JP2003188310A - Method of manufacturing circuit board with electrode terminal - Google Patents

Method of manufacturing circuit board with electrode terminal

Info

Publication number
JP2003188310A
JP2003188310A JP2001384160A JP2001384160A JP2003188310A JP 2003188310 A JP2003188310 A JP 2003188310A JP 2001384160 A JP2001384160 A JP 2001384160A JP 2001384160 A JP2001384160 A JP 2001384160A JP 2003188310 A JP2003188310 A JP 2003188310A
Authority
JP
Japan
Prior art keywords
circuit
copper
alloy
plate
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001384160A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tsujimura
好彦 辻村
Nobuyuki Yoshino
信行 吉野
Takeshi Iwamoto
豪 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001384160A priority Critical patent/JP2003188310A/en
Publication of JP2003188310A publication Critical patent/JP2003188310A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a circuit board with electrode terminals having high insulation performances can be manufactured with improved productivity without using solder. <P>SOLUTION: To a ceramic substrate composed mainly of an aluminum nitride or a silicon nitride, (a) a copper circuit or a copper plate is bonded by using a brazing material containing silver, copper, tin, and zirconium and heating the brazing material under a nitrogen atmosphere or (b) an Al or Al-alloy circuit or an Al or Al-alloy plate is bonded by using at least one kind of bonding material selected from among Al-Cu-based alloy foil, powder of the Al-Cu-based alloy foil, and mixed powder containing Al and Cu and heating the bonding material under the nitrogen atmosphere. When the copper plate or the Al or Al-alloy plate are bonded to the ceramic substrate, the copper circuit or Al or Al-alloy circuit is formed by etching the plate. Thereafter, the electrode terminals are attached to a portion of the circuit having a ≤1/3 area of the circuit, area of each terminal being 3-30 mm<SP>2</SP>, by imparting ultrasonic energy to the terminals under a specific condition. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、パワーモジュール
に好適な電極端子付き回路基板の製造方法に関する。 【0002】 【従来の技術】近年、ロボット・モーター等の産業機器
の高性能化にともない、大電力・高効率インバーター等
大電力モジュールの変遷が進み、半導体素子から発生す
る熱も増加の一途をたどっている。この熱を効率よく放
散させるため、大電力モジュール基板では、良好な熱伝
導を有する窒化アルミニウム又は窒化珪素を主体とする
セラミック基板(以下、「窒化アルミニウム等基板」と
いう。」)とその表裏両面に銅板を接合し、エッチング
によって一方の面に銅回路、他方の面に放熱銅板を形成
させた後、そのままあるいはメッキ等の処理を施して回
路基板となし、その銅回路部分に半導体素子と電極端子
を半田付けし、反対面の放熱銅板をベース銅板に半田付
けしてからヒートシンクに取り付けて使用されている。 【0003】 【発明が解決しようとする課題】ここで用いられる半田
は、鉛を含むものであるため、今日の環境問題の見地か
ら鉛フリー半田の使用が検討されている。その一方で、
半田を使用しない接合方法も検討されており、電極端子
を30〜200kHzの超音波を用いて溶接することが
すでに提案されている(特開2000−232189号
公報)。しかしながら、この超音波条件で取り付けられ
た電極端子付き回路基板であっても、その回路基板の製
造履歴や回路形状によって、耐絶縁性が大きく異なり、
AC5000Vを3分間印加すると破壊したり、製造当
初は良くても繰り返して熱サイクルを受けると、絶縁破
壊に至るものがあった。 【0004】本発明の目的は、特開2000−2321
89号公報における上記問題を解決することであり、耐
絶縁性の大きな電極端子付き回路基板を半田を用いない
で製造することである。本発明の目的は、セラミック基
板として窒化アルミニウム等基板を用い、錫入りろう材
を用いて銅回路を接合するか、又はAl−Cu系接合材
を用いてAl又はAl合金からなる回路を接合して回路
基板を製造し、その回路の特定上面に特定条件の超音波
を加えて電極端子を取り付けることによって達成するこ
とができる。 【0005】 【課題を解決するための手段】すなわち、本発明は、以
下のとおりである。窒化アルミニウム又は窒化珪素を主
体とするセラミック基板に、(イ)銀、銅、錫及びジル
コニウムを含むろう材を用い、窒素雰囲気下で加熱して
銅回路又は銅板を接合するか、又は(ロ)Al−Cu系
合金箔、Al−Cu系合金箔の粉末、及びAlとCuを
