JPH1160343A - Production of joined body - Google Patents

Production of joined body

Info

Publication number
JPH1160343A
JPH1160343A JP21621997A JP21621997A JPH1160343A JP H1160343 A JPH1160343 A JP H1160343A JP 21621997 A JP21621997 A JP 21621997A JP 21621997 A JP21621997 A JP 21621997A JP H1160343 A JPH1160343 A JP H1160343A
Authority
JP
Japan
Prior art keywords
plate
metal
heating member
joined body
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21621997A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tsujimura
好彦 辻村
Yoshiyuki Nakamura
美幸 中村
Yasuto Fushii
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21621997A priority Critical patent/JPH1160343A/en
Publication of JPH1160343A publication Critical patent/JPH1160343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a joined body consisting of ceramics and metallic sheets which has high durability to thermal shock and thermal histeresis such as heat cycles, etc., and are adequate for the manufacture of powder module circuits at a good yield with enhanced productivity. SOLUTION: One or plural pieces of the laminates formed by laminating the ceramic sheets and the metallic sheets with or without the intervention of joining materials are stacked in a longitudinal direction or are pressed and arrayed in a traverse direction with or without the intervention of spacers and are arranged in a furnace. The one or >=2 flanks of the metallic sheets of the laminates are brought into contact with a heating member and are heated. The heating member is a jig comprising a frame 3, a pressure plate 4 and a pressing means 5 for the pressure plate 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にパワーモジュ
ール基板の製造に好適なセラミックス板と金属板からな
る接合体の製造方法に関する。
The present invention relates to a method for manufacturing a joined body composed of a ceramic plate and a metal plate, which is particularly suitable for manufacturing a power module substrate.

【0002】近年、ロボット・モーター等の産業機器の
高性能化に伴い、大電力・高能率インバーター等パワー
モジュールの変遷が進んでおり、半導体素子から発生す
る熱も増加の一途をたどっている。この熱を効率よく放
散するため、パワーモジュール基板では従来より様々な
方法が取られてきた。特に最近、良好な熱伝導を有する
セラミックス基板が利用できるようになったため、基板
上に銅などの銅板を接合し、回路を形成後、そのままあ
るいはメッキ等の処理を施してから回路面に半導体素子
が搭載されている。この場合において、回路の反対側に
は、放熱フィンを取り付けるための金属放熱板が接合さ
れている構造のものもある。
[0002] In recent years, power modules such as high-power and high-efficiency inverters have been transitioning with the advancement of the performance of industrial equipment such as robots and motors, and the heat generated from semiconductor elements has been increasing steadily. In order to efficiently dissipate this heat, various methods have conventionally been used for power module substrates. In particular, since ceramic substrates with good heat conduction have become available recently, a copper plate such as copper is bonded on the substrate, and after forming a circuit, the substrate is subjected to a treatment such as plating or plating, and then a semiconductor element is mounted on the circuit surface. Is installed. In this case, there is a structure in which a metal radiating plate for attaching a radiating fin is joined to the opposite side of the circuit.

【0003】このようなモジュールは、当初、簡単な工
作機械に使用されてきたが、ここ数年、溶接機、電車の
駆動部、電気自動車に使用されるようになってきた。し
かも、使用される環境は厳しくなる一方であり、また品
質への要求も一段と厳しくなってきており、品質の安定
したパワーモジュール基板の量産技術の開発が待たれて
いる。この要求に対しては、セラミックス板と金属板の
接合が重要なポイントとなる。
[0003] Such modules were initially used for simple machine tools, but have been used in welding machines, train drives and electric vehicles in recent years. In addition, the environment in which the power module is used is becoming severer, and requirements for quality are becoming more severe. Therefore, development of mass production technology for power module substrates with stable quality is awaited. For this requirement, the joining of the ceramic plate and the metal plate is an important point.

