JPH1154307A - Manufacture of magnet alloy thin strip and resin binding bonded magnet - Google Patents

Manufacture of magnet alloy thin strip and resin binding bonded magnet

Info

Publication number
JPH1154307A
JPH1154307A JP9206847A JP20684797A JPH1154307A JP H1154307 A JPH1154307 A JP H1154307A JP 9206847 A JP9206847 A JP 9206847A JP 20684797 A JP20684797 A JP 20684797A JP H1154307 A JPH1154307 A JP H1154307A
Authority
JP
Japan
Prior art keywords
alloy
molten metal
magnet
alloy ribbon
thin strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9206847A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Hiroshi Kato
洋 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9206847A priority Critical patent/JPH1154307A/en
Publication of JPH1154307A publication Critical patent/JPH1154307A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a magnet alloy thin strip with good yield of the magnet alloy thin strip obtained and lower dispersion of magnetic characteristics in the same lot of the alloy thin strip, by holding the average speed of flow of molten metal within suitable limits in spraying alloy molten metal on a metallic roll. SOLUTION: A magnet alloy thin strip 26 is obtained by spraying R-TM-B based alloy molten metal 23 (where R is a rare-earth element primarily including Nd and Pr, and TM is a transition metal) on a rotating metallic roll 27 at the average speed of flow 0.2 to 5 m/s (preferably 0.5 to 3.0 m/s) to rapidly solidify the alloy molten metal 23. Next, the alloy thin strip 26 obtained or after heat treating is powdered, and the obtained powder and resin are mixed and them molded. As a result, the magnet alloy thin strip can be manufactured with good yield of the magnet alloy thin strip obtained and lower dispersion of magnetic characteristics in the same lot of the alloy thin strip.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は永久磁石材料の製造
方法、特に希土類永久磁石材料を溶湯急冷法により作製
する製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet material, and more particularly to a method for producing a rare earth permanent magnet material by a molten metal quenching method.

【0002】[0002]

【従来の技術】希土類磁石材料の合金溶湯を金属製の単
ロール上に噴射し、合金溶湯を急冷凝固させて磁石合金
薄帯を得る製造方法としては、特公平3-52528号の4ペ
ージ7欄30行〜5ページ9欄42行に、石英管に合金
インゴットのサンプルを入れてこれを溶解し、その後溶
湯を、石英管下部に設けた円孔オリフィスを通して溶湯
に対して非常に大きな熱容量を有する金属製の円盤上に
噴射して合金薄帯を得ることが記載されている。しかし
溶湯噴射時の溶湯流速が、得られる合金薄帯の磁気特性
などにどう影響を及ぼすかということはこれまで検討さ
れていなかった。
2. Description of the Related Art A method for producing a magnet alloy ribbon by injecting a molten alloy of a rare-earth magnet material onto a single metal roll and rapidly solidifying the molten alloy is described in Japanese Patent Publication No. 3-52528, page 4-7. From line 30 to page 5, line 9, column 42, a sample of the alloy ingot was placed in a quartz tube and melted, and then the molten metal was passed through a circular hole orifice provided at the bottom of the quartz tube to give a very large heat capacity to the molten metal. It is described that an alloy thin ribbon is obtained by spraying a metal disk having the alloy ribbon. However, it has not been examined how the flow velocity of the molten metal at the time of molten metal injection affects the magnetic properties of the obtained alloy ribbon.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術によ
る磁石合金薄帯の製造方法は、以下のような問題点を有
していた。
The above-mentioned conventional method for producing a magnet alloy ribbon has the following problems.

【0004】1)溶湯噴射時の諸条件によっては磁石合
金薄帯の寸法ばらつきが大きく、かつそれに起因して磁
気特性にばらつきを生じる。
[0004] 1) Depending on various conditions at the time of injection of the molten metal, the dimensional variation of the magnetic alloy ribbon is large, and the magnetic characteristics are accordingly varied.

【0005】2)溶湯噴射時の諸条件によっては、投入
重量(原料または母合金の重量)に対して、作製される
磁石合金薄帯の収率(歩留まり)が劣化する。
[0005] 2) The yield (yield) of the magnet alloy ribbon to be produced is degraded with respect to the input weight (the weight of the raw material or the master alloy) depending on various conditions during the injection of the molten metal.

【0006】3)磁石合金薄帯にロット内ばらつきが存
在する場合には、該合金薄帯を粉末としてボンド磁石を
作製しても、満足な磁石特性が得られない。
[0006] 3) In the case where there is variation in lots in the magnet alloy ribbon, satisfactory magnet characteristics cannot be obtained even if a bonded magnet is produced using the alloy ribbon as a powder.

【0007】本発明は、こうした従来技術の問題点を解
決するものであり、合金溶湯を金属製ロール上に噴射す
る際の平均溶湯流速を適切な範囲とすることにより、得
られる磁石合金薄帯の収率が良好で、かつ合金薄帯の同
一ロット内における磁気特性ばらつきも少ない磁石合金
薄帯の製造方法を提供することを第1の目的としてい
る。
The present invention solves the above-mentioned problems of the prior art, and obtains a magnetic alloy ribbon obtained by setting the average molten metal flow velocity when the molten alloy is injected onto a metal roll in an appropriate range. It is a first object of the present invention to provide a method for producing a magnet alloy ribbon having a good yield of the alloy and less variation in the magnetic properties of the alloy ribbon in the same lot.

【0008】さらにはこのようにして得られた磁石合金
薄帯から作製した粉末を樹脂と結合した、磁気特性に優
れる樹脂結合ボンド磁石の製造方法を提供することを第
2の目的としている。
It is a second object of the present invention to provide a method for manufacturing a resin-bonded bonded magnet having excellent magnetic properties, in which the powder produced from the magnetic alloy ribbon thus obtained is bonded to a resin.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁石合金薄帯の製造方法は、 R−TM−
B系(RはNd,Prを主とする希土類元素、TMは遷
移金属)の合金溶湯を、金属製の回転するロール上に噴
射して該合金溶湯を急冷凝固させることからなる磁石合
金薄帯の製造方法において、該合金溶湯噴射時の平均溶
湯流速が0.2〜5m/sであることを特徴とする。
In order to achieve the above object, a method for producing a magnetic alloy ribbon according to the present invention comprises the steps of:
A magnet alloy ribbon formed by spraying a B-based alloy (R is a rare earth element mainly composed of Nd and Pr, and TM is a transition metal) onto a rotating metal roll to rapidly solidify the molten alloy. Wherein the average molten metal flow velocity during the injection of the molten alloy is 0.2 to 5 m / s.