含む混合粉末から選ばれた少なくとも1種の接合材を用
い、窒素雰囲気下で加熱してAl又はAl合金からなる
回路又は板を接合した後、銅板、又はAl又はAl合金
からなる板を接合したときにはエッチングを行ってその
回路を形成し、これらの回路の上面積の1/3以下の部
分に、1箇所の電極端子の取り付け面積を3〜30mm
2として、電極端子の少なくとも1個を、出力300W
以上、周波数7kHz以上、振幅7μm以上の超音波エ
ネルギを与えて取り付けることを特徴とする電極端子付
き回路基板の製造方法。 【0006】 【発明の実施の形態】以下、更に詳しく本発明を説明す
ると、本発明の特徴は、特定条件で製造された回路基板
に特定条件で電極端子を超音波接合したことである。 【0007】本発明で用いられるセラミック基板は窒化
アルミニウム等基板である。窒化アルミニウムを主体と
するものとしては、強度と熱伝導率純度が400MPa
以上、150W/mK以上、93%以上であることが好
ましく、また窒化珪素を主体とするものとしては、強度
と熱伝導率純度が600MPa以上、50W/mK以
上、93%以上であることが好ましい。これらのセラミ
ック基板には、市販品があるのでそれを用いることがで
きる。 【0008】回路金属及び放熱金属が銅の場合は、ろう
材の金属成分は、銀40〜64%、銅12〜28%、錫
12〜22%、ジルコニウム8〜16%であることが好
ましい。銀が40%未満となると、銅と錫の金属間化合
物の生成量が増大して接合層が脆弱なものとなり、機械
的強度の信頼性が大きく低下する。また、64%を超え
ると、ろう材の銅板(又は銅回路又は放熱銅板)に対す
る濡れ性が低下し、接合層中にボイドが形成されて接合
強度が低下する。 【0009】銅が12%未満ではろう材の融点が著しく
上がり、ろう材の濡れ性が悪くなる。28%を超える
と、銅と錫の金属間化合物の生成量が増大して接合層が
脆弱なものとなり、機械的強度の信頼性が大きく低下す
る。 【0010】錫が12%未満であると、ろう材が酸化さ
れやすくなり、ろう材の融点が上昇し、接合温度を高め
なければならなくなるとともに、接合層にボイドが形成
されて接合強度が大きく低下する。また、22%を超え
ると、銅と錫の金属間化合物の生成量が増大して接合層
が脆弱なものとなり、機械的強度の信頼性が大きく低下
する。 【0011】活性金属としては、ジルコニウムを選択す
る。ジルコニウムが8%未満では、窒化アルミニウム等
基板と接合層との接合強度が弱く、また16%を超える
と、接合層が脆弱なものとなり、機械的強度の信頼性が
低下する。 【0012】本発明において、ジルコニウム成分は窒化
アルミニウム等基板に拡散し、錫成分は銀成分と銅成分
の銅板(又は銅回路又は放熱銅板)に対する濡れ性を改
善する結果、高真空下の焼成でなくても窒素雰囲気下の
焼成によって、窒化アルミニウム等基板と銅板(又は銅
回路又は放熱銅板)とが強固に接合する。 【0013】ろう材の金属成分は、それら単体又は合金
の箔や粉末をそのまま用いることができるが、好ましく
はペーストを調合し、それを窒化アルミニウム等基板と
銅板(又は銅回路又は放熱銅板)との間に介在させて熱
処理することである。ペースト調合の一例を示せば、金
属成分100部あたり、ポリイソブチルメタアクリレー
ト(PIBMA)等の媒体4〜10部である。ペースト
の塗布量は、乾燥基準で9〜10mg/m2 とすること
が好ましい。ペーストは窒化アルミニウム等基板及び/
又は銅板(又は銅回路又は放熱銅板)に塗布される。 【0014】本発明で用いられる銅板(又は銅回路又は
放熱銅板)は、無酸素銅板、特に酸素量が50ppm以
下、特に30ppm以下の無酸素銅板であることが好ま
しい。銅回路パターン又は放熱銅板パターンを接合した
場合には、エッチングは特に必要でないが、銅板を接合
した場合には、銅板から銅回路又は放熱銅板を形成する
ためにエッチングが必要となる。これは、後述するAl
又はAl合金からなる板(アルミニウム板)を接合した
場合も同じである。 【0015】銅回路の厚みは0.1〜0.5mm、放熱
銅板の厚みは0.1〜0.5mmであることが望まし
い。 【0016】本発明によって製造される回路基板は、接
合層の厚みが8〜13μmであることが好ましい。接合
層の厚み8μm未満であると接合が不十分となり、また
13μmを超えると、銅と錫の金属間化合物の生成量が
増大し、接合層が脆弱なものとなる。接合層の厚みは、
ろう材厚みによって容易に調節することができる。 【0017】ろう材を挟んだ窒化アルミニウム等基板と
銅板(又は銅回路又は放熱銅板)の積層体は、圧力1.
0MPa以上で加圧しつつ焼成することが好ましい。
1.0MPa未満であると、ろう材が雰囲気に曝される
隙間が大きくなるため、接合が不十分となる。加圧力の
上限には限定はないが、2MPa程度で十分である。 【0018】積層体の接合雰囲気は窒素雰囲気である。
好ましくは酸素濃度1〜100ppmの窒素雰囲気であ
る。酸素濃度が100ppmを超えると、ろう材が酸化
され、接合が不十分となる。また、酸素濃度1ppm未
満では、ろう材の濡れ性が極端に良くなり、温度制御が
困難となるため好ましくない。また、装置が大がかりな
ものとなるので製品コストが十分に下がらない。 【0019】接合は、温度750〜850℃で0.5〜
2時間保持して行われる。750℃未満では接合が十分
でなく、また850℃を超えると、銀や錫の銅板(又は
銅回路又は放熱銅板)への拡散が過度となり、接合層が
脆弱なものとなる。この温度範囲における保持時間が
0.5時間よりも短いと接合が不十分となり、また2時
間よりも長くなると、同様に銀や錫の銅板(又は銅回路
又は放熱銅板)への拡散が過度となり、接合層が脆弱な
ものとなる。 【0020】本発明においては、昇温開始から750℃
までの昇温速度と、750℃から室温等の取り出し温度
までの冷却速度も重要であり、いずれも300℃/時間
以上とすることが好ましい。昇温速度が300℃/時間
未満であると、ろう材が酸化されてしまい、接合が不十
分となる。冷却速度が300℃/時間未満であると特に
600℃以上の温度範囲では、ろう材層中のAgやSn
等の成分が銅板(又は銅回路又は放熱銅板)側へ拡散し
てしまい、回路基板の信頼性が低下する。また、600
℃よりも低温域において冷却速度を遅くすると生産性向
上につながらない。 【0021】つぎに、回路金属及び放熱金属がAl又は
Al合金(以下、「アルミニウム」という。)である場
合について説明する。詳しくは、特開2001−085
808号公報に記載されている。接合材としては、Al
−Cu系合金箔、Al−Cu系合金箔の粉末、及びAl
とCuを含む混合粉末から選ばれた少なくとも1種の接
合材が用いられる。中でも、Al−Cu系合金箔が好ま
しく、特にアルミニウム回路の厚みに対し1/10〜1
/50の厚みを持つ合金箔が好ましい。1/50未満の
厚みでは、十分な接合が難しくなり、また1/10超で
はアルミニウム回路が硬くなり回路基板の熱履歴に対し
て不利となる。特に好ましくは、100μm以下の厚み
であって、しかもアルミニウム回路の厚みに対して1/
12〜1/40の厚みである。通常、厚み0.4〜0.