【0004】金属とセラミックスを接合する方法には種
々あるが、回路基板の製造という点からは、Mo−Mn
法、活性金属ろう付け法、硫化銅法、DBC法、銅メタ
ライズ法などがあげられる。これらのうち、銅とセラミ
ックス基板との接合については、両者の間に活性金属を
含むろう材を介在させ加熱処理して接合体とする活性金
属ろう付け法(例えば特開昭60-177634 号公報)や、表
面を酸化処理したセラミックス基板と銅板を銅の融点以
下でCu−Oの共晶温度以上で加熱接合するDBC法
(例えば特開昭56-163093 号公報)がある。
There are various methods for joining a metal and a ceramic, but from the viewpoint of manufacturing a circuit board, Mo-Mn
Method, active metal brazing method, copper sulfide method, DBC method, copper metallization method and the like. Of these, for joining copper and a ceramic substrate, an active metal brazing method is used to form a joined body by interposing a brazing filler metal containing an active metal between the two to form a joined body (see, for example, JP-A-60-177634). And a DBC method in which a ceramic substrate and a copper plate whose surfaces are oxidized are heated and joined at a temperature lower than the melting point of copper and higher than the eutectic temperature of Cu-O (for example, JP-A-56-163093).

【0005】活性金属ろう付け法は、DBC法に比べ
て、(イ)接合体を得るための処理温度が低いので、セ
ラミックス基板と銅の熱膨張差によって生じる残留熱応
力が小さい、(ロ)活性金属を含むろう材が延性金属で
あるので、ヒートショックやヒートサイクルに対する耐
久性が大である、などの利点がある。
In the active metal brazing method, (a) the processing temperature for obtaining the joined body is lower than that of the DBC method, so that the residual thermal stress caused by the difference in thermal expansion between the ceramic substrate and copper is small. Since the brazing filler metal containing the active metal is a ductile metal, there are advantages such as high durability against heat shock and heat cycle.

【0006】DBC法においては、その独自の接合メカ
ニズム条件、特に温度管理が重要である。一方、活性金
属ろう付け法においても、現在要求されているパワーモ
ジュール基板の特性を満足させるには、活性金属のセラ
ミックス側への過度の進入によるセラミックスの脆化
と、ろう材成分の金属板への過度の拡散による金属の硬
化を防ぐ必要があり、そのためには約10℃の温度範囲
差のもとに接合することが要求される。
[0006] In the DBC method, it is important to control its own unique bonding mechanism, especially temperature control. On the other hand, even in the active metal brazing method, in order to satisfy the characteristics of the power module substrate required at present, the brittleness of the ceramic due to excessive penetration of the active metal into the ceramic side and the formation of the brazing metal component into the metal plate. It is necessary to prevent the hardening of the metal due to excessive diffusion of the metal, and this requires bonding at a temperature range difference of about 10 ° C.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
活性金属ろう付け法の場合、真空中等の非酸化性雰囲気
を保つ必要から量産性を向上させるには、バッチ式の炉
に頼らざるを得ず、一度に大量のワークを仕込む形式と
なるため、温度管理については不備な点が多く、品質の
バラツキが大きくなる傾向にあった。
However, in the case of the conventional active metal brazing method, it is necessary to maintain a non-oxidizing atmosphere such as in a vacuum, so that in order to improve mass productivity, it is necessary to rely on a batch type furnace. However, since a large amount of workpieces are charged at one time, there are many deficiencies in temperature control, and the quality tends to vary widely.

【0008】本発明者らは、上記に鑑みて鋭意検討を重
ねた結果、セラミックス板と金属板とからなる積層体に
おいて、その金属板の側面を加熱部材に当接させて加熱
すれば積層体に与えられる熱量を精密にコントロールす
ることができ、その結果、接合体の品質のバラツキが少
なくなり、歩留りと生産性が向上することを見いだし、
本発明を完成させたものである。
The inventors of the present invention have made intensive studies in view of the above, and as a result, in a laminate comprising a ceramic plate and a metal plate, if the side of the metal plate is brought into contact with a heating member and heated, the laminate is formed. Can precisely control the amount of heat applied to the product, resulting in less variation in the quality of the joined body, and improved yield and productivity.
The present invention has been completed.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、セ
ラミックス板と金属板とを接合材を介して又は介さない
で積層されてなる積層体の一個又は複数個を、スペーサ
ーを介して又は介さないで、縦方向に積み重ねるか又は
横方向に押圧配列して炉内に配置し、上記積層体の金属
板の1又は2以上の側面を加熱部材に接触させて加熱す
ることを特徴とするセラミックス板と金属板からなる接
合体の製造方法であり、特に加熱部材がヒーター機能を
有するものであることを特徴とする接合体の製造方法で
ある。
That is, the present invention relates to a method of forming one or a plurality of laminated bodies obtained by laminating a ceramic plate and a metal plate with or without a bonding material therebetween, with or without a spacer. Ceramics characterized in that they are stacked in a vertical direction or arranged in a furnace by being pressed and arranged in a horizontal direction and placed in a furnace, and heated by bringing one or more side surfaces of the metal plate of the laminate into contact with a heating member. The present invention relates to a method for producing a joined body composed of a plate and a metal plate, and more particularly to a method for producing a joined body characterized in that a heating member has a heater function.

