請求項3記載の空気調和制御装置。
4. When the valve opening target value exceeds approximately 100%,
The central processing unit generates only a drive signal for opening the valve from the drive signal generating means. If the target value of the valve opening is less than approximately 0%, the central processing unit generates only the drive signal for closing the valve. 4. The air-conditioning control device according to claim 3, wherein the control signal is generated from the drive signal generating means.
【請求項5】温度調整動作開始時に、中央演算処理部は
弁を全閉又は全開させる駆動信号を駆動信号発生手段か
ら発生させ、演算で求めた弁開度を略0%又は略100
%に設定するキャリブレーション動作を行うことを特徴
とする請求項1乃至4記載の空気調和制御装置。
5. When the temperature adjustment operation is started, the central processing unit generates a drive signal for completely closing or fully opening the valve from the drive signal generating means, and reduces the valve opening obtained by the calculation to approximately 0% or approximately 100%.
5. The air conditioning control device according to claim 1, wherein a calibration operation for setting the percentage is performed.
【請求項6】温度調整動作終了時に、中央演算処理部は
弁を全閉又は全開させる駆動信号を駆動信号発生手段か
ら発生させ、演算で求めた弁開度を略0%又は略100
%に設定するキャリブレーション動作を行うことを特徴
とする請求項1乃至5記載の空気調和制御装置。
6. When the temperature adjustment operation is completed, the central processing unit generates a drive signal for completely closing or fully opening the valve from the drive signal generating means, and reduces the valve opening obtained by the calculation to approximately 0% or approximately 100%.
The air-conditioning control device according to claim 1, wherein a calibration operation for setting the percentage is performed.
JP22994997A 1997-08-26 1997-08-26 Air conditioning control device Expired - Fee Related JP3794118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22994997A JP3794118B2 (en) 1997-08-26 1997-08-26 Air conditioning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22994997A JP3794118B2 (en) 1997-08-26 1997-08-26 Air conditioning control device

Publications (2)

Publication Number Publication Date
JPH1163630A true JPH1163630A (en) 1999-03-05
JP3794118B2 JP3794118B2 (en) 2006-07-05

Family

ID=16900249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22994997A Expired - Fee Related JP3794118B2 (en) 1997-08-26 1997-08-26 Air conditioning control device

Country Status (1)

Country Link
JP (1) JP3794118B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002268702A (en) * 2001-03-07 2002-09-20 Hitachi Valve Ltd Electric controller
JP2005147458A (en) * 2003-11-13 2005-06-09 Sanki Eng Co Ltd Outside air processing device for air conditioning
CN115045852A (en) * 2021-03-09 2022-09-13 山东朗进科技股份有限公司 Control method and control system for air conditioner air valve of railway vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002268702A (en) * 2001-03-07 2002-09-20 Hitachi Valve Ltd Electric controller
JP2005147458A (en) * 2003-11-13 2005-06-09 Sanki Eng Co Ltd Outside air processing device for air conditioning
CN115045852A (en) * 2021-03-09 2022-09-13 山东朗进科技股份有限公司 Control method and control system for air conditioner air valve of railway vehicle

Also Published As

Publication number Publication date
JP3794118B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
CN104802617B (en) Control method for preventing rotation clogging and step loss of stepping motor
US5564625A (en) Method for controlling motor vehicle interior temperature
JPH1163630A (en) Controller for air conditioning
JP2001310618A (en) Air conditioning control method and outside air temperature treating method for air conditioner for vehicle, and air conditioner for vehicle
JPH11173631A (en) Air conditioner controller
JPS5919849B2 (en) Automatic air conditioning system for vehicles
JP2661444B2 (en) Air conditioner
CN111645484B (en) Self-adaptive control method for vehicle air conditioner air door actuator
JPH02219941A (en) Method for controlling air conditioner
JPH0886489A (en) Air conditioning system
JP2011080652A (en) Damper failure diagnosis device for air conditioning system
JPH0763392A (en) Controller for air conditioner
JPH07286761A (en) Air conditioner
JPH10318612A (en) Control method for air conditioner
JPH0717238A (en) Air-conditioner for vehicle
JPH0258125B2 (en)
JP3075083B2 (en) Vehicle air conditioning controller
JPH02203145A (en) Controlling method of air-conditioner
JP3334068B2 (en) VAV control system
JPH09322597A (en) Method for controlling motor actuator of air conditioner for vehicle and motor actuator controller of the conditioner for the vehicle
CN118003868A (en) Control method of active air inlet grille system, active air inlet grille system and vehicle
JP2961679B2 (en) Control mode determination method for air conditioning system
KR20230148988A (en) Air conditioning system for automotive vehicles
CN115614923A (en) Air conditioner defrosting and cold air preventing control method, air conditioner and medium
JPH0299420A (en) Air-conditioner for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

LAPS Cancellation because of no payment of annual fees