6mmのアルミニウム回路が使用されるので、接合材の
厚みは10〜50μm、特に15〜30μm程度とな
る。 【0022】アルミニウム板(又はアルミニウム回路又
は放熱アルミニウム板)としては、1000系の純Al
は勿論のこと、接合が容易な4000系のAl−Si系
合金や、6000系のAl−Mg−Si系合金等が使用
さできる。なかでも、降伏耐力の低い高純度Al(純度
99.85%以上)が好ましい。このようなアルミニウ
ム板は、1085、1N85材として市販されている。
また、99.9%(3N)品や99.99%(4N)品
でもそれほど高価ではないので、使用することができ
る。 【0023】アルミニウム回路は単体でもよく、二種又
は三種以上のクラッド等の積層体であってもよい。積層
体の例をあげれば、Al−Ni、Al−Ni−Cu、A
l−Mo、Al−W、Al−Cu等である。これらは、
使用目的や接合方法により適宜選択される。これらの中
にあっても、純度99.99%以上のAl単体の圧延
板、特に圧延率10%以上の圧延板を用いることが好ま
しい。圧延Al板が好適である理由は、溶融アルミニウ
ム法に比べて、ロールで均一な圧延が繰り返し行われて
いるので、均一な塑性変形が生じやすいことである。 【0024】アルミニウム回路のAl純度は、高純度で
ある程良好であるが、高価であるので、通常に入手可能
な99.999%程度品が好適である。また、アルミニ
ウム回路の厚みは、通常0.3〜0.5mmである。こ
の範囲を著しく逸脱すると、上記好適な接合材厚みとの
関係が維持できなくなる。例えば、3mm厚みのアルミ
ニウム回路に対して、1/15の厚さである200μm
の合金箔は適切な厚みとはならず、熱履歴に対して不利
な硬い層が形成される。 【0025】さらには、アルミニウム回路の硬度を最適
化して塑性変形を比較的均一に発生させ、メッキやボン
ディングワイヤの剥離防止と、半田クラック等の損傷を
著しく軽減させるために、アルミニウム回路の厚みが1
00μm以上で、ビッカース硬度は15kgf/mm2
以下であることが好ましい。 【0026】放熱アルミニウム板としては、純度99.
0%以上のものであれば良く、厚みが0.1〜0.5m
mであることが望ましい。 【0027】接合材の好ましい組成は、Alが86%以
上、Cuが1〜6%、Mgが3%以下(0を含まず)特
に0.2〜2.0%である。更には、Zn、In、M
n、Cr、Ti、Bi、B、Fe等の成分を合計で5%
程度以下を含ませることができる。このような組成によ
って、回路基板をより安定かつ安価に供給することがで
きる。 【0028】接合材の具体例(市販品合金)を示すと、
2018合金、2017合金、更にはJIS合金の20
01、2003、2005、2007、2011、20
14、2024、2025、2030、2034、20
36、2048、2090、2117、2124、22
18、2224、2324、7050等の合金である。 【0029】積層体の接合雰囲気は窒素雰囲気、好まし
くは酸素濃度1〜100ppmの窒素雰囲気である。接
合温度は600〜650℃である。 【0030】本発明で用いられる超音波接合は、例えば
超音波工業社製USW−610Z20S等の装置を用
い、その条件を選択して行われる。まず、出力は300
W以上、好ましくは500〜2500Wの範囲内におい
て、回路基板や電極端子の大きさによって調整される。
出力が300W未満では接合が十分でなくなる。周波数
は7kHz以上、好ましくは10〜28kHzである。
7kHzよりも低いと十分に接合せず、28kHzより
も高いと振動が大きくなり過ぎ、接合が十分でなくな
る。振幅は7μm以上、好ましくは10〜100μmで
ある。振幅が7μm未満では接合が十分でなくなる。さ
らには、振動を与える時間は、0.5〜5秒が好まし
く、特に1〜3秒が好ましい。 【0031】電極端子となる金属導電材料は、安価で電
気伝導度が高いものが要求されるため、回路が銅回路、
アルミニウム回路のいずれにおいても、銅又は銅合金で
あることが好ましい。寸法の一例は、厚み0.5〜1.
5mm、幅2〜2.5mmである。 【0032】本発明においては、銅回路又はアルミニウ
ム回路の上面に電極端子を取り付ける際、その取付け面
積が重要な条件となる。すなわち、回路上面積(分割回
路の場合はそれらの合計の上面積)の1/3以下(すな
わち取付け面積率が33.3%以下)の面積で、しかも
1箇所の取り付け面積を3〜30mm2 とすることであ
る。回路上面積の1/3を超えて取り付けると、別の電
極端子を取り付ける際に振動を受けて剥離し、複数個の
電極端子を取り付けることができなくなる。好ましい取
り付け面積率は5〜20%である。また、1箇所の取り
付け面積が3mm2 よりも狭いと、電極端子としての機
能を満たすには乏しくなり、30mm2よりも広いと超
音波溶接をすることが困難とある。好ましい1箇所の取
り付け面積は4〜8mm2 である。なお、電極端子は、
通常、複数個取り付けられる。 【0033】 【実施例】以下、本発明を実施例、比較例をあげて具体
的に説明する。なお、本明細書に記載の「%」、「部」
はいずれも質量基準である。 【0034】実施例1〜3、7〜11 比較例1〜8 銀粉末(1.1μm、99.3%)、銅粉末(1.4μ
m、99.8%)、錫粉末(5.0μm、99.9
%)、ジルコニウム粉末(5.5μm、99.9%)を
銀51.4部、銅20.0部、錫14.3部、ジルコニ
ウム14.3部の割合で配合し、ポリイソブチルメタア
クリレートのテルピネオール溶液を加えて混練し、金属
成分71.4%を含むろう材ペーストAを調製した。 【0035】一方、銀粉末(1.1μm、99.3
%)、銅粉末(1.4μm、99.8%)、水素化チタ
ニウム粉末(5.0μm、99.9%)を銀80部、銅
15部、水素化チタン5部の割合で配合し、ポリイソブ
チルメタアクリレートのテルピネオール溶液を加えて混
練し、金属成分71.4%を含むろう材ペーストBを調
製した。 【0036】これらのろう材ペーストを窒化アルミニウ
ム基板(サイズ:60mm×36mm×0.65mm
曲げ強さ:500MPa 熱伝導率:155W/mK、
純度95%以上)の両面にロールコーターによって全面
に塗布した。その際の塗布量は乾燥基準で9mg/cm
2 とした。 【0037】つぎに、窒化アルミニウム基板の銅回路形
成面に56mm×32mm×0.3mmの無酸素銅板
(酸素量:10ppm)を、また放熱銅板形成面に56
mm×32mm×0.15mmの無酸素銅板(酸素量:
10ppm)を接触配置してから、表1に示す接合条件
で接合した。そして、銅回路形成面には所定形状の回路
パターンを、放熱銅板形成面に放熱板パターンを形成さ
せるように、レジストインクをスクリーン印刷してから
銅板と接合層のエッチングを行い、無電解Ni−Pメッ
キ(厚み3μm)を行って回路基板を作製した。なお、
窒素雰囲気中の酸素濃度は50ppmであり、比較例1
の真空中は1×10-3Paである。 【0038】実施例4〜6、12〜16 比較例9〜1
4 上記窒化アルミニウム基板の表裏面に接合材を介してA
l板を重ね、C−Cコンポジット板(厚さ2mm)に挟
んで、ホットプレス装置により、窒化アルミニウム基板
に垂直方向に均等に加圧しながら酸素濃度50ppmの
窒素雰囲気中で加熱した。接合材は、Al−4.1%C
u−0.5%Mg組成を有し、厚さ10μmの箔を用い
た。 【0039】得られた接合体のアルミニウム回路形成面
には所定形状の回路パターンを、放熱アルミニウム板形
成面には放熱板パターンを形成させるように、レジスト
インクをスクリーン印刷してから、Al板と接合層のエ
ッチングを行い、無電解Ni−Pメッキ(厚み3μm)
を行って回路基板を作製した。その後、厚み0.8m
m、幅2〜2.5mmのタフピッチ銅製電極端子の先端
を折り曲げて表1、表2に示される接合面積とし、超音
波工業社製「USW−610Z20S」を用いて表1、
表2に示す条件で超音波接合した。 【0040】得られた電極端子付き回路基板にAC50
00Vを3分間印加する絶縁破壊試験を行った。また、
−40℃と125℃の温度を交互に加える熱サイクル試
験を2000回行った後、AC5000Vを3分間印加
する絶縁破壊試験を行った。更には、不良とならなっか
た試験体について、回路部分等を化学エッチングによっ
て除去し、回路パターン周囲の水平クラック率を、式、
(水平クラックの入った長さ)/(回路パターン周囲の
全長)、によって測定した。これらの結果を表1、表2
に示す。 【0041】 【表1】 【0042】 【表2】【0043】表1、表2から、本発明によって製造され
た電極端子付き回路基板は、電極端子直下の窒化アルミ
ニウム等基板部分には水平クラックの発生がないことか
ら、その部位の強度が十分に高められていることがわか
り、また高度な耐絶縁性能を有するものであることがわ
かった。 【0044】窒化アルミニウム基板の代わりに窒化珪素
基板(サイズ:57mm×34mm×0.65mm 曲
げ強さ:700MPa 熱伝導率:70W/mK、純度
92%以上)を用いて上記に準じた試験を行ったとこ
ろ、上記とほぼ同等の結果となった。 【0045】 【発明の効果】本発明によれば、耐絶縁性の大きな電極
端子付き回路基板を半田を用いないで生産性を高めて製