【0010】また、本発明は、上記加熱部材(10)
が、枠体(3)と押し板(4)と上記押し板の押圧手段
(5)とから構成されてなる治具であることを特徴とす
る接合体の製造方法であり、更には、この接合体の製造
方法において、セラミックスが窒化アルミニウム、金属
が銅又は銅合金、接合材が活性金属を含むろう材、加熱
部材がカーボン製治具であることを特徴とするものであ
る。
[0010] The present invention also relates to the heating member (10).
Is a jig composed of a frame (3), a pressing plate (4), and a pressing means (5) for the pressing plate. In the method for manufacturing a joined body, the ceramic is aluminum nitride, the metal is copper or a copper alloy, the joining material is a brazing material containing an active metal, and the heating member is a carbon jig.

【0011】[0011]

【発明の実施の形態】以下、さらに詳しく本発明につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0012】本発明で使用されるセラミックス板として
は、アルミナ、窒化珪素、窒化アルミニウム等があげら
れるが、熱伝導率の高い窒化アルミニウムが特に望まし
い。窒化アルミニウム板は、窒化アルミニウム粉末に希
土類酸化物(例えばイットリア)、アルカリ土類酸化物
(例えばカルシア)等の焼結助剤を内割りで2〜5重量
%程度添加し、成形後焼成することによって製造するこ
とができる。セラミックス板の厚みとしては、厚すぎる
と熱抵抗が大きくなり、薄すぎると耐久性がなくなるの
で、0.5〜1.0mm程度であることが好ましい。
Examples of the ceramic plate used in the present invention include alumina, silicon nitride, and aluminum nitride. Aluminum nitride having high thermal conductivity is particularly desirable. The aluminum nitride plate is obtained by adding about 2 to 5% by weight of a sintering aid such as a rare earth oxide (for example, yttria) or an alkaline earth oxide (for example, calcia) to aluminum nitride powder and firing after molding. Can be manufactured by The thickness of the ceramic plate is preferably about 0.5 to 1.0 mm, because if it is too thick, the thermal resistance increases, and if it is too thin, the durability is lost.

【0013】一方、金属回路及び/又は金属放熱板とな
る金属板としては、銅、アルミニウム、タングステン、
モリブデン等が使用されるが、銅又は銅合金が一般的で
ある。金属板の厚みについては、金属回路形成用金属板
の場合は、近年、電流密度が向上していく傾向から0.
3mmよりも厚い方が好ましく、また金属放熱板形成用
金属板の場合は、0.2mm以下であることが好まし
い。
On the other hand, the metal plate serving as a metal circuit and / or a metal radiator plate includes copper, aluminum, tungsten,
Molybdenum or the like is used, but copper or a copper alloy is generally used. Regarding the thickness of the metal plate, in the case of a metal plate for forming a metal circuit, the current density tends to increase in recent years.
The thickness is preferably greater than 3 mm, and in the case of a metal plate for forming a metal heat sink, it is preferably 0.2 mm or less.

【0014】セラミックス板と金属板とを接合する方法
は、DBC法でも活性金属ろう付け法でも良い。DBC
法では接合材を介する必要はないが、活性金属ろう付け
法では接合材として、銀と銅を主成分とし、溶融時のセ
ラミックス板との濡れ性を確保するために活性金属を副
成分としたものが使用される。この活性金属成分は、セ
ラミックス板と反応して酸化物や窒化物を生成させ、そ
れらの生成物がろう材とセラミックス板との結合を強固
なものにする。活性金属の具体例をあげれば、チタン、
ジルコニウム、ハフニウム、ニオブ、タンタル、バナジ
ウムやこれらの化合物である。これらの割合としては、
銀80〜97重量部と銅20〜3重量部の合計量100
重量部あたり活性金属1〜7重量部である。
The method of joining the ceramic plate and the metal plate may be the DBC method or the active metal brazing method. DBC
Although it is not necessary to use a bonding material in the method, the active metal brazing method uses silver and copper as the main components as the bonding material, and the active metal as a sub-component to ensure the wettability with the ceramic plate during melting Things are used. The active metal component reacts with the ceramic plate to generate oxides and nitrides, and these products strengthen the bond between the brazing material and the ceramic plate. Specific examples of active metals include titanium,
Zirconium, hafnium, niobium, tantalum, vanadium and their compounds. These percentages are
Total amount of 80 to 97 parts by weight of silver and 20 to 3 parts by weight of copper 100
1 to 7 parts by weight of active metal per part by weight.