【0010】また、本発明の磁石合金薄帯の製造方法
は、 R−TM−B系(RはNd,Prを主とする希土
類元素、TMは遷移金属)の合金溶湯を、金属製の回転
するロール上に噴射して該合金溶湯を急冷凝固させるこ
とからなる磁石合金薄帯の製造方法において、該合金溶
湯噴射時の平均溶湯流速が0.5〜3m/sであること
を特徴とする。
The method for producing a magnetic alloy ribbon according to the present invention is characterized in that a molten metal of an R-TM-B (R is a rare earth element mainly composed of Nd and Pr, TM is a transition metal) is prepared by rotating a metal alloy. In a method for producing a magnet alloy ribbon, wherein the molten alloy is rapidly cooled and solidified by injecting the molten alloy onto a roll to be melted, wherein the average molten metal flow velocity at the time of injecting the molten alloy is 0.5 to 3 m / s. .

【0011】さらに、本発明の樹脂結合ボンド磁石の製
造方法は、 R−TM−B系(RはNd,Prを主とす
る希土類元素、TMは遷移金属)の合金溶湯を、金属製
の回転するロール上に平均溶湯流速を0.2〜5m/s
となるように噴射して急冷凝固させて磁石合金薄帯を得
て、得られた該合金薄帯をそのまま、または熱処理した
後、粉砕して粉末とし、得られた該粉末と樹脂とを混合
後成形して得られることを特徴とする。
Further, the method for producing a resin-bonded bonded magnet according to the present invention is characterized in that a molten metal of R-TM-B type (R is a rare earth element mainly composed of Nd and Pr, and TM is a transition metal) The average molten metal flow rate is set to 0.2 to 5 m / s
A magnet alloy ribbon is obtained by spraying and rapidly solidifying to obtain a magnetic alloy ribbon, and the obtained alloy ribbon is directly or heat-treated, then pulverized into powder, and the obtained powder and resin are mixed. It is characterized by being obtained by post-molding.

【0012】また、本発明の樹脂結合ボンド磁石の製造
方法は、 R−TM−B系(RはNd,Prを主とする
希土類元素、TMは遷移金属)の合金溶湯を、金属製の
回転するロール上に平均溶湯流速を0.5〜3m/sと
なるように噴射して急冷凝固させて磁石合金薄帯を得
て、得られた該合金薄帯をそのまま、または熱処理した
後、粉砕して粉末とし、得られた該粉末と樹脂とを混合
後成形して得られることを特徴とする。
Further, the method for producing a resin-bonded bonded magnet of the present invention comprises the steps of: preparing an R-TM-B-based (R is a rare earth element mainly composed of Nd or Pr, TM is a transition metal) alloy metal melt; A magnet alloy ribbon is obtained by injecting the molten metal at an average melt flow rate of 0.5 to 3 m / s on the roll to be solidified by rapid cooling and solidifying, and the obtained alloy ribbon is directly or heat treated and then pulverized. A powder obtained by mixing the obtained powder and a resin and then molding.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て述べる。
Embodiments of the present invention will be described below.

【0014】1)製造方法の概略(磁石合金薄帯、樹脂
結合ボンド磁石) 図1に単ロールを使用した磁石合金薄帯製造方法の概略
図を示す。概略としては、適当な雰囲気中でノズル内に
装填した原料または母合金を、ノズルの周囲に巻かれた
高周波加熱コイルに通電することにより誘導溶解して合
金溶湯とする。その後、該合金溶湯をノズルの底部に設
けたオリフィス(開口部)を通して、ノズル直下に設置
されている高速回転する金属製の単ロール上に噴射させ
る。噴射された溶湯に対して金属製ロールの熱容量は非
常に大きいため、溶湯はロール上で10〜10K/s
程度の冷却速度で急冷凝固するとともにロール回転方向
に延ばされ、合金薄帯(リボン)が形成される。以下に
さらに詳細に個々の項目に関して説明する。
1) Outline of manufacturing method (magnet alloy ribbon, resin-bonded bonded magnet) FIG. 1 is a schematic diagram of a method of manufacturing a magnet alloy ribbon using a single roll. Roughly, a raw material or a mother alloy loaded in a nozzle in an appropriate atmosphere is induction-melted by energizing a high-frequency heating coil wound around the nozzle to form a molten alloy. Thereafter, the molten alloy is injected through an orifice (opening) provided at the bottom of the nozzle onto a high-speed rotating metal single roll installed immediately below the nozzle. Since the heat capacity of the metal roll is very large with respect to the injected molten metal, the molten metal is placed on the roll at 10 4 to 10 6 K / s.
The alloy is rapidly solidified at a cooling rate of the order and is extended in the roll rotation direction to form an alloy ribbon. The individual items will be described in more detail below.

【0015】まず、ノズル内に装填するのは所望の組成
(R−Fe−B系またはR−Co系、R−TM系)とな
るように秤量した各原料メタルでも良いし、あらかじめ
高周波溶解炉などで所望の組成の母合金インゴットを作
製してから切り出したサンプルでも良い。またノズルの
材質としては、石英が最も好ましいが、高耐熱性のアル
ミナ、マグネシアなどの他のセラミックス材料でもよ
い。オリフィス(開口部)は、円孔状あるいはスリット
状が好ましい。ただしスリット形状の場合、スリットの
長手方向はなるべくロール回転方向と直交に近い方向
(得られる合金薄帯の幅方向)が好ましい。
First, each of the raw material metals weighed so as to have a desired composition (R-Fe-B system or R-Co system, R-TM system) may be charged into the nozzle, or a high-frequency melting furnace may be used in advance. For example, a sample cut out from a mother alloy ingot having a desired composition produced by the above method may be used. As a material of the nozzle, quartz is most preferable, but other ceramic materials such as alumina and magnesia having high heat resistance may be used. The orifice (opening) is preferably a circular hole or a slit. However, in the case of a slit shape, the longitudinal direction of the slit is preferably in a direction as close as possible to the roll rotation direction (the width direction of the obtained alloy ribbon).