造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a circuit board with electrode terminals suitable for a power module. 2. Description of the Related Art In recent years, high-performance modules such as high-power and high-efficiency inverters have progressed with the advancement of the performance of industrial equipment such as robots and motors, and the heat generated from semiconductor elements has been increasing steadily. Following. In order to efficiently dissipate this heat, in a large power module substrate, a ceramic substrate mainly composed of aluminum nitride or silicon nitride (hereinafter, referred to as "aluminum nitride substrate") having good heat conduction and both front and rear surfaces thereof are used. After joining a copper plate and forming a copper circuit on one side by etching and a heat-dissipating copper plate on the other side, make a circuit board as it is or by performing processing such as plating, and make a semiconductor element and electrode terminals on the copper circuit part Is used by soldering a heat-dissipating copper plate on the opposite surface to a base copper plate and then attaching it to a heat sink. [0003] Since the solder used here contains lead, the use of lead-free solder is being studied from the viewpoint of today's environmental problems. On the other hand,
A joining method that does not use solder is also being studied, and welding of the electrode terminals using ultrasonic waves of 30 to 200 kHz has already been proposed (Japanese Patent Application Laid-Open No. 2000-232189). However, even with a circuit board with electrode terminals mounted under these ultrasonic conditions, insulation resistance varies greatly depending on the manufacturing history and circuit shape of the circuit board,
In some cases, breakdown occurred when AC 5000 V was applied for 3 minutes, or dielectric breakdown occurred at the beginning of the manufacturing process if repeated thermal cycles were performed at best. [0004] An object of the present invention is disclosed in Japanese Patent Laid-Open No. 2000-2321.
An object of the present invention is to solve the above-mentioned problem in JP-A-89-89, and to manufacture a circuit board with electrode terminals having high insulation resistance without using solder. An object of the present invention is to use a substrate such as aluminum nitride as a ceramic substrate and join a copper circuit using a brazing filler metal containing tin or join a circuit made of Al or an Al alloy using an Al-Cu-based joining material. This can be achieved by manufacturing a circuit board by applying ultrasonic waves of a specific condition to a specific upper surface of the circuit and attaching electrode terminals. [0005] That is, the present invention is as follows. (A) using a brazing material containing silver, copper, tin and zirconium on a ceramic substrate mainly composed of aluminum nitride or silicon nitride and heating it in a nitrogen atmosphere to join a copper circuit or a copper plate, or (b) Using Al-Cu alloy foil, powder of Al-Cu alloy foil, and at least one type of joining material selected from a mixed powder containing Al and Cu, the material is made of Al or an Al alloy by heating under a nitrogen atmosphere. After joining a circuit or a board, when a copper plate or a plate made of Al or an Al alloy is joined, etching is performed to form the circuit. 3-30mm mounting area for electrode terminals
2 , at least one of the electrode terminals has an output of 300 W
As described above, a method of manufacturing a circuit board with electrode terminals, characterized by applying ultrasonic energy having a frequency of 7 kHz or more and an amplitude of 7 μm or more. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below. The feature of the present invention is that an electrode terminal is ultrasonically bonded to a circuit board manufactured under specific conditions under specific conditions. The ceramic substrate used in the present invention is a substrate such as aluminum nitride. As a material mainly composed of aluminum nitride, the strength and the thermal conductivity purity are 400 MPa.