【0015】本発明においては、セラミックス板と金属
板とを接合材を介して又は介さないで積層した積層体の
一個又は複数個を縦方向に積み重ねるか、又は横方向に
押圧した状態で配列して炉内に配置し加熱する。このと
き、積層体の金属板同士が接面するような積み重ねない
しは配列の場合には、金属板の種類によっては金属板同
士が接合温度で融着する場合があるので、金属板と反応
しない材質からなるスペーサー又は金属板と反応しない
材質で表面コーティングされた金属板からなるスペーサ
ーを金属板間に配置することが望ましい。
In the present invention, one or a plurality of laminates obtained by laminating a ceramic plate and a metal plate with or without a bonding material are stacked vertically or arranged in a state of being pressed in the horizontal direction. And place in a furnace to heat. At this time, in the case of stacking or arranging such that the metal plates of the laminate are in contact with each other, depending on the type of the metal plates, the metal plates may be fused at a joining temperature, and therefore, a material that does not react with the metal plates. It is desirable to arrange a spacer made of a metal plate or a spacer made of a metal plate whose surface is coated with a material that does not react with the metal plate.

【0016】本発明においては、上記のように積層体は
縦方向に積み重ねるか、又は横方向に押圧した状態で配
列して炉内に配置されるが、中でも横方向の配列は温度
分布を少なくすることが容易であり、また配列した状態
が安定であるので好ましい。横方向に配列する場合は、
セラミックス板と金属板との接触を保持するため横方向
に押圧するが、縦方向に積み重ねる場合は、自重により
接触が保たれるので特に押圧は必要でない。押圧は、図
1に示した治具によることが好ましい。
In the present invention, as described above, the laminates are stacked in the vertical direction or arranged in a furnace while being pressed in the horizontal direction, and are arranged in the furnace. This is preferable because the arrangement is easy and the arrangement state is stable. When arranging horizontally,
Pressing is performed in the horizontal direction in order to maintain the contact between the ceramic plate and the metal plate. However, in the case of stacking in the vertical direction, the pressing is not particularly necessary because the contact is maintained by its own weight. The pressing is preferably performed by the jig shown in FIG.

【0017】本発明で重要な点は、上記積層体を加熱す
る際、積層体の金属板の1又は2以上の側面を加熱部材
に接触させて加熱することである。これによって、熱が
加熱部材から金属板に均一かつスムーズに伝わるので、
積層体各一個当たりに与える熱量を従来よりも厳しい範
囲で調節することが可能となる。その結果、セラミック
ス板と金属板とが容易に接合し、また積層体間の温度分
布が少なくなるので歩留りが向上する。
An important point in the present invention is that when heating the above-mentioned laminate, one or more side surfaces of the metal plate of the laminate are heated by contacting with a heating member. As a result, heat is uniformly and smoothly transmitted from the heating member to the metal plate,
It is possible to adjust the amount of heat applied to each of the laminates in a more severe range than before. As a result, the ceramic plate and the metal plate are easily joined, and the temperature distribution between the laminates is reduced, so that the yield is improved.

【0018】加熱部材はそれ自身がヒーター機能を有す
るものであることが好ましいが、そうでなくとも良い。
炉に設けられたヒーターから発生した熱を積層体の金属
板へ速やかに伝えるような材質又は熱容量を有するもの
であればよい。このような材質としてはカーボンが好都
合であるが、熱伝導率の良い銅等の金属であってもよ
い。但し、積層体の金属板と反応して融着するような材
質のものは不適当である。
It is preferable that the heating member itself has a heater function, but it does not have to be.
Any material may be used as long as the material or the heat capacity is such that heat generated from the heater provided in the furnace is quickly transmitted to the metal plate of the laminate. As such a material, carbon is convenient, but a metal such as copper having good thermal conductivity may be used. However, a material that reacts with and fuses with the metal plate of the laminate is inappropriate.