【0016】金属製ロールの材質は、十分な熱伝導率を
得るために、銅合金、鉄合金、クロム合金、モリブデン
などが好ましく、さらに耐久性を高めるために表面に耐
摩耗性に優れる金属・合金層を設けてもよい。たとえば
硬質クロムめっきなどを施してもよい。またロール表面
の面粗さは、粗すぎると合金溶湯とロールの濡れ性が低
下してしまうので、あらかじめ研磨紙などで十分平滑な
面に仕上げておく必要がある。具体的には作製する合金
薄帯の厚みの1/3以下の平均表面粗さを保たせること
が望ましい。また冷却能力を高めるために、ロールを水
冷してもよい。
The material of the metal roll is preferably a copper alloy, an iron alloy, a chromium alloy, molybdenum, or the like in order to obtain a sufficient thermal conductivity. An alloy layer may be provided. For example, hard chrome plating may be applied. If the surface roughness of the roll surface is too rough, the wettability between the molten alloy and the roll is reduced. Therefore, it is necessary to finish the surface of the roll with a polishing paper or the like to a sufficiently smooth surface in advance. Specifically, it is desirable to maintain an average surface roughness of 1/3 or less of the thickness of the alloy ribbon to be manufactured. The rolls may be water-cooled to increase the cooling capacity.

【0017】サンプルの装填、ロールの研磨などのセッ
ティングが終了した後、チャンバー内を、まず真空ポン
プによって10-2torr以下まで排気してから不活性ガス
を所望の圧力となるまでチャンバー内に充填する。不活
性ガスとしてはAr,Heなどを使用すればよい。
After the settings such as sample loading and roll polishing are completed, the inside of the chamber is first evacuated to 10 -2 torr or less by a vacuum pump, and then the chamber is filled with an inert gas until the desired pressure is reached. I do. Ar, He, or the like may be used as the inert gas.

【0018】所望の雰囲気としてからコイルに通電して
溶湯を得る。ただし、図1に示したように、サンプルを
ノズルに入れて直接加熱する方法をとらなくてもよく、
具体的には別に設置したるつぼに原料を入れて溶解した
合金溶湯をノズルに移してから噴射してもよい。また加
熱方法も誘導加熱に限定されるものではなく、たとえば
カーボンヒーターなどの発熱体をノズルの周囲に設ける
方法を取ってもよい。
After a desired atmosphere is established, the coil is energized to obtain a molten metal. However, as shown in FIG. 1, it is not necessary to take a method of directly heating the sample by putting it in the nozzle.
Specifically, the molten alloy which is obtained by putting the raw material in a crucible separately provided and melted may be transferred to a nozzle and then injected. The heating method is not limited to induction heating, and a method of providing a heating element such as a carbon heater around the nozzle may be used.

【0019】こうして得られた合金溶湯を底部のオリフ
ィスを介して噴射する。噴射する際には重力を利用して
溶湯を噴射する(落とす)方法も考えられるが、ノズル
中の溶湯上の空間に図1に概略を示したように適当な圧
力(Pi)で不活性ガスを吹き付ける方法が好ましい。
具体的にはこのノズル上部に繋がって電磁弁を介して不
活性ガスの吐出装置が設けて有り、噴射のタイミングに
合わせて吐出装置内の加圧されたガスが電磁弁の開閉に
よって吐出されて合金溶湯が噴射される。実質的な溶湯
の噴射圧Piは、吐出装置における不活性ガスの圧力
と、チャンバー内の雰囲気圧との差圧となる。
The molten alloy thus obtained is injected through the bottom orifice. When injecting, a method of injecting (dropping) the molten metal by using gravity can be considered. However, as shown in FIG. 1, an inert gas is applied to a space above the molten metal in the nozzle at an appropriate pressure (Pi). Is preferred.
Specifically, an inert gas discharge device is provided via an electromagnetic valve connected to the upper part of the nozzle, and the pressurized gas in the discharge device is discharged by opening and closing the electromagnetic valve in accordance with the injection timing. The molten alloy is injected. The substantial injection pressure Pi of the molten metal is a pressure difference between the pressure of the inert gas in the discharge device and the atmospheric pressure in the chamber.

【0020】噴射された合金溶湯はロール上で急冷され
て凝固し、磁石合金薄帯が形成される。合金薄帯の厚み
は一般的にロール周速とともに減少するので、冷却速度
は逆に周速と伴に増大する。このため所望の金属組織を
得るためには、ロール周速を適当な値とする必要があ
り、たとえばas-spun(熱処理無し)の状態で良好な磁
気特性を得るためには、数10nmオーダーの結晶組織を
得るように周速を設定する。一方、一部または全てをア
モルファス組織としてから熱処理を施して良好な磁気特
性を実現する方法を取ってもよい。この場合、as-spun
で最適な特性が得られるロール周速よりもさらに高いロ
ール周速として、一部または全てをアモルファス組織と
し、その後熱処理を施して結晶化させて磁石特性が得ら
れるようにする。熱処理温度は合金組成によって異なる
が、結晶化温度直上から900℃の範囲とすることが好
ましい。結晶化温度よりも低い温度では結晶化は達成さ
れず、900℃を超える温度となると結晶粒の粗大化が
顕著となり、満足な磁気特性は得られない。
The injected alloy melt is rapidly cooled on a roll and solidified to form a magnetic alloy ribbon. Since the thickness of the alloy ribbon generally decreases with the peripheral speed of the roll, the cooling rate conversely increases with the peripheral speed. For this reason, in order to obtain a desired metal structure, it is necessary to set the roll peripheral speed to an appropriate value. For example, in order to obtain good magnetic properties in an as-spun (no heat treatment) state, a roll of several tens nm order is required. The peripheral speed is set so as to obtain a crystal structure. On the other hand, a method of realizing good magnetic characteristics by performing heat treatment after partially or entirely having an amorphous structure may be adopted. In this case, as-spun
As a roll peripheral speed higher than the roll peripheral speed at which the optimum characteristics can be obtained, a part or all of the rolls have an amorphous structure, and then are subjected to heat treatment to be crystallized so that magnet characteristics can be obtained. The heat treatment temperature varies depending on the alloy composition, but is preferably in the range from just above the crystallization temperature to 900 ° C. At temperatures lower than the crystallization temperature, crystallization cannot be achieved. At temperatures exceeding 900 ° C., crystal grains become remarkably coarse, and satisfactory magnetic properties cannot be obtained.