As described above, it is preferably at least 150 W / mK and at least 93%, and as a material mainly composed of silicon nitride, the strength and the thermal conductivity purity are preferably at least 600 MPa, at least 50 W / mK and at least 93%. . Since these ceramic substrates are commercially available, they can be used. When the circuit metal and the heat dissipating metal are copper, the metal components of the brazing material are preferably 40 to 64% of silver, 12 to 28% of copper, 12 to 22% of tin, and 8 to 16% of zirconium. If the silver content is less than 40%, the amount of the intermetallic compound of copper and tin increases, the bonding layer becomes brittle, and the reliability of mechanical strength is greatly reduced. On the other hand, if it exceeds 64%, the wettability of the brazing material to the copper plate (or copper circuit or heat-dissipating copper plate) is reduced, and voids are formed in the bonding layer to lower the bonding strength. If the content of copper is less than 12%, the melting point of the brazing material is significantly increased, and the wettability of the brazing material is deteriorated. If it exceeds 28%, the amount of the intermetallic compound of copper and tin increases, the bonding layer becomes brittle, and the reliability of mechanical strength is greatly reduced. If the tin content is less than 12%, the brazing filler metal is easily oxidized, the melting point of the brazing filler metal rises, the joining temperature must be increased, and voids are formed in the joining layer to increase the joining strength. descend. On the other hand, if the content exceeds 22%, the amount of the intermetallic compound of copper and tin increases, the bonding layer becomes brittle, and the reliability of mechanical strength is greatly reduced. As the active metal, zirconium is selected. If the zirconium content is less than 8%, the bonding strength between the substrate such as aluminum nitride and the bonding layer is weak, and if it exceeds 16%, the bonding layer becomes brittle and the reliability of the mechanical strength decreases. In the present invention, the zirconium component diffuses into the substrate such as aluminum nitride, and the tin component improves the wettability of the silver component and the copper component on the copper plate (or copper circuit or heat-dissipating copper plate). Even if it is not, a substrate such as aluminum nitride and a copper plate (or a copper circuit or a heat dissipation copper plate) are firmly joined by firing in a nitrogen atmosphere. As the metal component of the brazing material, a foil or powder of such a simple substance or an alloy can be used as it is. Preferably, a paste is prepared, and the paste is mixed with a substrate such as aluminum nitride and a copper plate (or a copper circuit or a heat dissipation copper plate). And heat treatment. An example of the paste formulation is 4 to 10 parts of a medium such as polyisobutyl methacrylate (PIBMA) per 100 parts of the metal component. The application amount of the paste is preferably 9 to 10 mg / m 2 on a dry basis. The paste is a substrate such as aluminum nitride and / or
Alternatively, it is applied to a copper plate (or a copper circuit or a heat dissipation copper plate). The copper plate (or copper circuit or heat-dissipating copper plate) used in the present invention is preferably an oxygen-free copper plate, particularly an oxygen-free copper plate having an oxygen content of 50 ppm or less, particularly 30 ppm or less. When a copper circuit pattern or a heat-dissipating copper plate pattern is joined, etching is not particularly necessary. However, when a copper plate is joined, etching is required to form a copper circuit or a heat-dissipating copper plate from the copper plate. This is because Al
The same applies to a case where a plate (aluminum plate) made of an Al alloy is joined. The thickness of the copper circuit is desirably 0.1 to 0.5 mm, and the thickness of the heat dissipation copper plate is desirably 0.1 to 0.5 mm. The circuit board manufactured by the present invention preferably has a bonding layer having a thickness of 8 to 13 μm. If the thickness of the bonding layer is less than 8 μm, the bonding becomes insufficient, and if it exceeds 13 μm, the amount of intermetallic compound of copper and tin increases, and the bonding layer becomes brittle. The thickness of the bonding layer is
It can be easily adjusted by the thickness of the brazing material. A laminate of a substrate such as aluminum nitride and a copper plate (or a copper circuit or a heat-dissipating copper plate) sandwiching a brazing material is subjected to pressure 1.
It is preferable to bake while pressing at 0 MPa or more.
If it is less than 1.0 MPa, the gap where the brazing material is exposed to the atmosphere becomes large, so that the joining becomes insufficient. The upper limit of the pressing force is not limited, but about 2 MPa is sufficient. The bonding atmosphere of the laminate is a nitrogen atmosphere.
Preferably, a nitrogen atmosphere having an oxygen concentration of 1 to 100 ppm is used. If the oxygen concentration exceeds 100 ppm, the brazing material will be oxidized and bonding will be insufficient. On the other hand, if the oxygen concentration is less than 1 ppm, the wettability of the brazing material is extremely improved, and the temperature control becomes difficult, which is not preferable. In addition, the cost of the product is not sufficiently reduced because the device becomes large. The bonding is performed at a temperature of 750-850 ° C. for 0.5-
Hold for 2 hours. If the temperature is lower than 750 ° C., the bonding is not sufficient. If the temperature exceeds 850 ° C., the diffusion of silver or tin into the copper plate (or the copper circuit or the heat dissipating copper plate) becomes excessive and the bonding layer becomes brittle. If the holding time in this temperature range is shorter than 0.5 hour, the bonding becomes insufficient, and if it is longer than 2 hours, the diffusion of silver or tin into the copper plate (or copper circuit or heat dissipation copper plate) becomes excessive. Then, the bonding layer becomes fragile. In the present invention, 750.degree.
The rate of temperature rise up to 750 ° C. and the rate of cooling from 750 ° C. to a take-out temperature such as room temperature are also important, and all are preferably 300 ° C./hour or more. If the rate of temperature rise is less than 300 ° C./hour, the brazing material will be oxidized and bonding will be insufficient. If the cooling rate is less than 300 ° C./hour, particularly in the temperature range of 600 ° C. or more, Ag or Sn in the brazing material layer
Such components diffuse to the copper plate (or copper circuit or heat-dissipating copper plate) side, and the reliability of the circuit board is reduced. Also, 600
If the cooling rate is reduced in a lower temperature range than ℃, the productivity will not be improved. Next, a case where the circuit metal and the heat dissipation metal are Al or an Al alloy (hereinafter, referred to as "aluminum") will be described. For details, see JP-A-2001-085
No. 808. As the joining material, Al
-Cu-based alloy foil, powder of Al-Cu-based alloy foil, and Al
At least one type of joining material selected from a mixed powder containing Cu and Cu is used. Among them, an Al—Cu alloy foil is preferable, and in particular, 1/10 to 1 with respect to the thickness of the aluminum circuit.