【0019】本発明で好適な加熱部材は、図1に示され
るように、枠体(3)と押し板(4)と上記押し板の押
圧手段(5)とから構成されてなる治具である。図1
は、加熱部材である治具に積層体(1)が配列している
状態を示す概略側面図である。積層体(1)は、枠体
(3)の左端板と押し板(4)との間にスペーサー
(2)を介して配列され、積層体の金属板の側面は枠体
(3)の底板と接触しており、積層体全体がネジ式の押
圧手段(5)によって押圧されていることを表してい
る。この場合において、治具全体がカーボン等のように
ヒーター機能を有するものであることが好ましい。ま
た、押圧手段は、ネジ式が望ましいが、積層体を固定で
きる程度であればバネ式等の別の方式であっても良い。
The heating member suitable for the present invention is, as shown in FIG. 1, a jig composed of a frame (3), a pressing plate (4), and pressing means (5) for the pressing plate. is there. FIG.
FIG. 3 is a schematic side view showing a state in which a laminate (1) is arranged on a jig as a heating member. The laminate (1) is arranged via a spacer (2) between the left end plate of the frame (3) and the push plate (4), and the side surface of the metal plate of the laminate is a bottom plate of the frame (3). And that the entire laminate is pressed by the screw-type pressing means (5). In this case, it is preferable that the entire jig has a heater function such as carbon. The pressing means is preferably of a screw type, but may be of another type such as a spring type as long as it can fix the laminate.

【0020】本発明において、押圧手段を採用したこと
による別の利点は、積層体を固定する押圧力を変化させ
ることによって、金属板又はセラミックス板と活性金属
ろう材との濡れ性を調節することが可能となることであ
る。これによって、従来のように積層体を縦方向に積み
重ね、最上部に重し材を置く方法では接合することがで
きなかった温度においても接合が可能となったことであ
る。また、金属板とセラミックス板との熱膨張差によっ
て生じるズレの問題も回避することができたことであ
る。更には、積層体の熱処理個数は、従来の積み重ね法
では一単位体あたりせいぜい20個程度であったが、こ
れを80個程度に増加することができ、大幅に生産性が
向上したことである。
In the present invention, another advantage of employing the pressing means is that the wettability between the metal plate or the ceramic plate and the active metal brazing material is adjusted by changing the pressing force for fixing the laminate. Is made possible. As a result, it is possible to join even at a temperature where joining was not possible by the conventional method of stacking the stacked bodies in the vertical direction and placing the weight on the top. Another problem is that the problem of misalignment caused by a difference in thermal expansion between the metal plate and the ceramic plate can be avoided. Furthermore, the number of heat treatments of the laminated body was at most about 20 per unit in the conventional stacking method, but this can be increased to about 80, which is a significant improvement in productivity. .

【0021】[0021]

【実施例】以下、本発明を実施例と比較例をあげて更に
具体的に説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

【0022】実施例1〜3 比較例1 窒化アルミニウム粉末96重量部、焼結助剤(イットリ
ア)4重量部、表面処理剤(オレイン酸)2重量部を振
動ミルで予備混合した後、有機結合材(エチルセルロー
ス)8重量部、可塑剤(グリセリントリオレート)3重
量部及び水12重量部を配合してミキサーで混合し、こ
れを押出成型した。次いで、押出成型体を120℃×5
分間の乾燥を行った後、480℃で10時間空気中で脱
脂を行い、1860℃×2時間の焼成を行った。得られ
た焼結体を60mm×36mm×0.65mmのサイズ
に加工し、表面をホーニング処理して窒化アルミニウム
板を製造した。
Examples 1 to 3 Comparative Example 1 96 parts by weight of aluminum nitride powder, 4 parts by weight of a sintering aid (yttria) and 2 parts by weight of a surface treating agent (oleic acid) were premixed in a vibration mill, and then organically bonded. 8 parts by weight of a material (ethyl cellulose), 3 parts by weight of a plasticizer (glycerin triolate) and 12 parts by weight of water were mixed and mixed by a mixer, and the mixture was extruded. Next, the extruded body was heated at 120 ° C. × 5.
After drying for 5 minutes, degreasing was performed in the air at 480 ° C. for 10 hours, and calcination was performed at 1860 ° C. × 2 hours. The obtained sintered body was processed into a size of 60 mm × 36 mm × 0.65 mm, and the surface was honed to produce an aluminum nitride plate.

