JPH1160523A - Production of 1,6-hexanediol - Google Patents

Production of 1,6-hexanediol

Info

Publication number
JPH1160523A
JPH1160523A JP9218537A JP21853797A JPH1160523A JP H1160523 A JPH1160523 A JP H1160523A JP 9218537 A JP9218537 A JP 9218537A JP 21853797 A JP21853797 A JP 21853797A JP H1160523 A JPH1160523 A JP H1160523A
Authority
JP
Japan
Prior art keywords
acid
hexanediol
catalyst
ruthenium
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9218537A
Other languages
Japanese (ja)
Other versions
JP3873389B2 (en
Inventor
Yoshinori Hara
善則 原
Hiroyoshi Endou
浩悦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP21853797A priority Critical patent/JP3873389B2/en
Priority to US09/034,334 priority patent/US5969194A/en
Priority to TW087103245A priority patent/TW500716B/en
Publication of JPH1160523A publication Critical patent/JPH1160523A/en
Application granted granted Critical
Publication of JP3873389B2 publication Critical patent/JP3873389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain 1,6-hexanediol in high yield by reaction of a specific compound such as adipic acid with hydrogen in a liquid phase in the presence of a catalyst prepared by bearing ruthenium and tin on a carbonaceous carrier previously treated with an acid. SOLUTION: This 1,6-hexanediol is obtained by hydrogenation of a compound selected from adipic acid, oxycaproic acid and caprolactone in a liquid phase pref. under a pressure of 1-25 Mpa at 100-250 deg.C in the presence of a catalyst prepared by beating ruthenium and tin on a carbonaceous carrier. Specifically, the above catalyst is prepared, for example, by the following process: a carbonaceous carrier (pref. active carbon) is put into a 5-60 wt.% aqueous nitric acid solution pref. at 50-90 deg.C for 10 min or longer to conduct an acid treatment, and the resultant carrier is dried until its moisture content comes to pref. <=1 wt.% and then immersed in a solution prepared by dissolving stock compounds (e.g. mineral acid salts) of the metallic components in a solvent (e.g. water) to effect bearing pref. each 1-20 wt.% of ruthenium and tin and, as necessary, platinum at 0.1-5 wt. times based on the ruthenium on the carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アジピン酸、カプ
ロラクトン等を原料に、エステル化工程を経ることなく
直接水素化して、1,6−ヘキサンジオールを製造する
方法に関するものである。1,6−ヘキサンジオール
は、ポリウレタン、ポリエステル系可塑剤、不飽和ポリ
エステル、1,6−ヘキサンジオールジアクリレートの
製造原料として有用である(特開昭62−184640
号、特開昭56−78844号、特開平5−59306
号、同3−227389号参照)。
The present invention relates to a method for producing 1,6-hexanediol by directly hydrogenating adipic acid, caprolactone or the like as a raw material without going through an esterification step. 1,6-hexanediol is useful as a raw material for producing polyurethane, polyester plasticizer, unsaturated polyester, and 1,6-hexanediol diacrylate (Japanese Patent Application Laid-Open No. 62-184640).
JP-A-56-78844, JP-A-5-59306
No. 3-227389).

【0002】[0002]