【0021】ボンド磁石に供する磁石粉末は、上述のよ
うな磁石合金薄帯を粉砕して得る。粉砕時の粉末粒度
は、ボンド磁石としての成形性を考慮すれば平均粒度を
100μm以下とすればよい。
The magnet powder to be provided to the bonded magnet is obtained by pulverizing the above-described magnet alloy ribbon. The particle size of the powder at the time of pulverization may be set to an average particle size of 100 μm or less in consideration of moldability as a bonded magnet.

【0022】こうして得られる粉末を、エポキシ樹脂な
どの熱硬化性樹脂、またはナイロン樹脂などの熱可塑性
樹脂のいずれかと混合後、成形してボンド磁石を得る。
成形方法としては、圧縮成形、射出成形、押出し成形な
どが挙げられる。さらに必要に応じて、潤滑材、酸化防
止剤などを樹脂とともに少量添加してもよい。
The powder thus obtained is mixed with either a thermosetting resin such as an epoxy resin or a thermoplastic resin such as a nylon resin, and then molded to obtain a bonded magnet.
Examples of the molding method include compression molding, injection molding, and extrusion molding. Further, if necessary, a small amount of a lubricant, an antioxidant and the like may be added together with the resin.

【0023】2)平均溶湯流速について 合金溶湯がオリフィスを介してロール上に噴射される際
の平均溶湯流速は、磁石合金薄帯の磁気特性などに大き
く影響をおよぼす。
2) Average molten metal flow velocity The average molten metal flow velocity when the molten alloy is injected onto the roll through the orifice has a great influence on the magnetic properties of the magnetic alloy ribbon.

【0024】ここで本発明中で定義した平均溶湯流速
(v)は以下のように算出した。
The average molten metal flow velocity (v) defined in the present invention was calculated as follows.

【0025】まず高速度ビデオカメラにより、図2に概
略を示したような溶湯噴射時のノズル先端周辺とパドル
(溶湯だまり)付近の様子を撮影・収録し、溶湯の噴射
開始から終了までの時間を算出し、噴射時間(t)とす
る。噴射された合金溶湯の体積は、例えば以下のように
測定する。まず、噴射を行う前にノズルと母合金サンプ
ル(または原料メタル)の合計重量をあらかじめ測定し
ておき、さらに溶湯噴射による合金薄帯の作製が終了し
てからノズルとその中に残っている残さの合計重量を測
って、この2つの測定値の差を噴射された溶湯重量
(W)とする。さらに溶湯の密度を知れば噴射された体
積を知ることができる。溶湯自体の密度を知ることは困
難であるが作製された磁石合金薄帯の密度は溶湯の密度
とそれほど大きく違わないと考えられるので、磁石合金
薄帯についてエチルアルコール中でのアルキメデス法に
より測定した密度の値(ρ)を代替値とした。このよう
にして得られた密度(ρ)と溶湯重量(W)から、噴射
された溶湯の体積をW/ρとして算出した。この体積を
先述の単位時間(t)で除した値が、体積流速であり、
これをさらに噴射時の溶湯流の断面積で除した単位面積
あたりの体積流速が溶湯流速となる。噴射時の溶湯流の
断面積を実際に求めるのは困難であるが、高速度ビデオ
カメラの観察の結果、溶湯流は噴射中はほぼ一様の流れ
を形成しており、またノズル底部のオリフィス形状にほ
ぼ沿った形で噴射されていたため、オリフィスの断面積
(A)をもって溶湯流の断面積とした。
First, a high-speed video camera captures and records the vicinity of the nozzle tip and the vicinity of the paddle (melt pool) during molten metal injection as schematically shown in FIG. 2, and the time from the start to the end of molten metal injection. Is calculated as the injection time (t). The volume of the injected alloy melt is measured, for example, as follows. First, before the injection, the total weight of the nozzle and the master alloy sample (or raw metal) is measured in advance, and after the production of the alloy ribbon by the injection of the molten metal is completed, the nozzle and the residue remaining in the nozzle are removed. Is measured, and the difference between the two measured values is defined as the weight (W) of the injected molten metal. Furthermore, if the density of the molten metal is known, the injected volume can be known. Although it is difficult to know the density of the molten metal itself, it is considered that the density of the manufactured magnetic alloy ribbon is not so different from the density of the molten metal, so the magnetic alloy ribbon was measured by the Archimedes method in ethyl alcohol. The density value (ρ) was taken as an alternative value. From the density (ρ) and the weight (W) of the molten metal thus obtained, the volume of the injected molten metal was calculated as W / ρ. The value obtained by dividing this volume by the aforementioned unit time (t) is the volume flow rate,
The volume flow rate per unit area obtained by dividing this by the cross-sectional area of the melt flow at the time of injection is the melt flow rate. Although it is difficult to actually determine the cross-sectional area of the molten metal flow at the time of injection, observation of a high-speed video camera shows that the molten metal flow forms a substantially uniform flow during injection, and the orifice at the bottom of the nozzle Since the fuel was injected substantially in conformity with the shape, the sectional area (A) of the orifice was used as the sectional area of the molten metal flow.

【0026】すなわち本発明の平均溶湯流速(v)は次
式で算出される。
That is, the average molten metal flow velocity (v) of the present invention is calculated by the following equation.

【0027】[0027]

【数1】 (Equation 1)

【0028】次に本発明の限定理由について述べる。Next, the reasons for limitation of the present invention will be described.