【0023】銀粉末90重量部、銅粉末10重量部、ジ
ルコニウム粉末3重量部、チタン粉末3重量部及びテル
ピネオール15重量部と有機結合剤(ポリイソブチルメ
タアクリレートのトルエン溶液)を固形分で全体に対し
5重量%加えてよく混練し、ろう材ペーストを調製し
た。このろう材ペーストを窒化アルミニウム板の両面に
スクリーン印刷によって全面に塗布した。その際の塗布
量(乾燥後)は9mg/cm2 とした。
90 parts by weight of silver powder, 10 parts by weight of copper powder, 3 parts by weight of zirconium powder, 3 parts by weight of titanium powder, 15 parts by weight of terpineol and an organic binder (a toluene solution of polyisobutyl methacrylate) were solidified as a whole. On the other hand, 5% by weight was added and kneaded well to prepare a brazing filler metal paste. This brazing material paste was applied to both surfaces of the aluminum nitride plate by screen printing over the entire surface. The coating amount (after drying) at that time was 9 mg / cm 2 .

【0024】次に、図2に示されるように、ろう材ペー
スト〔接合材(9)〕の塗布された窒化アルミニウム板
〔セラミックス板(8)〕の片面に60mm×36mm
×0.3mmの銅板〔金属板(7)〕を、また反対面に
は60mm×36mm×0.15mmの銅板〔金属板
(7)〕をそれぞれ接触配置して積層体(1)を形成し
た。
Next, as shown in FIG. 2, a 60 mm × 36 mm aluminum nitride plate [ceramic plate (8)] coated with a brazing material paste [joining material (9)] is applied.
A copper plate [metal plate (7)] of × 0.3 mm and a copper plate [metal plate (7)] of 60 mm × 36 mm × 0.15 mm on the opposite surface were placed in contact with each other to form a laminate (1). .

【0025】上記積層体を、実施例1では図3のように
20個積み重ねて重し材(11)を載せた後、積層体の
金属板(7)の側面をカーボン製の加熱部材(10)に
接触させ、その18単位体を、炉内が上下の二部屋に分
割された外部加熱方式炉に棚板(6)を介して均一に配
置し、真空度1×10-5Torr以下の真空下、表1に
示す種々の温度で30分間保持した後、2℃/分の降温
速度で冷却して接合体を製造した。なお、加熱部材は、
炉内の棚板に支持具を介してネジ止めして固定した(図
示せず)。
In the first embodiment, 20 pieces of the above-mentioned laminates are stacked as shown in FIG. 3 and a weight member (11) is placed thereon. Then, the side surface of the metal plate (7) of the laminate is attached to a heating member (10) made of carbon. ), And the 18 units thereof are uniformly arranged via a shelf plate (6) in an external heating type furnace in which the inside of the furnace is divided into upper and lower two rooms, and the degree of vacuum is 1 × 10 −5 Torr or less. After holding at various temperatures shown in Table 1 for 30 minutes under vacuum, the bonded body was manufactured by cooling at a temperature lowering rate of 2 ° C./min. The heating member is
It was screwed and fixed to a shelf plate in the furnace via a support (not shown).

【0026】実施例2では、図4のように上記積層体の
20個を横方向に配列し、その両端部をカーボン製支持
部材(図示せず)で支えると共に、積層体の金属板
(7)の側面をカーボン製の加熱部材(10)に接触さ
せ、その18単位体を炉内に配置し、加熱・冷却して接
合体を製造した。なお、加熱部材は、炉内の棚板に支持
具を介してネジ止めして固定した(図示せず)。
In the second embodiment, as shown in FIG. 4, twenty of the above-mentioned laminates are arranged in a horizontal direction, and both ends thereof are supported by a carbon support member (not shown). ) Was brought into contact with a heating member (10) made of carbon, and its 18 units were placed in a furnace, heated and cooled to produce a joined body. The heating member was fixed to the shelf plate in the furnace by screwing via a support (not shown).

【0027】実施例3では、図1のように上記積層体の
80個を加熱部材(10)である治具に収納し、その1
8単位体を炉内に配置し、加熱・冷却して接合体を製造
した。
In the third embodiment, as shown in FIG. 1, 80 pieces of the above-mentioned laminates are housed in a jig which is a heating member (10).
The eight units were placed in a furnace, heated and cooled to produce a joined body.

【0028】また、比較例1では、加熱部材を使用しな
いで加熱・冷却したこと以外は、実施例1と同様にして
接合体を製造した。
In Comparative Example 1, a joined body was manufactured in the same manner as in Example 1, except that heating and cooling were performed without using a heating member.