【従来の技術】従来、1,6−ヘキサンジオールを製造
する方法としては、例えば、特公昭53−33567号
公報に記載されているように、シクロヘキサンを酸化し
て、アジピン酸やオキシカプロン酸を生成させ、これ
を、メタノール、エタノール、1,6−ヘキサンジオー
ルなどのアルコール類でエステル化し、得られたエステ
ルを水添触媒の存在下に水素と反応させて1,6−ヘキ
サンジオールを生成させる方法が知られている。しか
し、この方法はエステル化工程を経由しなければならな
いこと、及び水添触媒として銅系触媒を使用しているた
め高温、高圧下という比較的厳しい反応条件を採用しな
ければならないという問題があった。この問題点を解決
する手段として、本発明者達はルテニウムと錫を含む触
媒を用いて、アジピン酸、カプロラクトン等を直接水添
して1,6−ヘキサンジオールを製造する方法を提案し
た(特願平9−048889号参照)。
2. Description of the Related Art Conventionally, as a method for producing 1,6-hexanediol, for example, as described in JP-B-53-33567, cyclohexane is oxidized to convert adipic acid or oxycaproic acid. And esterify it with alcohols such as methanol, ethanol and 1,6-hexanediol, and react the resulting ester with hydrogen in the presence of a hydrogenation catalyst to produce 1,6-hexanediol. Methods are known. However, this method has a problem that it has to go through an esterification step and that relatively harsh reaction conditions of high temperature and high pressure must be adopted because a copper-based catalyst is used as a hydrogenation catalyst. Was. As a means for solving this problem, the present inventors have proposed a method for producing 1,6-hexanediol by directly hydrogenating adipic acid, caprolactone, or the like using a catalyst containing ruthenium and tin. No. 9-0488889).

【0003】[0003]

【発明が解決しようとする課題】このルテニウムと錫を
含む触媒を用いる水添方法によれば、従来の水添触媒を
用いる方法に較べて、穏和な条件下で反応を進行させる
ことができるが、触媒の反応活性及び選択性を更に向上
させることが望ましい。本発明はこの要望に応えようと
するものである。
According to the hydrogenation method using a catalyst containing ruthenium and tin, the reaction can proceed under mild conditions as compared with the conventional method using a hydrogenation catalyst. It is desirable to further improve the reaction activity and selectivity of the catalyst. The present invention addresses this need.

【0004】[0004]

【課題を解決するための手段】本発明によれば、アジピ
ン酸、オキシカプロン酸及びカプロラクトンから選ばれ
た化合物を、ルテニウム及び錫を炭素質担体に担持した
触媒の存在下、液相中で水素と反応させて1,6−ヘキ
サンジオールを生成させる方法において、触媒として予
め酸で処理した炭素質担体にルテニウム及び錫を担持さ
せて調製した触媒を用いることにより、高収率で1,6
−ヘキサンジオールを製造することができる。
According to the present invention, a compound selected from adipic acid, oxycaproic acid and caprolactone is converted into hydrogen in a liquid phase in the presence of a catalyst having ruthenium and tin supported on a carbonaceous carrier. And producing 1,6-hexanediol by using a catalyst prepared by supporting ruthenium and tin on a carbonaceous carrier previously treated with an acid as a catalyst, thereby obtaining 1,6 in high yield.
-Hexanediol can be produced.

【0005】[0005]

【発明の実施の形態】本発明で1,6−ヘキサンジオー
ルの製造に用いられる原料は、アジピン酸、オキシカプ
ロン酸又はカプロラクトンである。これらは単独でも混
合物としても用いることができる。このような原料の1
例は、シクロヘキサンを酸化して得られる炭素数6のカ
ルボン酸を含む混合物である。例えば、特公平6−99
345号公報に記載されている様に、シクロヘキサンを
酸化触媒の存在下、分子状酸素で酸化して得られる反応
生成液中に、主生成物であるシクロヘキサノン、シクロ
ヘキサノールなどと共に含まれている副生カルボン酸類
を、反応液から抽出分離して原料とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The raw material used for producing 1,6-hexanediol in the present invention is adipic acid, oxycaproic acid or caprolactone. These can be used alone or as a mixture. One of such raw materials
An example is a mixture containing a carboxylic acid having 6 carbon atoms obtained by oxidizing cyclohexane. For example, Tokuho 6-99
As described in Japanese Patent No. 345, a reaction product obtained by oxidizing cyclohexane with molecular oxygen in the presence of an oxidation catalyst contains secondary products such as cyclohexanone and cyclohexanol, which are main products. Raw carboxylic acids can be extracted and separated from the reaction solution to obtain a raw material.