【0029】図2に示したように、噴射された合金溶湯
はロール直上でパドル(溶湯だまり)25を形成する。
平均溶湯流速が本発明の範囲内にある場合は、このパド
ル25が噴射中その形状が非常に安定しており、合金薄
帯もほぼ連続的に作製され、厚みばらつきが少なく長い
リボンが作製される。これに対し、図3は平均溶湯流速
が5m/sよりも大きい場合の同様の模式図である。同図
に示したように、パドル35の形状は不安定で、ロール
37から跳ねたような状態となる。それだけではなく、
溶湯の一部はそのままロール37に跳ね返されて同図に
示したようなドロップ状粒子38、あるいは不定形状粒
子39となって飛び散ってしまう状況も確認された。こ
うした状況が生じる結果、平均溶湯流速(v)が5m/
sよりも大きい場合には、上述のようなドロップ状ある
いは不定形状の粒子を除いた磁石合金薄帯の得られる収
率が著しく低下し、製造コストの上昇を招く。さらに図
3に示したドロップ状粒子38あるいは不定形状粒子3
9は、凝固の際に金属製ロール37の熱伝導による冷却
はほとんど行われず、雰囲気ガスの熱伝達によって主と
して冷却されるため凝固速度は極端に小さい。このため
内部のミクロ組織を形成する結晶粒径は数μm〜数十μ
mレベルの結晶粒を多く含み、満足な磁気特性は得られ
ない。よってドロップ状あるいは不定形状の粒子が混入
した状態でボンド磁石を作製すると、磁気特性は劣化す
る。
As shown in FIG. 2, the injected molten alloy forms a paddle (pool of molten metal) 25 immediately above the roll.
When the average molten metal flow rate is within the range of the present invention, the shape of the paddle 25 during injection is very stable, the alloy ribbon is almost continuously produced, and a long ribbon with little thickness variation is produced. You. On the other hand, FIG. 3 is a similar schematic diagram when the average molten metal flow velocity is larger than 5 m / s. As shown in the figure, the shape of the paddle 35 is unstable, and the paddle 35 is in a state of jumping from the roll 37. not only that,
It was also confirmed that a part of the molten metal was rebounded by the roll 37 as it was and scattered as drop-shaped particles 38 or irregular-shaped particles 39 as shown in FIG. As a result of this situation, the average molten metal flow velocity (v) is 5 m /
If it is larger than s, the yield of the magnet alloy ribbon excluding the above-mentioned drop-shaped or irregular-shaped particles is significantly reduced, and the production cost is increased. Further, the drop-shaped particles 38 or the irregular shaped particles 3 shown in FIG.
No. 9 hardly cools by heat conduction of the metal roll 37 at the time of solidification and is mainly cooled by heat transfer of the atmosphere gas, so that the solidification speed is extremely low. Therefore, the crystal grain size forming the internal microstructure is several μm to several tens μm.
It contains many m-level crystal grains, and satisfactory magnetic properties cannot be obtained. Therefore, if the bonded magnet is manufactured in a state where the drop-shaped or irregular-shaped particles are mixed, the magnetic properties are deteriorated.

【0030】逆に平均溶湯流速が0.2m/sより小さい
場合には、噴射に要する時間が長くなって工程が長時間
化するため高コスト化を招く。また吹き付ける不活性ガ
ス流による冷却によって溶湯温度の低下が著しくなる。
その結果、噴射初期に出来た薄帯と末期に出来た薄帯で
は合金溶湯の過冷度が大きく異なり、ミクロ組織に大き
な違いが生じ、そのため磁気特性にもばらつきを生じ
る。さらに噴射途中でオリフィス付近の溶湯が凝固し、
それ以上の噴射が不可能となってしまう事態も場合によ
っては生じてくる。以上のような理由から、平均溶湯流
速(V)を0.2〜5m/sとすることが望ましい。
On the other hand, when the average molten metal flow velocity is less than 0.2 m / s, the time required for injection becomes longer and the process becomes longer, resulting in higher cost. In addition, the temperature of the molten metal is significantly reduced by cooling by the blowing inert gas flow.
As a result, the supercooling degree of the alloy melt is significantly different between the ribbon formed at the early stage of the injection and the ribbon formed at the end of the injection, resulting in a large difference in the microstructure, and hence a variation in the magnetic properties. Furthermore, during the injection, the molten metal near the orifice solidifies,
In some cases, it becomes impossible to perform further injection. For the above reasons, it is desirable that the average molten metal flow velocity (V) be 0.2 to 5 m / s.

【0031】さらに望ましくは、平均溶湯流速(V)を
0.5〜3m/sとすることが望ましい。このような範囲
に於いては収率がより良好で、かつ磁気特性のばらつき
も少ない磁石合金薄帯を得ることができる。
More preferably, the average molten metal flow velocity (V) is desirably 0.5 to 3 m / s. Within such a range, it is possible to obtain a magnet alloy ribbon having a better yield and less variation in magnetic properties.

【0032】平均溶湯流速(V)を制御するためのパラ
メータとしては次のようなものが挙げられる。
Parameters for controlling the average molten metal flow velocity (V) include the following.

【0033】溶湯の噴射圧(Pi) オリフィスの面積(A) 噴射時の溶湯温度、粘性 上記の中で最も影響を及ぼすパラメータは溶湯の噴射圧
(Pi)であり、噴射圧の増加と共に平均溶湯流速も増
大する。また合金溶湯の温度、粘性は合金組成によって
も変化する。
Molten injection pressure (Pi) Orifice area (A) Molten temperature and viscosity at the time of injection The most influential parameter among the above is the injection pressure (Pi) of the molten metal, and the average molten metal increases with the injection pressure. The flow rate also increases. The temperature and viscosity of the molten alloy also vary depending on the alloy composition.

【0034】以下に実施例を挙げながら本発明をさらに
具体的に述べる。
Hereinafter, the present invention will be described more specifically with reference to examples.

【0035】(実施例1)純度99.9%以上のNd,F
e,Coの各メタルとFe−B合金をそれぞれ秤量し、
高周波誘導溶解炉にてNd11.5Febal.
なる組成(組成A)の直径10φの丸棒状の母合金
インゴットを得た。
(Example 1) Nd, F having a purity of 99.9% or more
e, each metal of Co and Fe-B alloy are weighed respectively,
In a high frequency induction melting furnace, Nd 11.5 Fe bal. B 6 N
b 1 a composition was obtained mother alloy ingot shape of a round bar with a diameter of 10φ of (Composition A).