【0029】上記で得られた接合体の銅板上にUV硬化
タイプのエッチングレジストをスクリーン印刷で塗布
後、塩化第2銅溶液を用いてエッチング処理を行って銅
板不要部分を溶解除去し、更にエッチングレジストを5
%苛性ソーダ溶液で剥離した。このエッチング処理後の
接合体には、銅回路パターン間に残留不要ろう材や活性
金属成分と窒化アルミニウム板との反応物があるので、
それを除去するため、温度60℃、10%フッ化アンモ
ニウム溶液に10分間浸漬した。
A UV curing type etching resist is applied on the copper plate of the joined body obtained above by screen printing, and then an etching process is performed using a cupric chloride solution to dissolve and remove unnecessary portions of the copper plate and further etching. 5 resist
Exfoliated with a sodium hydroxide solution. In the joined body after this etching process, there is a residual unnecessary brazing material or a reaction product between the active metal component and the aluminum nitride plate between the copper circuit patterns.
To remove it, it was immersed in a 10% ammonium fluoride solution at a temperature of 60 ° C. for 10 minutes.

【0030】これら一連の処理を経て製作された、一方
の面に銅回路、反対面に放熱銅板の形成された窒化アル
ミニウム基板について、各18単位体より1枚ずつサン
プルを抜き取り、放熱銅板側から押した場合の3点曲げ
強度を、スパン30mm、クロスヘッドスピード0.5
mm/minの条件で測定した。また、耐ヒートサイク
ル試験を、気中、−40℃×30分保持後、25℃×1
0分間放置、更に125℃×30分保持後、25℃×1
0分間放置を1サイクルとして行い、銅回路又は放熱銅
板が剥離開始したヒートサイクル回数を測定した。試験
体18個の結果を表1に示す。
With respect to the aluminum nitride substrate manufactured through these series of processes and having a copper circuit on one surface and a heat-dissipating copper plate on the other surface, one sample was extracted from each of the 18 units, and a sample was taken from the heat-dissipating copper plate side. The three-point bending strength when pressed is as follows: span 30 mm, crosshead speed 0.5
It was measured under the condition of mm / min. In addition, a heat cycle resistance test was performed at -40 ° C for 30 minutes in the air, and then at 25 ° C for 1 hour.
Leave for 0 minutes, hold at 125 ° C x 30 minutes, then 25 ° C x 1
Leaving for 0 minute was regarded as one cycle, and the number of heat cycles at which the copper circuit or the heat radiating copper plate started to peel was measured. Table 1 shows the results of 18 test pieces.

【0031】[0031]

【表1】
[Table 1]

【0032】[0032]

【発明の効果】本発明によれば、ヒートサイクル等の熱
衝撃、熱履歴に対する耐久性が大きく、パワージュール
基板の製作に好適なセラミックスと金属板とからなる接
合体を歩留りよく、しかも生産性を高めて製造すること
ができる。
According to the present invention, a joined body composed of a ceramic and a metal plate, which has high durability against thermal shocks and heat histories such as a heat cycle and is suitable for manufacturing a power joule substrate, has a good yield, and has a high productivity. Can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱部材である治具に積層体が配列されている
状態を示す概略側面図。
FIG. 1 is a schematic side view showing a state in which laminates are arranged on a jig as a heating member.

【図2】積層体の概略側面図FIG. 2 is a schematic side view of a laminate.

【図3】積層体が縦方向に積み重ねられ、積層体の金属
板の側面が加熱部材と接触している状態を示す概略正面
図。
FIG. 3 is a schematic front view showing a state in which the laminates are stacked in a vertical direction, and a side surface of a metal plate of the laminate is in contact with a heating member.

【図4】積層体が横方向に配列され、積層体の金属板の
側面が加熱部材と接触している状態を示す概略側面図。
FIG. 4 is a schematic side view showing a state in which the laminate is arranged in a horizontal direction, and a side surface of a metal plate of the laminate is in contact with a heating member.