【0006】本発明で用いる触媒は、炭素質担体に活性
成分としてルテニウム及び錫を担持させて調製したもの
である。ルテニウム及び錫に加えて白金を担持させると
触媒活性が向上する。炭素質担体としては活性炭が好ま
しいが、グラファイトなどを用いることもできる。本発
明では、炭素質担体は、予め酸で処理する前処理を経て
から触媒の調製に用いる。酸処理は、炭素質担体を鉱
酸、例えば硝酸、塩酸、硫酸、過塩素酸、次亜塩素酸な
どの水溶液中に投入して、常温ないし加温下に数分間な
いし数時間程度保持すればよい。一般に処理温度が高い
ほど短時間の処理で所定の効果が得られる。通常は硝酸
水溶液を用いて、30〜100℃、特に50〜90℃の
温度で酸処理を行う。
The catalyst used in the present invention is prepared by supporting ruthenium and tin as active components on a carbonaceous carrier. When platinum is supported in addition to ruthenium and tin, the catalytic activity is improved. Activated carbon is preferred as the carbonaceous carrier, but graphite or the like can also be used. In the present invention, the carbonaceous carrier is used in the preparation of the catalyst after having been subjected to a pretreatment in which it is previously treated with an acid. The acid treatment is performed by introducing the carbonaceous carrier into a mineral acid, for example, an aqueous solution of nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, hypochlorous acid, etc., and keeping it at room temperature or under heating for several minutes to several hours. Good. In general, the higher the processing temperature, the more the predetermined effect can be obtained in a shorter processing time. Usually, the acid treatment is performed using an aqueous nitric acid solution at a temperature of 30 to 100 ° C, particularly 50 to 90 ° C.

【0007】硝酸水溶液の濃度は1〜75重量%、特に
5〜60重量%が好ましい。処理に要する時間は温度に
より異なるが、90℃前後で処理する場合には少くとも
1分間、通常は10分間以上処理するのが好ましい。処
理時間の上限は限定的ではなく、通常は1時間程度で十
分であるが、所望ならば更に長時間の処理を行ってもよ
い。炭素質担体を酸処理してから触媒調製に用いること
により高性能の触媒が得られる理由は不明であるが、触
媒性能に悪影響を及ぼす炭素質担体中の不純物が除去さ
れたり、炭素質担体に含酸素官能基が付与されるなどの
現象が生じているものと推定される。
The concentration of the aqueous nitric acid solution is preferably 1 to 75% by weight, particularly preferably 5 to 60% by weight. The time required for the treatment varies depending on the temperature, but when the treatment is carried out at around 90 ° C., it is preferable to carry out the treatment for at least 1 minute, usually 10 minutes or more. The upper limit of the processing time is not limited, and usually about one hour is sufficient. However, if desired, the processing may be performed for a longer time. The reason why a high-performance catalyst can be obtained by treating the carbonaceous carrier with an acid and then using it for catalyst preparation is unknown, but impurities in the carbonaceous carrier that adversely affect the catalytic performance are removed or the carbonaceous carrier is removed. It is presumed that phenomena such as the provision of oxygen-containing functional groups have occurred.