【0036】このインゴットから1ロットにつき約15
gのサンプルを切り出して、図1に示したような装置で
合金薄帯を作製した。切り出した各サンプルを底部に
0.6mmφの円孔オリフィスを設けた石英管内に入れ、
Ar雰囲気中で加熱コイルに通電することによりサンプ
ルを溶解してから2000rpm(周速:20.9m/
s)で回転する直径200mmの銅ロール上に合金溶湯
をArガスの吹き付けによって噴射して合金薄帯を得
た。磁石合金薄帯の製造に際しては、Arガスの噴射圧
(Pi)を変化させて合計7ロットの合金薄帯を得た。
Approximately 15 per lot from this ingot
g sample was cut out, and an alloy ribbon was produced using an apparatus as shown in FIG. Each cut sample is placed in a quartz tube provided with a circular orifice of 0.6 mmφ at the bottom,
After the sample was melted by energizing the heating coil in an Ar atmosphere, 2000 rpm (peripheral speed: 20.9 m /
The molten alloy was sprayed on a 200 mm diameter copper roll rotating in s) by spraying Ar gas to obtain an alloy ribbon. In producing the magnet alloy ribbon, a total of 7 lots of alloy ribbons were obtained by changing the injection pressure (Pi) of Ar gas.

【0037】各ロットについて合金溶湯噴射時の様子を
チャンバーに設けてある覗き窓から、毎秒400コマの高
速ビデオカメラにて撮影・収録し、合金溶湯の噴射時間
(t)を測定した。
Each lot was shot and recorded with a high-speed video camera at 400 frames per second from the viewing window provided in the chamber, and the injection time (t) of the molten alloy was measured.

【0038】また、既述した実施の形態に示した方法
で、噴射された溶湯重量および密度を算出した。密度は
いずれも7.60Mg/mであった。これらの測定値
から、各々のサンプルについて前記数式1から平均溶湯
流速(v)を算出した。さらに各ロットについて、投入
したインゴットサンプル重量に対する、厚みが50μm
以下の作製された合金薄帯の重量の比を取って収率とし
た。さらに各ロットから20mg前後の薄帯サンプルを
すくなくとも10サンプル以上採取して、各サンプルに
ついて振動試料型磁力計(VSM)により最大印加磁場
1.44MA/mにて測定した。同一ロットの各サンプ
ルの最大エネルギー積の測定値の標準偏差を算出してロ
ット内の特性ばらつきの評価を行った。
Further, the weight and density of the injected molten metal were calculated by the method described in the above embodiment. All had a density of 7.60 Mg / m 3 . From these measured values, the average molten metal flow rate (v) was calculated for each sample from Equation 1 above. Further, for each lot, the thickness is 50 μm with respect to the weight of the ingot sample put in.
The yield was determined by taking the ratio of the weights of the following manufactured alloy ribbons. Further, at least 10 or more thin samples of about 20 mg were collected from each lot, and each sample was measured by a vibrating sample magnetometer (VSM) at a maximum applied magnetic field of 1.44 MA / m. The standard deviation of the measured value of the maximum energy product of each sample of the same lot was calculated to evaluate the characteristic variation within the lot.

【0039】表1には、各ロットについて噴射圧(P
i)、平均溶湯流速(v)と収率の評価結果および磁気
特性ばらつきの評価結果を示した。なお、収率の評価は
90%以上を◎、75〜90%を○、75%未満を×と
して表中に示した。またロット内磁気特性ばらつきの評
価は、標準偏差が1MGOe以下のものを◎、1〜2M
GOeのものを○、2MGOeを超えるものを×として
評価した。
Table 1 shows the injection pressure (P
i), the evaluation results of the average molten metal flow velocity (v) and the yield, and the evaluation results of the magnetic property variation are shown. The evaluation of the yield was shown in the table as ◎ for 90% or more, ○ for 75 to 90%, and X for less than 75%. In addition, the evaluation of the magnetic property variation within the lot was performed when the standard deviation was 1 MGOe or less.
GOe was evaluated as ○ and 2MGOe was evaluated as ×.

【0040】[0040]

【表1】 [Table 1]

【0041】平均溶湯流速が0.2m/sに満たない場合
にはオリフィスの溶湯づまりが発生して溶湯が途中から
噴射されなくなり、石英管の中に一部が残ったまま凝固
した。そのため表のように収率が劣化している。また平
均溶湯流速が5m/sよりも大きい場合には、ドロップ状
粒子、不定形状粒子の重量が増すため、厚みが50μm
以下の合金薄帯の得られる収率が低い値となった。また
平均溶湯流速が0.5〜3m/sの範囲においては、非
常に高い収率を得ることができる。
When the average flow velocity of the molten metal was less than 0.2 m / s, the orifice was clogged with the molten metal, and the molten metal was not injected from the middle, and solidified with a part remaining in the quartz tube. Therefore, the yield is deteriorated as shown in the table. When the average molten metal flow rate is larger than 5 m / s, the weight of the drop-shaped particles and the irregular-shaped particles increases, so that the thickness is 50 μm.
The yields of the following alloy ribbons were low. When the average molten metal flow rate is in the range of 0.5 to 3 m / s, a very high yield can be obtained.

【0042】さらに磁気特性についても平均溶湯流速を
本発明の範囲とすることでロット内ばらつきの少ない磁
石合金薄帯を得ることができる。
Further, with respect to the magnetic properties, by setting the average molten metal flow rate within the range of the present invention, it is possible to obtain a magnet alloy ribbon with less variation within a lot.

【0043】上述のA1、A3、A6、A10のそれぞ
れから粉砕して磁石粉末を得て、得られた粉末を1.8
wt%のエポキシ樹脂と混合後、6ton/cmの圧力で圧
縮成形して、10φ×7tのボンド磁石を得た。得られ
たボンド磁石の磁気特性を直流自記磁束計により最大印
加磁場2MA/mにて測定した。得られた磁気特性を表
2に示す。
Each of the above-mentioned A1, A3, A6, and A10 was pulverized to obtain a magnet powder, and the obtained powder was 1.8.
After mixing with a wt% epoxy resin, the mixture was compression molded at a pressure of 6 ton / cm 2 to obtain a bond magnet of 10φ × 7t. The magnetic properties of the resulting bonded magnet were measured by a direct current magnetic flux meter at a maximum applied magnetic field of 2 MA / m. Table 2 shows the obtained magnetic properties.