An alloy foil having a thickness of / 50 is preferred. If the thickness is less than 1/50, it is difficult to achieve sufficient bonding, and if it exceeds 1/10, the aluminum circuit becomes hard and disadvantageous to the thermal history of the circuit board. Particularly preferably, the thickness is 100 μm or less, and more preferably, 1/100 of the thickness of the aluminum circuit.
The thickness is 12 to 1/40. Usually, the thickness is 0.4-0.
Since an aluminum circuit of 6 mm is used, the thickness of the bonding material is 10 to 50 μm, particularly about 15 to 30 μm. As the aluminum plate (or aluminum circuit or heat-dissipating aluminum plate), 1000 series pure Al
Needless to say, a 4000-type Al-Si-based alloy or a 6000-type Al-Mg-Si-based alloy, which can be easily joined, can be used. Above all, high-purity Al having a low yield strength (purity of 99.85% or more) is preferable. Such an aluminum plate is commercially available as 1085, 1N85 material.
Also, 99.9% (3N) products and 99.99% (4N) products can be used because they are not so expensive. The aluminum circuit may be a single unit, or may be a laminate of two or three or more clads. Examples of the laminate include Al-Ni, Al-Ni-Cu, A
1-Mo, Al-W, Al-Cu and the like. They are,
It is appropriately selected according to the purpose of use and the joining method. Among them, it is preferable to use a rolled sheet of Al alone having a purity of 99.99% or more, particularly a rolled sheet having a rolling reduction of 10% or more. The reason why a rolled Al plate is preferable is that uniform plastic deformation is more likely to occur because uniform rolling is repeatedly performed with a roll as compared with the molten aluminum method. The higher the purity of aluminum in the aluminum circuit, the better, but it is expensive, so that a commonly available product of about 99.999% is suitable. The thickness of the aluminum circuit is usually 0.3 to 0.5 mm. If this range is remarkably deviated, the relationship with the preferable thickness of the bonding material cannot be maintained. For example, for an aluminum circuit having a thickness of 3 mm, the thickness is 200 μm, which is 1/15 of the thickness.
Does not have an appropriate thickness, and a hard layer disadvantageous to the heat history is formed. Further, in order to optimize the hardness of the aluminum circuit to generate plastic deformation relatively uniformly, to prevent plating and bonding wire from peeling, and to significantly reduce damage such as solder cracks, the thickness of the aluminum circuit is reduced. 1
Vickers hardness of 15 kgf / mm 2
The following is preferred. The heat radiation aluminum plate has a purity of 99.
It is sufficient if the thickness is 0% or more, and the thickness is 0.1 to 0.5 m.
m is desirable. The preferred composition of the bonding material is 86% or more of Al, 1 to 6% of Cu, and 3% or less of Mg (not including 0), particularly 0.2 to 2.0%. Further, Zn, In, M
5% in total of components such as n, Cr, Ti, Bi, B, and Fe
Degrees below can be included. With such a composition, the circuit board can be supplied more stably and at low cost. Specific examples of the joining material (commercially available alloy) are shown below.
2018 alloy, 2017 alloy, and JIS alloy 20
01, 2003, 2005, 2007, 2011, 20
14, 2024, 2025, 2030, 2034, 20
36, 2048, 2090, 2117, 2124, 22
18, 2224, 2324, 7050 and the like. The bonding atmosphere of the laminate is a nitrogen atmosphere, preferably a nitrogen atmosphere having an oxygen concentration of 1 to 100 ppm. The joining temperature is between 600 and 650 ° C. The ultrasonic bonding used in the present invention is performed by using an apparatus such as USW-610Z20S manufactured by Ultrasonic Industry Co., Ltd. and selecting the conditions. First, the output is 300
It is adjusted by the size of the circuit board and the electrode terminals in the range of W or more, preferably in the range of 500 to 2500 W.
If the output is less than 300 W, the bonding will not be sufficient. The frequency is 7 kHz or more, preferably 10 to 28 kHz.
When the frequency is lower than 7 kHz, the bonding is not sufficiently performed. When the frequency is higher than 28 kHz, the vibration becomes too large, and the bonding is not sufficient. The amplitude is 7 μm or more, preferably 10 to 100 μm. If the amplitude is less than 7 μm, the bonding will not be sufficient. Furthermore, the time for giving the vibration is preferably 0.5 to 5 seconds, particularly preferably 1 to 3 seconds. Since a metal conductive material serving as an electrode terminal is required to be inexpensive and have high electric conductivity, the circuit is made of a copper circuit,
Copper or copper alloy is preferred in any of the aluminum circuits. One example of the dimensions is a thickness of 0.5-1.
5 mm, width 2 to 2.5 mm. In the present invention, when the electrode terminals are mounted on the upper surface of the copper circuit or the aluminum circuit, the mounting area is an important condition. That is, 1/3 or less of the circuit on the area (the area on their total in the case of division circuit) (i.e. the mounting area ratio is less 33.3%) in the area of, moreover 3 to 30 mm 2 the mounting area of one location It is to be. If more than one-third of the circuit area is mounted, it will be vibrated and peeled when another electrode terminal is mounted, making it impossible to mount a plurality of electrode terminals. A preferable mounting area ratio is 5 to 20%. Further, if one mounting area is smaller than 3 mm 2, it is insufficient to satisfy the function as an electrode terminal, and if it is larger than 30 mm 2 , it is difficult to perform ultrasonic welding. A preferable one attachment area is 4 to 8 mm 2 . The electrode terminals are
Usually, a plurality is attached. EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. In addition, "%", "part" described in this specification
Are based on mass. Examples 1-3, 7-11 Comparative Examples 1-8 Silver powder (1.1 μm, 99.3%), copper powder (1.4 μm)
m, 99.8%), tin powder (5.0 μm, 99.9)
%) And zirconium powder (5.5 μm, 99.9%) in a ratio of 51.4 parts of silver, 20.0 parts of copper, 14.3 parts of tin, and 14.3 parts of zirconium. A terpineol solution was added and kneaded to prepare a brazing filler metal paste A containing 71.4% of a metal component. On the other hand, silver powder (1.1 μm, 99.3)
%), Copper powder (1.4 μm, 99.8%) and titanium hydride powder (5.0 μm, 99.9%) in a proportion of 80 parts silver, 15 parts copper, and 5 parts titanium hydride, A terpineol solution of polyisobutyl methacrylate was added and kneaded to prepare a brazing filler metal paste B containing 71.4% of a metal component. The brazing material paste was applied to an aluminum nitride substrate (size: 60 mm × 36 mm × 0.65 mm).