【0008】酸処理を経た炭素質担体は十分に水洗して
付着している酸を除去したのち触媒調製に用いるが、そ
の前に含水率が7重量%以下になるまで乾燥するのが好
ましい。含水率は低い方がよく、5重量%以下、特に1
重量%以下となるまで乾燥するのが好ましい。乾燥方法
は任意であるが、例えば空気や窒素などの乾燥ガスの流
通下に100℃以上に加熱したり、10mmHg以下の
減圧下に50℃以上に加熱すればよい。なお、含水率
は、TG−DTA測定において、室温から185℃まで
の範囲の重量減少として測定するものとする。炭素質担
体の含水率を7重量%以下に低下させることが触媒性能
に好影響を及ぼす理由は不明であるが、乾燥により炭素
質担体の表面状態が変化し、それにより担持させる活性
成分の形態や分布にも変化が生ずるためではないかと考
えられる。
The acid-treated carbonaceous carrier is sufficiently washed with water to remove the adhering acid, and then used in the preparation of the catalyst. Before that, the carbonaceous carrier is preferably dried until the water content becomes 7% by weight or less. The lower the water content is, the better the moisture content is 5% by weight or less, especially
It is preferable to dry until it becomes not more than% by weight. The drying method is optional, but for example, heating to 100 ° C. or higher under a flow of a drying gas such as air or nitrogen, or heating to 50 ° C. or higher under a reduced pressure of 10 mmHg or less. The water content is measured as a weight loss in a range from room temperature to 185 ° C. in TG-DTA measurement. It is not clear why reducing the water content of the carbonaceous carrier to 7% by weight or less has a favorable effect on the catalytic performance. However, drying changes the surface state of the carbonaceous carrier, thereby causing the form of the active ingredient to be supported. It is thought that the change occurs in the distribution and the distribution.

【0009】上述の酸処理及び乾燥処理を経た炭素質担
体への活性成分の担持は、浸漬法、イオン交換法、含浸
法など担持触媒の調製に常用されている任意の方法で行
うことができる。なかでも特に簡便なのは、浸漬法であ
る。浸漬法によるときは、担持する金属成分の原料化合
物を溶媒、例えば、水に溶解して金属化合物の水溶液と
し、この溶液に上述の酸処理及び乾燥処理を経た炭素質
担体を浸漬して担体に金属成分を担持させる。担体に各
金属成分を担持させる順序については特に制限はなく、
全ての金属成分を同時に担持しても、各成分を個別に担
持してもよい。また所望ならば各成分を複数回に分けて
担持してもよい。
The loading of the active ingredient on the carbonaceous carrier after the above-mentioned acid treatment and drying treatment can be carried out by any method commonly used for preparing a supported catalyst, such as a dipping method, an ion exchange method, and an impregnation method. . Among them, particularly convenient is the immersion method. When the immersion method is used, the raw material compound of the metal component to be supported is dissolved in a solvent, for example, water to form an aqueous solution of the metal compound, and the carbonaceous carrier that has been subjected to the above-described acid treatment and drying treatment is immersed in the solution to form a carrier. A metal component is supported. There is no particular limitation on the order in which the metal components are supported on the carrier,
All metal components may be supported simultaneously, or each component may be supported individually. If desired, each component may be carried in a plurality of times.