【0044】[0044]

【表2】 [Table 2]

【0045】表から明らかなように、本発明によれば磁
気特性に優れた樹脂結合ボンド磁石を得ることができ
る。
As is clear from the table, according to the present invention, a resin-bonded bonded magnet having excellent magnetic properties can be obtained.

【0046】(実施例2)表3に示す各組成のインゴッ
トを実施例1と同様に作製して各インゴットからサンプ
ルを切り出し、ロール回転数を4000rpmとし、噴
射圧、オリフィス形状などを変化させていくつかの合金
薄帯を作製した。
(Example 2) Ingots having the respective compositions shown in Table 3 were prepared in the same manner as in Example 1, samples were cut out from each ingot, the roll rotation speed was set to 4000 rpm, the injection pressure, the orifice shape and the like were changed. Several alloy ribbons were made.

【0047】[0047]

【表3】 [Table 3]

【0048】各薄帯について噴射時の平均溶湯流速
(v)と合金薄帯の収率の評価を実施例1と同様に行っ
た。
The average molten metal flow velocity (v) at the time of injection and the yield of the alloy ribbon were evaluated in the same manner as in Example 1 for each ribbon.

【0049】また得られた合金薄帯をX線回折により調
査したところ、回折ピークがいずれもブロードとなって
おり、一部がアモルファス化している組織であることが
確認された。これらの薄帯について各薄帯の結晶化温度
以上の熱処理温度で10分間の熱処理を施した後、ライ
カイ機によって粉砕して粉末とした。得られた粉末を
1.8wt%のエポキシ樹脂と混合後、6ton/cmの圧
力で圧縮成形して、10φ×7tのボンド磁石を得た。
得られたボンド磁石の磁気特性を直流自記磁束計により
最大印加磁場2MA/mにて測定した。
When the obtained alloy ribbon was examined by X-ray diffraction, it was confirmed that all of the diffraction peaks were broad and the structure was partially amorphous. These ribbons were subjected to a heat treatment at a heat treatment temperature not lower than the crystallization temperature of each ribbon for 10 minutes, and then pulverized by a raikai machine to obtain powder. The obtained powder was mixed with 1.8 wt% of an epoxy resin and then compression-molded at a pressure of 6 ton / cm 2 to obtain a bonded magnet of 10φ × 7t.
The magnetic properties of the resulting bonded magnet were measured by a direct current magnetic flux meter at a maximum applied magnetic field of 2 MA / m.

【0050】上記のようにして得られた各サンプルにつ
いての平均溶湯流速(v)と合金薄帯の収率の評価結果
(評価基準は実施例1と同様)、およびボンド磁石の磁
気特性を表4に併せて示す。
The results of the evaluation of the average molten metal flow velocity (v) and the yield of the alloy ribbon for the samples obtained as described above (the evaluation criteria are the same as in Example 1) and the magnetic properties of the bonded magnets are shown in Table 1. 4 is also shown.

【0051】[0051]

【表4】 [Table 4]

【0052】表から明らかなように、いずれの組成にお
いても本発明によれば高い収率で磁石合金薄帯を得るこ
とができ、さらに良好な磁気特性を有するボンド磁石を
得ることができる。
As is clear from the table, according to the present invention, a magnet alloy ribbon can be obtained at a high yield in any of the compositions, and a bonded magnet having better magnetic properties can be obtained.

【0053】[0053]

【発明の効果】本発明のうち請求項1および2に記載の
発明は、合金溶湯が噴射される際の流速について規定す
ることにより、磁気特性ばらつきの少ない磁石合金薄帯
を高い収率で得られる合金薄帯の製造方法を提供するこ
とができる。
According to the first and second aspects of the present invention, a magnet alloy ribbon having a small variation in magnetic properties can be obtained with a high yield by regulating the flow velocity when the molten alloy is injected. The present invention can provide a method for producing an alloy ribbon to be used.

【0054】さらに、請求項3および4に記載の発明
は、このようにして得られた磁石合金薄帯をそのまま、
または熱処理後に粉砕して作製した粉末を、樹脂と混合
後成形することにより、優れた磁気特性が得られる樹脂
結合ボンド磁石の製造方法を提供することができる。
Further, according to the third and fourth aspects of the present invention, the magnetic alloy ribbon thus obtained is used as it is.
Alternatively, a method for producing a resin-bonded bonded magnet having excellent magnetic properties can be provided by mixing powder formed by pulverization after heat treatment with a resin and then molding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁石合金薄帯製造装置の概略図。FIG. 1 is a schematic view of a magnet alloy ribbon manufacturing apparatus.

【図2】合金溶湯噴射時の噴射溶湯付近の概略図。FIG. 2 is a schematic diagram of the vicinity of the molten metal when the molten alloy is injected.

【図3】平均溶湯流速が5m/sを超える場合の噴射溶
湯付近の概略図。
FIG. 3 is a schematic diagram of the vicinity of the injection molten metal when the average molten metal flow velocity exceeds 5 m / s.

【符号の説明】[Explanation of symbols]