Flexural strength: 500 MPa Thermal conductivity: 155 W / mK,
(Purity: 95% or more) was applied to both surfaces by a roll coater. The coating amount at that time is 9 mg / cm on a dry basis.
And 2 . Next, a 56 mm × 32 mm × 0.3 mm oxygen-free copper plate (oxygen amount: 10 ppm) was placed on the copper circuit forming surface of the aluminum nitride substrate, and 56 mm × 32 mm × 0.3 mm was placed on the heat radiation copper plate forming surface.
mm x 32 mm x 0.15 mm oxygen-free copper plate (oxygen content:
10 ppm) and then joined under the joining conditions shown in Table 1. Then, a resist ink is screen-printed so as to form a circuit pattern of a predetermined shape on the copper circuit forming surface and a heat radiating plate pattern on the heat radiating copper plate forming surface. A circuit board was manufactured by performing P plating (thickness: 3 μm). In addition,
The oxygen concentration in the nitrogen atmosphere was 50 ppm.
In a vacuum of 1 × 10 −3 Pa. Examples 4-6, 12-16 Comparative Examples 9-1
4 A on the front and back surfaces of the aluminum nitride substrate
The l-plates were stacked, sandwiched between CC composite plates (2 mm thick), and heated in a nitrogen atmosphere with an oxygen concentration of 50 ppm by a hot press device while uniformly pressing the aluminum nitride substrate in the vertical direction. The joining material is Al-4.1% C
A foil having a u-0.5% Mg composition and a thickness of 10 μm was used. A resist ink is screen-printed so that a circuit pattern of a predetermined shape is formed on the aluminum circuit forming surface of the obtained joined body and a heat radiating plate pattern is formed on the heat radiating aluminum plate forming surface. Etching of the bonding layer, electroless Ni-P plating (thickness 3 μm)
Was performed to produce a circuit board. After that, thickness 0.8m
m, the tip of the tough pitch copper electrode terminal having a width of 2 to 2.5 mm was bent to obtain the bonding area shown in Table 1 and Table 2, and Table 1 was obtained by using “USW-610Z20S” manufactured by Ultrasonic Industry Co., Ltd.
Ultrasonic bonding was performed under the conditions shown in Table 2. AC50 was applied to the obtained circuit board with electrode terminals.
A dielectric breakdown test in which 00V was applied for 3 minutes was performed. Also,
After a thermal cycle test in which a temperature of −40 ° C. and a temperature of 125 ° C. were alternately performed 2000 times, a dielectric breakdown test in which AC 5000 V was applied for 3 minutes was performed. Furthermore, for the test piece that did not become defective, the circuit portion and the like were removed by chemical etching, and the horizontal crack rate around the circuit pattern was calculated by the formula:
(Length with horizontal crack) / (total length around circuit pattern). Tables 1 and 2 show these results.
Shown in [Table 1] [Table 2] As can be seen from Tables 1 and 2, the circuit board with electrode terminals manufactured according to the present invention does not have horizontal cracks in the substrate portion, such as aluminum nitride, immediately below the electrode terminals. It was found that it was enhanced and that it had a high insulation resistance. A test similar to the above was conducted using a silicon nitride substrate (size: 57 mm × 34 mm × 0.65 mm, bending strength: 700 MPa, thermal conductivity: 70 W / mK, purity: 92% or more) instead of the aluminum nitride substrate. As a result, the result was almost equivalent to the above. According to the present invention, a circuit board with electrode terminals having high insulation resistance can be manufactured with increased productivity without using solder.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G026 BA16 BA17 BB22 BB27 BF13 BF16 BF17 BF20 BF24 BF31 BF42 BF43 BF44 BG02 BG03 BG27    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 4G026 BA16 BA17 BB22 BB27 BF13                       BF16 BF17 BF20 BF24 BF31                       BF42 BF43 BF44 BG02 BG03                       BG27

Claims (1)

【特許請求の範囲】 【請求項1】 窒化アルミニウム又は窒化珪素を主体と
するセラミック基板に、 (イ)銀、銅、錫及びジルコニウムを含むろう材を用
い、窒素雰囲気下で加熱して銅回路又は銅板を接合する
か、又は(ロ)Al−Cu系合金箔、Al−Cu系合金
箔の粉末、及びAlとCuを含む混合粉末から選ばれた
少なくとも1種の接合材を用い、窒素雰囲気下で加熱し
てAl又はAl合金からなる回路又は板を接合した後、 銅板、又はAl又はAl合金からなる板を接合したとき
にはエッチングを行ってその回路を形成し、 これらの回路の上面積の1/3以下の部分に、1箇所の
電極端子の取り付け面積を3〜30mm2として、電極
端子の少なくとも1個を、 出力300W以上、周波数7kHz以上、振幅7μm以
上の超音波エネルギを与えて取り付けることを特徴とす
る、 電極端子付き回路基板の製造方法。
Claims 1. A copper circuit formed by heating (a) a brazing material containing silver, copper, tin and zirconium in a nitrogen atmosphere on a ceramic substrate mainly composed of aluminum nitride or silicon nitride. Or joining a copper plate, or using (b) at least one kind of joining material selected from Al-Cu alloy foil powder, Al-Cu alloy foil powder, and a mixed powder containing Al and Cu, in a nitrogen atmosphere After the circuit or plate made of Al or Al alloy is joined by heating underneath, when a copper plate or a plate made of Al or Al alloy is joined, etching is performed to form the circuit, and the upper area of these circuits is reduced. At least one-third of the electrode terminal has an area of 3 to 30 mm 2 for mounting one electrode terminal, and at least one of the electrode terminals has an output of 300 W or more, a frequency of 7 kHz or more, and an amplitude of 7 μm or more. A method for producing a circuit board with electrode terminals, characterized in that the circuit board is provided with lugi.