【0010】触媒調製に用いる各金属成分の原料化合物
としては、触媒の調製法にもよるが、通常は硝酸塩、硫
酸塩、塩酸塩などの鉱酸塩が用いられる。また、これら
以外にも酢酸塩などの有機酸塩、水酸化物、酸化物、更
には有機金属化合物や錯塩なども用いることができる。
担体に金属成分を担持したならば乾燥し、次いで所望に
より焼成、還元して触媒とする。乾燥は通常は200℃
以下の温度で、減圧下に保持するか又は空気などの乾燥
ガスを流通させればよい。金属成分の担持を複数回に分
けて行う場合には、担持を行う毎に乾燥するのが好まし
い。焼成は通常100〜600℃の温度で、空気や窒素
などを通気しながら行えばよい。また還元は液相還元又
は気相還元のいずれで行ってもよい。通常は水素やメタ
ノールなどを還元ガスとして、100〜600℃、好ま
しくは200〜500℃で気相還元する。ルテニウム及
び錫の担持量は、担体に対して、それぞれ金属として
0.5〜50重量%、好ましくは1〜20重量%であ
る。また白金はルテニウムに対して0.1〜5重量倍存
在させるのが好ましい。白金を含む触媒を調製する場合
には、先ず担体にルテニウムと錫とを担持させて乾燥、
還元処理し、次いでこれに白金を担持させるのが好まし
い。
As a raw material compound of each metal component used in the preparation of the catalyst, mineral salts such as nitrates, sulfates, hydrochlorides and the like are usually used depending on the preparation method of the catalyst. In addition, organic acid salts such as acetates, hydroxides, oxides, organic metal compounds and complex salts can also be used.
After the metal component is supported on the support, it is dried, and then, if desired, calcined and reduced to obtain a catalyst. Drying is usually 200 ° C
At the following temperature, the pressure may be maintained under reduced pressure or a dry gas such as air may be passed. In the case where the loading of the metal component is performed in a plurality of times, it is preferable to dry each time the loading is performed. The sintering may be performed usually at a temperature of 100 to 600 ° C. while passing air, nitrogen or the like. Further, the reduction may be performed by either liquid phase reduction or gas phase reduction. Usually, gas-phase reduction is carried out at 100 to 600 ° C, preferably 200 to 500 ° C, using hydrogen, methanol or the like as a reducing gas. The supported amount of ruthenium and tin is 0.5 to 50% by weight, preferably 1 to 20% by weight, as a metal, based on the carrier. Platinum is preferably present in an amount of 0.1 to 5 times the weight of ruthenium. In the case of preparing a catalyst containing platinum, first, ruthenium and tin are supported on a carrier and dried,
It is preferable to carry out a reduction treatment and then carry platinum thereon.

【0011】本発明では、上記のルテニウム及び錫を炭
素質担体に担持させた触媒を用いて、液相中でアジピン
酸などの水添を行う。反応は無溶媒で行うこともできる
が、通常は溶媒中で行われる。溶媒としては、水、メタ
ノールやエタノールなどのアルコール類、テトラヒドロ
フランやジオキサンなどのエーテル類、ヘキサン、デカ
リンなどの炭化水素類など、常用の溶媒を用いることが
できる。好ましくは水や含水メタノールなどの水性溶媒
を用いる。水添反応は通常、50〜350℃、好ましく
は100〜250℃の温度、及び0.1〜30MPa、
好ましくは1〜25MPaの圧力の下で行われる。反応
は連続、回分のいずれで行ってもよく、また反応型式と
しては液相懸濁反応、固定床流通反応のいずれをも採用
することができる。反応生成液からは蒸留など適宜の手
段により1,6−ヘキサンジオールを回収する。反応液
中の未反応原料や反応中間体、例えば1,6−ヘキサン
ジオールと原料とのエステルなどは、回収して反応原料
として再使用することができる。
In the present invention, hydrogenation of adipic acid or the like is performed in a liquid phase using the above-mentioned catalyst in which ruthenium and tin are supported on a carbonaceous carrier. The reaction can be carried out without a solvent, but is usually carried out in a solvent. Usable solvents include water, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, and hydrocarbons such as hexane and decalin. Preferably, an aqueous solvent such as water or hydrated methanol is used. The hydrogenation reaction is usually performed at a temperature of 50 to 350 ° C, preferably 100 to 250 ° C, and 0.1 to 30 MPa,
It is preferably performed under a pressure of 1 to 25 MPa. The reaction may be carried out either continuously or batchwise, and the reaction type may be any of a liquid phase suspension reaction and a fixed bed flow reaction. 1,6-hexanediol is recovered from the reaction product liquid by an appropriate means such as distillation. Unreacted raw materials and reaction intermediates in the reaction solution, for example, esters of 1,6-hexanediol and raw materials, can be recovered and reused as reaction raw materials.

【0012】[0012]

【実施例】以下に実施例を挙げて本発明を更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。なお、特に表示がな
い限り、以下において「%」は「重量%」を示す。ま
た、反応成績のうち、原料の転化率は酸価の測定値から
算出し、1,6−ヘキサンジオールの収率はガスクロマ
トグラフィーの分析値から算出した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. In the following, “%” indicates “% by weight” unless otherwise indicated. In the reaction results, the conversion of the raw material was calculated from the measured value of the acid value, and the yield of 1,6-hexanediol was calculated from the analysis value of gas chromatography.