【符号の説明】[Explanation of symbols]

1 接合体 2 スペーサー 3 枠体 4 押し板 5 押圧手段 6 棚板 7 金属板 8 セラミックス板 9 接合材 10 加熱部材 11 重し材 DESCRIPTION OF SYMBOLS 1 Joined body 2 Spacer 3 Frame 4 Push plate 5 Pressing means 6 Shelf plate 7 Metal plate 8 Ceramic plate 9 Joining material 10 Heating member 11 Weight material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス板と金属板とを接合材を介
して又は介さないで積層されてなる積層体の一個又は複
数個を、スペーサーを介して又は介さないで、縦方向に
積み重ねるか又は横方向に押圧配列して炉内に配置し、
上記積層体の金属板の1又は2以上の側面を加熱部材に
接触させて加熱することを特徴とするセラミックス板と
金属板からなる接合体の製造方法。
1. One or a plurality of laminates obtained by laminating a ceramic plate and a metal plate with or without a bonding material are stacked vertically or horizontally with or without a spacer. Arranged in the furnace by pressing in the direction,
A method for manufacturing a joined body comprising a ceramic plate and a metal plate, wherein one or two or more side surfaces of the metal plate of the laminate are heated by being brought into contact with a heating member.
【請求項2】 加熱部材がヒーター機能を有するもので
あることを特徴とする請求項1記載の接合体の製造方
法。
2. The method according to claim 1, wherein the heating member has a heater function.
【請求項3】 加熱部材(10)が、枠体(3)と押し
板(4)と上記押し板の押圧手段(5)とから構成され
てなる治具であることを特徴とする請求項1又は2記載
の接合体の製造方法。
3. The heating member (10) is a jig comprising a frame (3), a pressing plate (4), and pressing means (5) for the pressing plate. 3. The method for producing a joined body according to 1 or 2.
【請求項4】 セラミックスが窒化アルミニウム、金属
が銅又は銅合金、接合材が活性金属を含むろう材、加熱
部材がカーボン製治具であることを特徴とする請求項3
記載の接合体の製造方法。
4. The method according to claim 3, wherein the ceramic is aluminum nitride, the metal is copper or a copper alloy, the joining material is a brazing material containing an active metal, and the heating member is a carbon jig.
A method for producing the joined body according to the above.
JP21621997A 1997-08-11 1997-08-11 Production of joined body Pending JPH1160343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21621997A JPH1160343A (en) 1997-08-11 1997-08-11 Production of joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21621997A JPH1160343A (en) 1997-08-11 1997-08-11 Production of joined body

Publications (1)

Publication Number Publication Date
JPH1160343A true JPH1160343A (en) 1999-03-02

Family

ID=16685152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21621997A Pending JPH1160343A (en) 1997-08-11 1997-08-11 Production of joined body

Country Status (1)

Country Link
JP (1) JPH1160343A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282417A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal/ceramic joined substrate
JP2012074611A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Manufacturing device and manufacturing method of substrate for power module
JP2012109457A (en) * 2010-11-18 2012-06-07 Mitsubishi Materials Corp Manufacturing method of substrate for power module
JP2014167984A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Method of manufacturing substrate for power module with heat sink

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282417A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal/ceramic joined substrate
JP2012074611A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Manufacturing device and manufacturing method of substrate for power module
JP2012109457A (en) * 2010-11-18 2012-06-07 Mitsubishi Materials Corp Manufacturing method of substrate for power module
JP2014167984A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Method of manufacturing substrate for power module with heat sink

Similar Documents

Publication Publication Date Title
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP4674983B2 (en) Manufacturing method of joined body
JPH11121889A (en) Circuit board
JPH1160343A (en) Production of joined body
JP3933287B2 (en) Circuit board with heat sink
JP2003188310A (en) Method of manufacturing circuit board with electrode terminal
JP3412801B2 (en) Manufacturing method of bonded body
WO2021200866A1 (en) Circuit board, joined body, and methods for producing same
JPH11157952A (en) Production of bonded body
JP3182354B2 (en) Circuit board and its evaluation method
JP3190282B2 (en) Circuit board manufacturing method
JP3529085B2 (en) Circuit board with heat sink
JP3729637B2 (en) Electronic components
JP3537320B2 (en) Circuit board
JP3454331B2 (en) Circuit board and method of manufacturing the same
JP2000031609A (en) Circuit board
JP3260213B2 (en) Circuit board
JP3560357B2 (en) Manufacturing method of aluminum nitride sintered body
JP5073894B2 (en) Silicon nitride leaf spring material, manufacturing method and use thereof
JP4111253B2 (en) Circuit board
JP3830263B2 (en) substrate
JP2000049425A (en) Ceramics circuit board, its manufacture and power module using the same
KR101929613B1 (en) Ceramic circuit board and method of manufacturing the same
JPH10245267A (en) Aluminum nitride substrate and use thereof
JP3354002B2 (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Effective date: 20040701

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914