11、23、33 ・・・ 合金溶湯 12、21、31 ・・・ ノズル 13、22、32 ・・・ 高周波加熱コイル 14、27、37 ・・・ 金属製ロール 15、26、36 ・・・ 磁石合金薄帯 16 ・・・ ロール回転軸 17 ・・・ ロール回転方向 24、34 ・・・ 噴射溶湯流 25、35 ・・・ ロール状に形成されるパドル(溶湯
だまり) 38 ・・・ ドロップ状粒子 39 ・・・ 不定形状粒子
11, 23, 33 ... molten alloy 12, 21, 31 ... nozzle 13, 22, 32 ... high frequency heating coil 14, 27, 37 ... metal roll 15, 26, 36 ... magnet Alloy ribbon 16 ··· Roll rotation axis 17 ··· Roll rotation direction 24, 34 ··· Molten jet flow 25, 35 ··· Paddle (melt pool) formed in a roll shape 38 ··· Drop-shaped particles 39 ・ ・ ・ Irregular shaped particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 41/02 H01F 1/08 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 41/02 H01F 1/08 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】R−TM−B系(RはNd,Prを主とす
る希土類元素、TMは遷移金属)の合金溶湯を、金属製
の回転するロール上に噴射して該合金溶湯を急冷凝固さ
せることからなる磁石合金薄帯の製造方法において、該
合金溶湯噴射時の平均溶湯流速が0.2〜5m/sであ
ることを特徴とする磁石合金薄帯の製造方法。
1. An R-TM-B (R is a rare earth element mainly composed of Nd and Pr, TM is a transition metal) alloy is sprayed onto a rotating metal roll to rapidly cool the alloy melt. A method for producing a magnetic alloy ribbon comprising solidifying, wherein an average molten metal flow velocity at the time of jetting the molten alloy is 0.2 to 5 m / s.
【請求項2】R−TM−B系(RはNd,Prを主とす
る希土類元素、TMは遷移金属)の合金溶湯を、金属製
の回転するロール上に噴射して該合金溶湯を急冷凝固さ
せることからなる磁石合金薄帯の製造方法において、該
合金溶湯噴射時の平均溶湯流速が0.5〜3m/sであ
ることを特徴とする磁石合金薄帯の製造方法。
2. An R-TM-B (R is a rare earth element mainly composed of Nd and Pr, TM is a transition metal) alloy is sprayed onto a rotating metal roll to rapidly cool the alloy melt. A method for producing a magnetic alloy ribbon comprising solidifying, wherein an average molten metal flow velocity during injection of the molten alloy is 0.5 to 3 m / s.
【請求項3】 R−TM−B系(RはNd,Prを主と
する希土類元素、TMは遷移金属)の合金溶湯を、金属
製の回転するロール上に平均溶湯流速を0.2〜5m/
sとなるように噴射して急冷凝固させて磁石合金薄帯を
得て、得られた該合金薄帯をそのまま、または熱処理し
た後、粉砕して粉末とし、得られた該粉末と樹脂とを混
合後成形して得られることを特徴とする樹脂結合ボンド
磁石の製造方法。
3. An R-TM-B (R is a rare earth element mainly composed of Nd and Pr, TM is a transition metal) alloy is melted on a rotating metal roll at an average melt flow rate of 0.2 to 3. 5m /
s to obtain a magnetic alloy ribbon by quenching and solidifying to obtain a magnetic alloy ribbon, and the obtained alloy ribbon as it is or after heat treatment, pulverized to a powder, and the obtained powder and resin A method for producing a resin-bonded bonded magnet, which is obtained by molding after mixing.
【請求項4】 R−TM−B系(RはNd,Prを主と
する希土類元素、TMは遷移金属)の合金溶湯を、金属
製の回転するロール上に平均溶湯流速を0.5〜3m/
sとなるように噴射して急冷凝固させて磁石合金薄帯を
得て、得られた該合金薄帯をそのまま、または熱処理し
た後、粉砕して粉末とし、得られた該粉末と樹脂とを混
合後成形して得られることを特徴とする樹脂結合ボンド
磁石の製造方法。
4. An R-TM-B type alloy (R is a rare earth element mainly composed of Nd and Pr, and TM is a transition metal) is placed on a rotating metal roll with an average molten metal flow rate of 0.5 to 0.5. 3m /
s to obtain a magnetic alloy ribbon by quenching and solidifying to obtain a magnetic alloy ribbon, and the obtained alloy ribbon as it is or after heat treatment, pulverized to a powder, and the obtained powder and resin A method for producing a resin-bonded bonded magnet, which is obtained by molding after mixing.
JP9206847A 1997-07-31 1997-07-31 Manufacture of magnet alloy thin strip and resin binding bonded magnet Withdrawn JPH1154307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9206847A JPH1154307A (en) 1997-07-31 1997-07-31 Manufacture of magnet alloy thin strip and resin binding bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9206847A JPH1154307A (en) 1997-07-31 1997-07-31 Manufacture of magnet alloy thin strip and resin binding bonded magnet

Publications (1)

Publication Number Publication Date
JPH1154307A true JPH1154307A (en) 1999-02-26

Family

ID=16530048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9206847A Withdrawn JPH1154307A (en) 1997-07-31 1997-07-31 Manufacture of magnet alloy thin strip and resin binding bonded magnet

Country Status (1)

Country Link
JP (1) JPH1154307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254249A (en) * 2004-03-09 2005-09-22 Yaskawa Electric Corp Apparatus for rapidly cooling liquid metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254249A (en) * 2004-03-09 2005-09-22 Yaskawa Electric Corp Apparatus for rapidly cooling liquid metal

Similar Documents

Publication Publication Date Title
KR100535948B1 (en) Iron base rare earth alloy powder and compound comprising iron base rare earth alloy powder, and permanent magnet using the same
JP5191620B2 (en) Rare earth permanent magnet alloy manufacturing method
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
KR100745198B1 (en) Iron-base alloy permanent magnet powder and method for producing the same
JPH0553853B2 (en)
EP1762632A1 (en) Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
JP2001226753A (en) Iron-base alloy soft magnetic material and manufacturing method
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JP2002030378A (en) Method for producing iron-based permanent magnet alloy by control of crystallization heat generating temperature
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
WO1999007005A1 (en) Thin magnet alloy belt and resin-bonded magnet
US20090129966A1 (en) Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JP4332982B2 (en) Manufacturing method of iron-based alloy magnet
CN104114305A (en) R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD FOR PRODUCING SAME
JP4120253B2 (en) Quenched alloy for nanocomposite magnet and method for producing the same
JPH1154307A (en) Manufacture of magnet alloy thin strip and resin binding bonded magnet
JP4715245B2 (en) Iron-based rare earth nanocomposite magnet and method for producing the same
JP3365628B2 (en) Iron-based alloy permanent magnet powder and method for producing the same
JP3647420B2 (en) Method for producing quenched alloy
JP2003158005A (en) Nanocomposite magnet and its manufacturing method
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP4457453B2 (en) Fine crystal iron-based alloy magnet and method for producing the same
JP4168643B2 (en) Compound for bonded magnet and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040624