【0013】実施例1 触媒調製;活性炭(三菱化学社製 CX−2;粒径10
〜20メッシュ)を、50%硝酸水溶液で、95℃、3
時間加熱処理したのち濾過した。水で洗浄後、2mmH
gの減圧下、80℃で5時間乾燥した。得られた活性炭
の含水率は0.95%であった。5N−HCl水溶液
3.6mlに、RuCl3 ・3H2 Oを1.578g、
2 PtCl6 ・6H2 Oを0.258g、SnCl2
・2H2 Oを0.95g加えて溶解した。この混合溶液
に上記の活性炭8.55gを加えた。エバポレーターに
て60℃、25mmHgの減圧下で溶媒を留去したの
ち、アルゴン流通下に150℃で2時間乾燥した。次い
で水素気流下、450℃で2時間還元し、6%Ru−1
%Pt−5%Sn/活性炭触媒を得た。
Example 1 Preparation of catalyst; activated carbon (CX-2 manufactured by Mitsubishi Chemical Corporation; particle size: 10)
2020 mesh) in a 50% aqueous nitric acid solution at 95 ° C., 3
After heating for an hour, the mixture was filtered. After washing with water, 2mmH
The resultant was dried at 80 ° C. for 5 hours under a reduced pressure of 5 g. Activated carbon obtained
Was 0.95%. 5N-HCl aqueous solution
3.6 ml of RuClThree・ 3HTwo1.578 g of O,
H TwoPtCl6・ 6HTwo0.258 g of O, SnClTwo
・ 2HTwo0.95 g of O was added and dissolved. This mixed solution
8.55 g of the above activated carbon was added to the mixture. To evaporator
At 60 ° C. under a reduced pressure of 25 mmHg.
Then, it was dried at 150 ° C. for 2 hours under flowing argon. Next
In a hydrogen stream at 450 ° C. for 2 hours, and 6% Ru-1
% Pt-5% Sn / activated carbon catalyst was obtained.

【0014】反応;200ml誘導攪拌式オートクレー
ブに、アジピン酸8.5g、カプロラクトン11.5
g、水80g及び上記の触媒4gをアルゴン雰囲気下で
仕込んだ。水素圧1MPa下で220℃まで昇温し、2
20℃に達した時点で10MPaになるように水素を圧
入して反応を開始した。定圧で4時間反応させたのち反
応液を抜き出した。反応液について原料の転化率及び
1,6−ヘキサンジオールの収率を求めた。その結果、
転化率は95.9%であり、1,6−ヘキサンジオール
の収率は79.6モル%であった。水素の吸収量から反
応時間1時間での擬1次反応速度定数を算出したところ
0.37/hrであった。
Reaction: In a 200 ml induction-stirring autoclave, 8.5 g of adipic acid and 11.5 of caprolactone were added.
g, water 80 g and the above catalyst 4 g were charged under an argon atmosphere. The temperature was raised to 220 ° C under a hydrogen pressure of 1 MPa,
When the temperature reached 20 ° C., the reaction was started by injecting hydrogen to 10 MPa. After reacting at a constant pressure for 4 hours, the reaction solution was extracted. The conversion rate of the raw materials and the yield of 1,6-hexanediol were determined for the reaction solution. as a result,
The conversion was 95.9%, and the yield of 1,6-hexanediol was 79.6 mol%. A pseudo first-order reaction rate constant at a reaction time of 1 hour was calculated from the amount of absorbed hydrogen to be 0.37 / hr.