JP2001384160A 2001-12-18 2001-12-18 Method of manufacturing circuit board with electrode terminal Pending JP2003188310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384160A JP2003188310A (en) 2001-12-18 2001-12-18 Method of manufacturing circuit board with electrode terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384160A JP2003188310A (en) 2001-12-18 2001-12-18 Method of manufacturing circuit board with electrode terminal

Publications (1)

Publication Number Publication Date
JP2003188310A true JP2003188310A (en) 2003-07-04

Family

ID=27593957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384160A Pending JP2003188310A (en) 2001-12-18 2001-12-18 Method of manufacturing circuit board with electrode terminal

Country Status (1)

Country Link
JP (1) JP2003188310A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066995A (en) * 2005-08-29 2007-03-15 Hitachi Metals Ltd Ceramic wiring board and its manufacturing method, and semiconductor module
WO2007033829A2 (en) * 2005-09-21 2007-03-29 Infineon Technologies Ag Power semiconductor module and a method for the production thereof
US7446406B2 (en) 2005-03-30 2008-11-04 Toyota Jidosha Kabushiki Kaisha Circuit device and manufacturing method thereof
WO2010010103A3 (en) * 2008-07-22 2010-04-08 Schunk Sonosystems Gmbh Method for sealed welding of elements using ultrasound
JP2011124585A (en) * 2011-01-07 2011-06-23 Hitachi Metals Ltd Ceramic wiring board and manufacturing method and semiconductor module of the same
WO2015163232A1 (en) * 2014-04-25 2015-10-29 三菱マテリアル株式会社 Process for producing united object and process for producing substrate for power module
WO2018199060A1 (en) 2017-04-25 2018-11-01 デンカ株式会社 Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board
CN110691762A (en) * 2017-05-30 2020-01-14 电化株式会社 Ceramic circuit board and method for manufacturing the same
JP2022003010A (en) * 2016-07-28 2022-01-11 株式会社東芝 Method for producing junction and method for producing circuit board
JPWO2022202146A1 (en) * 2021-03-24 2022-09-29

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446406B2 (en) 2005-03-30 2008-11-04 Toyota Jidosha Kabushiki Kaisha Circuit device and manufacturing method thereof
JP2007066995A (en) * 2005-08-29 2007-03-15 Hitachi Metals Ltd Ceramic wiring board and its manufacturing method, and semiconductor module
US7986034B2 (en) 2005-09-21 2011-07-26 Infineon Technologies, Ag Power semiconductor module and method for producing the same
WO2007033829A3 (en) * 2005-09-21 2007-05-31 Infineon Technologies Ag Power semiconductor module and a method for the production thereof
WO2007033829A2 (en) * 2005-09-21 2007-03-29 Infineon Technologies Ag Power semiconductor module and a method for the production thereof
EP3401950A1 (en) * 2005-09-21 2018-11-14 Infineon Technologies AG Method of manufacturing a power semiconductor module
WO2010010103A3 (en) * 2008-07-22 2010-04-08 Schunk Sonosystems Gmbh Method for sealed welding of elements using ultrasound
JP2011124585A (en) * 2011-01-07 2011-06-23 Hitachi Metals Ltd Ceramic wiring board and manufacturing method and semiconductor module of the same
WO2015163232A1 (en) * 2014-04-25 2015-10-29 三菱マテリアル株式会社 Process for producing united object and process for producing substrate for power module
JP2015209356A (en) * 2014-04-25 2015-11-24 三菱マテリアル株式会社 Method for manufacturing joined body and method for producing substrate for power module
CN106103386A (en) * 2014-04-25 2016-11-09 三菱综合材料株式会社 The manufacture method of conjugant and the manufacture method of power module substrate
TWI642645B (en) * 2014-04-25 2018-12-01 日商三菱綜合材料股份有限公司 Method of producing bonded body, method of producing power module substrate
US10370303B2 (en) 2014-04-25 2019-08-06 Mitsubishi Materials Corporation Process for producing bonded body and process for producing power module substrate
JP2022003010A (en) * 2016-07-28 2022-01-11 株式会社東芝 Method for producing junction and method for producing circuit board
JP7155372B2 (en) 2016-07-28 2022-10-18 株式会社東芝 Method for manufacturing joined body and method for manufacturing circuit board
WO2018199060A1 (en) 2017-04-25 2018-11-01 デンカ株式会社 Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board
KR20200004799A (en) 2017-04-25 2020-01-14 덴카 주식회사 Ceramic circuit board, its manufacturing method and module using the same
US11452204B2 (en) 2017-04-25 2022-09-20 Denka Company Limited Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board
CN110691762B (en) * 2017-05-30 2022-06-14 电化株式会社 Ceramic circuit board and method for manufacturing the same
CN110691762A (en) * 2017-05-30 2020-01-14 电化株式会社 Ceramic circuit board and method for manufacturing the same
JPWO2022202146A1 (en) * 2021-03-24 2022-09-29
WO2022202146A1 (en) * 2021-03-24 2022-09-29 デンカ株式会社 Composite substrate
JP7281603B2 (en) 2021-03-24 2023-05-25 デンカ株式会社 Composite substrate

Similar Documents

Publication Publication Date Title
JP6359455B2 (en) Semiconductor circuit board, semiconductor device using the same, and method for manufacturing semiconductor circuit board
JP5918008B2 (en) Manufacturing method of cooler
JP6319643B2 (en) Ceramics-copper bonded body and method for manufacturing the same
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
JP4812985B2 (en) Method of joining ceramic body and copper plate
JP4674983B2 (en) Manufacturing method of joined body
JP3012835B2 (en) Substrate and its manufacturing method, metal joined body suitable for substrate
JP2003188310A (en) Method of manufacturing circuit board with electrode terminal
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP2014091673A (en) Nitride based ceramic circuit board
JP4104429B2 (en) Module structure and module using it
JP2001085808A (en) Circuit board
JPH11121889A (en) Circuit board
JP3308883B2 (en) Board
JP2003100965A (en) Reliability evaluating method of circuit board and circuit board
JP3190282B2 (en) Circuit board manufacturing method
JP3182354B2 (en) Circuit board and its evaluation method
JP4049487B2 (en) Circuit board manufacturing method
JP3537320B2 (en) Circuit board
JP2002137974A (en) Method of bonding ceramic body and copper plate
JP2000349400A (en) Circuit board
JP3729637B2 (en) Electronic components
WO2021241463A1 (en) Copper/ceramic bonded body and insulated circuit board
KR101929613B1 (en) Ceramic circuit board and method of manufacturing the same
JPH1160343A (en) Production of joined body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A02 Decision of refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A02