【0015】比較例1 実施例1において硝酸水溶液による活性炭の処理を行わ
なかった以外は、実施例1と全く同様にして触媒を調製
した。触媒の含水率は0.95%であった。この触媒を
用いた以外は実施例1と全く同様にして反応を行った結
果、転化率は77.2%であり、1,6−ヘキサンジオ
ールの収率は34.0モル%であった。擬1次反応速度
定数は0.23/hrであった。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that the treatment of the activated carbon with the aqueous nitric acid solution was not performed. The water content of the catalyst was 0.95%. The reaction was carried out in exactly the same manner as in Example 1 except that this catalyst was used. As a result, the conversion was 77.2%, and the yield of 1,6-hexanediol was 34.0 mol%. The pseudo-first-order rate constant was 0.23 / hr.

【0016】実施例2 実施例1の触媒調製において、水洗後の減圧乾燥を2m
mHgの減圧下、室温で5時間に変更したところ、得ら
れた活性炭の含水率は7.79%であった。この活性炭
を用いた以外は実施例1と全く同様にして6%Ru−1
%Pt−5%Sn/活性炭触媒を調製した。この触媒を
用いた以外は実施例1と全く同様にして反応を行った結
果、転化率は87.9%であり、1,6−ヘキサンジオ
ールの収率は57.6モル%であった。擬1次反応速度
定数は0.31/hrであった。
Example 2 In the preparation of the catalyst of Example 1, drying under reduced pressure after washing with water was performed for 2 m.
When the temperature was changed to 5 hours at room temperature under reduced pressure of mHg, the water content of the obtained activated carbon was 7.79%. Except that this activated carbon was used, 6% Ru-1 was used in exactly the same manner as in Example 1.
% Pt-5% Sn / activated carbon catalyst was prepared. The reaction was carried out in exactly the same manner as in Example 1 except that this catalyst was used. As a result, the conversion was 87.9%, and the yield of 1,6-hexanediol was 57.6 mol%. The pseudo-first-order reaction rate constant was 0.31 / hr.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アジピン酸、オキシカプロン酸及びカプ
ロラクトンから選ばれた化合物を、ルテニウム及び錫を
炭素質担体に担持した触媒の存在下、液相中で水素と反
応させて1,6−ヘキサンジオールを製造する方法にお
いて、予め酸で処理した炭素質担体にルテニウム及び錫
を担持させて調製した触媒を用いることを特徴とする
1,6−ヘキサンジオールの製造法。
1. A compound selected from adipic acid, oxycaproic acid and caprolactone, which is reacted with hydrogen in a liquid phase in the presence of a catalyst in which ruthenium and tin are supported on a carbonaceous carrier to give 1,6-hexanediol. , Wherein a catalyst prepared by supporting ruthenium and tin on a carbonaceous support previously treated with an acid is used.
【請求項2】 予め酸で処理したのち含水率が7重量%
以下となるまで乾燥した炭素質担体にルテニウム及び錫
を担持させて調製した触媒を用いることを特徴とする、
請求項1記載の1,6−ヘキサンジオールの製造法。
2. A water content of 7% by weight after pre-treatment with an acid.
Characterized by using a catalyst prepared by supporting ruthenium and tin on a carbonaceous carrier dried to the following,
The method for producing 1,6-hexanediol according to claim 1.
【請求項3】 炭素質担体として、活性炭を硝酸で処理
したのち含水率が7重量%以下となるまで乾燥したもの
を用いることを特徴とする、請求項1記載の1,6−ヘ
キサンジオールの製造法。
3. The 1,6-hexanediol according to claim 1, wherein the carbonaceous carrier is obtained by treating activated carbon with nitric acid and then drying it until the water content becomes 7% by weight or less. Manufacturing method.
【請求項4】 触媒が、炭素質担体にルテニウム及び錫
に加えて白金を担持したものであることを特徴とする、
請求項1ないし3のいずれかに記載の1,6−ヘキサン
ジオールの製造法。
4. The catalyst according to claim 1, wherein the catalyst comprises platinum on a carbonaceous carrier in addition to ruthenium and tin.
A method for producing 1,6-hexanediol according to any one of claims 1 to 3.
【請求項5】 反応を、水性媒体中で、温度50〜35
0℃、圧力0.1〜30MPaの条件下で行うことを特
徴とする、請求項1ないし4のいずれかに記載の1,6
−ヘキサンジオールの製造法。
5. The reaction is carried out in an aqueous medium at a temperature of 50-35.
The method according to any one of claims 1 to 4, wherein the reaction is performed under the conditions of 0 ° C and a pressure of 0.1 to 30 MPa.
-A method for producing hexanediol.
JP21853797A 1997-03-04 1997-08-13 Method for producing 1,6-hexanediol Expired - Lifetime JP3873389B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21853797A JP3873389B2 (en) 1997-08-13 1997-08-13 Method for producing 1,6-hexanediol
US09/034,334 US5969194A (en) 1997-03-04 1998-03-04 Process for preparing 1, 6-hexanediol
TW087103245A TW500716B (en) 1997-03-04 1998-03-04 A method for producing 1,6-hexanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21853797A JP3873389B2 (en) 1997-08-13 1997-08-13 Method for producing 1,6-hexanediol

Publications (2)

Publication Number Publication Date
JPH1160523A true JPH1160523A (en) 1999-03-02
JP3873389B2 JP3873389B2 (en) 2007-01-24

Family

ID=16721491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21853797A Expired - Lifetime JP3873389B2 (en) 1997-03-04 1997-08-13 Method for producing 1,6-hexanediol

Country Status (1)

Country Link
JP (1) JP3873389B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021306A1 (en) * 1999-09-21 2001-03-29 Asahi Kasei Kabushiki Kaisha Catalysts for hydrogenation of carboxylic acid
WO2001034543A1 (en) 1999-11-05 2001-05-17 Asahi Kasei Kabushiki Kaisha Process for the preparation of diol mixtures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021306A1 (en) * 1999-09-21 2001-03-29 Asahi Kasei Kabushiki Kaisha Catalysts for hydrogenation of carboxylic acid
US6495730B1 (en) 1999-09-21 2002-12-17 Asahi Kasei Kabushiki Kaisha Catalysts for hydrogenation of carboxylic acid
WO2001034543A1 (en) 1999-11-05 2001-05-17 Asahi Kasei Kabushiki Kaisha Process for the preparation of diol mixtures

Also Published As

Publication number Publication date
JP3873389B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
US6906228B2 (en) Method for catalytic hydrogenation on rhenium-containing active carbon carrier catalysts
JPH10306047A (en) Production of 1,6-hexanediol
WO2001021306A1 (en) Catalysts for hydrogenation of carboxylic acid
NZ210651A (en) Palladium/rhenium catalyst and preparation of tetrahydrofuran and 1,4-butanediol
TW419456B (en) Improved catalysts for The hydrogenation of aqueous maleic acid to 1, 4-butanediol
US5969194A (en) Process for preparing 1, 6-hexanediol
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP4282832B2 (en) Process for producing diols
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JPH1160523A (en) Production of 1,6-hexanediol
JP3726504B2 (en) Catalyst regeneration method and hydrogenation method using regenerated catalyst
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4282831B2 (en) Production method of diols
JP4282830B2 (en) Method for producing diols
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP2001097904A (en) Method for producing 1,6-hexanediol
JP3921788B2 (en) Method for producing 1,6-hexanediol
JP4282153B2 (en) Method for producing diol mixture
JPH1160524A (en) Production of 1,6-hexanediol
JP4476385B2 (en) Improved catalyst for hydrogenation of maleic acid to 1,4-butanediol
JP3704758B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP6687813B2 (en) Method for producing 1,3-cyclohexanedicarboxylic acid
JPH1143453A (en) Production of 1,6-hexanediol
JP4282154B2 (en) Method for producing diol mixture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

EXPY Cancellation because of completion of term